Protecting Source Code Privacy When Hunting
Memory Bugs

Jielun Wu', Bing Shuif, Hongcheng Fan', Shengxin Wuf, Rongxin Wu!, Yang Feng', Baowen Xuf, Qingkai Shi*T
fState Key Laboratory for Novel Software Technology, Nanjing University, China
School of Informatics, Xiamen University, China
{jielunwu,bingshui,hchfan,wsx } @smail.nju.edu.cn, wurongxin@xmu.edu.cn, {fengyang,bwxu,qingkaishi} @nju.edu.cn

Abstract—When proving to a third party that a software
system is free from critical memory bugs, software vendors often
face the problem of having to reveal their source code, so that
the third party can scan the source code using static analysis
tools. However, such transparency poses a significant threat
to vendors, as the source code typically contains proprietary
algorithms, core technical innovations, or trade secrets, exposing
them to potential intellectual property risks. In this paper, we
present a solution that offers a balance between transparency
and code privacy, allowing software vendors to provide minimal
source code information while justifying the sufficiency of bug
detection. To this end, we propose DIREDUCER, which reduces
source code information, a.k.a. debug information, from non-
stripped binaries while preserving its utility for memory bug
detection. DIREDUCER consists of two components: selective
pruning and type minimization. The former eliminates redundant
debug information, and the latter is proven to be NP-hard and
minimizes type-related debug information by reducing it to the
classic set-cover problem, which offers a near-optimal solution.
Experimental results show that we can reduce 95% of debug
information while maintaining similar bug detection capability
compared to using full debug information or the source code.

I. INTRODUCTION

In situations like the export of critical software, software
vendors are typically required to demonstrate that their pro-
grams contain no defects, especially severe memory vulnera-
bilities, such as buffer overruns, to meet legal and regulatory
standards. However, proving to the third party that a program
is free of such memory bugs is risky of leaking technical
or trade secrets because, as reported by BBC [1], software
vendors often have to reveal the source code so that the third
party can scan the program using static analysis tools [4],
[13], [52], [53], [59]. To protect source code privacy, we, as
software vendors, may require the third party to utilize bug
detectors based on stripped binaries, i.e., binaries without any
source code (or debug) information. However, this is often not
acceptable because it is well known that detecting program
bugs in stripped binaries is not effective due to the lack of
critical information, such as data types [54].

In this paper, we aim to provide a solution so that software
vendors can justify providing sufficient source code informa-
tion for memory bug detection while simultaneously revealing
as little source code information as possible. Our approach,

*Qingkai Shi is the corresponding author.

Time: Aug 13, 2025
Card Number: 1234 5678 9876 5432 Card Number:1234 *#** k%% 5437
Address: 123 Mary St, #4, Rm 567 Address:123 Mary St, #4, Rm ***

(a) (b)

Time: Aug 13, 2025

Mem Loc: RBP-24; RBP-32

Name: encryption; secret

Type: int; int*

Src Loc: line 20, secret.c, ...

Mem Loc: RBP-24; ***
Name: ***; * Kk

Type: int; ***

Src Loc: line *#%, 4%

(c) (d)

Fig. 1. (a-b) Data anonymization vs. (c-d) DIREDUCER.

namely DIREDUCER, draws inspiration from data anonymiza-
tion techniques [17], [32], [44], which are widely used to
obscure sensitive information in datasets, making it difficult
to trace the anonymized data back to specific individuals or
entities. As shown in Figures 1(a) and 1(b), a simple example
of data anonymization is the practice of partially omitting
sensitive information, such as credit card numbers and billing
addresses, from billing data while preserving its verifiability.

DIREDUCER seeks to achieve a similar effect in the domain
of memory bug detection over non-stripped binaries. On the
one hand, recent research [72] has shown that detecting
memory bugs in non-stripped binaries (binaries with debug
information) demonstrates similar capability of bug detection
at the source-code level. This is essentially because debug
information provides source-code information, such as variable
types, memory locations, and so on. On the other hand, non-
stripped binaries allow for the possibility of protecting source-
code privacy by anonymizing as much debug (or source-code)
information while preserving the integrity of program logic
and the capability of bug detection.

For example, Figure 1(c) demonstrates partial information
of variables encryption and secret contained in the debug
information. For memory bug detection, the variable names
and their locations in the source files are unnecessary. Only
the memory locations and types are needed. Figure 1(d)
demonstrates the anonymized variable information, where the
variable names and the source files are reduced. Furthermore,
secret is a variable with type int*, When the type of secret
can be inferred (e.g. int % secret = &encryption;), there
is no need to preserve its type in the debug information as
well. Consequently, we do not need to maintain any debug
information for the address RSP — 32, thus achieving source
code information protection.

Particularly, DIREDUCER employs two key techniques to
anonymize the debug (or the source code) information in non-
stripped binaries: selective pruning and type minimization. The
former systematically identifies and retains only the portions of
debug information that are essential for memory bug detection,
thereby eliminating redundant debug information. The latter
leverages binary type inference techniques to further remove
redundant types. The problem of minimizing type information
is formulated as a classic NP-hard problem — the set cover
problem, which offers near-optimal solutions for us.

Existing research has partially explored the reduction of
debug information and type inference for binary code. Mod-
ern compilers can compress debug information to reduce its
size [3], [8]. However, such compression does not eliminate
any information and, thus, does not offer any protection for
source-level privacy. Binary type inference is a critical task
in reverse engineering, and numerous studies [24], [29], [35],
[40], [48], [58], [66], [67], [71] have focused on inferring
understandable type information from stripped binaries, such
as strings, pointers, and structures. In contrast, DIREDUCER
analyzes the types embedded in the debug information to
identify and remove redundant types. Unlike prior work, which
focuses on transforming unknown types into explicitly known
ones, we transform known types into unknown ones.

Recent studies on privacy-preserving program analysis [30]
employed cryptographic techniques, e.g., secure multi-party
computation, to preserve privacy. However, these approaches
often incur severe performance overhead, making the already
inefficient program analyzers (which are well-known to be of
high complexity) even worse. Typically, they can be applied to
programs with only a few hundred lines of code [30] and, thus,
lack practicality. In contrast, DIREDUCER does not introduce
apparent overhead to static analyzers.

Obfuscation is another technique that aims to protect source
code, but under a completely different philosophy [16], [23],
[38], [51]. Obfuscators modify control flows or scramble code,
making a program difficult to understand and analyze. For
example, an aggressive obfuscator can heavily complicate
control flow but reduce the effectiveness of bug detection.
Merely obfuscating identifiers (e.g., variable names) offers
little benefit, as we demonstrate that completely removing
identifier names does not impair bug detection effectiveness.
Additionally, obfuscators typically do not operate on debug in-
formation, whereas DIREDUCER attempts to minimize debug
information as much as possible. In other words, obfuscation
is orthogonal to our approach as we can still apply obfuscation
to enhance privacy after applying DIREDUCER.

In summary, we make the following contributions:

o We provide a solution where software vendors can justify
providing sufficient source code information for memory
bug detection while simultaneously revealing as little
source code information as possible.

— We propose a novel debug information reduction
technique, incorporating selective pruning and type
minimization to prevent source code privacy leakage
during static memory bug detection.

call getCardNumber
mov QWORD PTR [rbp-24], rax
lea rax, [rbp-104]

1 typedef struct { 5 Line 9
2 uint64 cardNumber;
3 char billingDetail[64]; ex1037
4} PaymentInfo; ex103b
5 ox103e
6 PaymentInfo fetchPaymentInfo() { 0x1043 MOV rax, QWORD PTR [rbp-24]
ox1e47 mov QWORD PTR [rbp-96], rax
mov rax, QWORD PTR [rbp-104]

ox102e
ox1033
5 Line 11
mov rdi, rax

call fillBillingStr

; Line 13

7 PaymentInfo payment;
8 ... ox104b
9 uint64 cardNumber = getCardNumber(); ox104f

10 char* billingStr; 0x1052

11 fillBillingStr(8&billingStr); ox1057

5 billingstr
mov rdi, rax
call strlen ; strlen(billingstr)

mov rdx, rax

12 @x105a MoV rax, QWORD PTR [rbp-164] ; billingStr

13 payment.cardNumber = cardNumber; ©x105e Mov rsi, rax

14 strncpy(payment.billingDetail, ox1062 lea rcx, [rbp-96] ; payment
billingStr, strlen(billingStr)); ox1066 add rcx, 8 ; patment->billingDetail

15 ... ox106a mov rdi, rcx

16 return payment; ex106d call strncpy

17 } (a) (b)

n, function
name: fetchPaymentInfo
type: PaymentInfo
mem_loc: ©x1000
src_loc: payment.c, 6:1

JN

n, variable
name: cardNumber

type: uint64

src_loc: payment.c, 9:10
mem_loc: RBP-24

n, variable
name: billingStr

type: char*

src_loc: payment.c, 10:9
mem_loc: RBP-104

n, variable
name: payment
type: PaymentInfo
src_loc: payment.c, 7:15
mem_loc: RBP-96

! Wemay have another |
| variable of the same type, |
! Paymentinfo, in the code |

n field
name: billingDetail
type: char[64]
mem_loc: offset 8 (c)

n, field
name: cardNumber
type: uint64
mem_loc: offset @

n, function
name: ------
type: PaymentInfo
mem_loc: @x1000
src_loc: ------

J‘¥

n, variable n, variable n, variable
name: ------ name: ------ name: ------
type: PaymentInfo type: *awrxs type: char*
src_loc: ------ src_loc: -=---=
mem_loc: ** mem_loc: RBP-104

name :
type: uint64
mem_loc: offset @

type: char[64]
mem_loc: offset 8 (d)

Fig. 2. (a) Example code of a payment transaction system. (b) The x86
assembly code. (c) Original DIG. (d) Reduced DIG.

— We reduce the type minimization problem to the
classic set cover problem, which establishes the
problem’s difficulty, i.e., NP-hardness, but provides
near-optimal solutions to prune debug information.

e We evaluate DIREDUCER on a broad set of programs,
showing that DIREDUCER can reduce 94.55% debug
information on average, revealing sufficient but minimal
source code information for bug detection. The artifact is
publicly available [5].

II. BACKGROUND AND OVERVIEW
A. Debug Information Demystified
Non-stripped binaries contain debug information in various
formats, such as PDB [11] and DWAREF [6]. PDB is predomi-
nantly used on Windows platforms, whereas DWARF is the de
facto standard across most other systems. Debug information,
in either PDB or DWAREF format, is a graph structure.

Definition 1 (Debug Information Graph (DIG)). The debug
information in a binary is a graph G = (N, E), where
e Each node in N represents an entity, such as functions
and variables, and consists of attribute-value pairs;

o Each edge in E C N X N represents hierarchical relation-
ships between the entities.

TABLE I: Classification of the Debug Information.

Classification Description DIG Attribute
1. Symbol Name The names of program entities, such as function names and variable names. name

2. Building Config Compilation options, building directories, linking parameters, and so on. config

3. Source Location Specify the source location of program entities, including the source file, source line, and source row. src_loc

4. Memory Location Specify the address of program entities, in memory or registers. mem_loc

5. Type Metadata primitive types (e.g., int, char) and compound types (e.g., structure), and the memory layout of types. type

TABLE II: Memory Bugs and Related Types.

Bug Category | Related Types

Null Pointer Dereference [14], [61]
Memory Leak [42]
Use-After-Free [33]

Double-Free [21], [65]
Buffer Overflow [46], [70]
VTable Escape [27], [69]

Type Confusion [34], [39], [68]

Numeric, Pointer, Structure, ...
Numeric, Pointer, Structure, ...
Numeric, Pointer, Structure, ...
Numeric, Pointer, Structure, ...
Array, Numeric, Pointer, ...
Class, VTable Pointer, ...
Class, Pointer, Union, ...

Example 1. Figure 2(a) presents a simplified code snippet
of a compilation unit payment.c from a payment system.
It includes a function fetchPaymentInfo, a structure type
PaymentInfo, two other types (i.e., uint64 and char[64]),
and three variables: payment, cardNumber, and billingStr.
Figure 2(c) shows the DIG embedded in the corresponding
binary code in (b). The DIG consists of six nodes, n; through
ng. The node n; represents the function fetchPaymentInfo
and is connected to three variable nodes, no, n3, and ng4, as
these variables are defined within the scope of the function.
Particularly, the node ns represents a structure-type variable
with two fields denoted by ns and ng. All variables of the
same compound type (e.g., structure) share the field nodes, as
illustrated in the figure. Each node may have many attributes,
including name, config, src_loc, mem_loc, and type, rep-
resenting the symbol name, building config, source location,
memory location, and type metadata, as outlined in Table I.

Exposing the source code information in DIG may pose
serious security threats. For example, leaking building con-
figuration information can reveal compilers and third-party
libraries used in the program, enabling attackers to exploit
known issues in them [15], [19], [28]. Disclosing symbol
names or type metadata may expose the intent of the pro-
gram [22] or even trade secrets. Revealing the source location
could expose the code organization structure, which is private
for software vendors. Additionally, leaking memory location
may allow attackers to launch targeted attacks, such as virtual
function table hijacking [69].

To measure the amount of source code information exposed
by a binary file, we define the following source exposure
metric quantified by simple attribute counting.

Definition 2 (Source Exposure Metric). Given an original
DIG G and a reduced DIG G’, the source exposure metric
P(G', G) = |Attr'| /| Attr| x 100%, where |Attr| and |Attr'|
are the number of all attributes in G and G', respectively.

Example 2. Figure 2(d) is a reduced DIG, G’, where attributes
masked by °-” and ‘*’ are removed. Compared to the original
DIG G in (c), the reduced DIG exposes P(G',G) = 10/22 =
45.5% of the source code information.

uinte4

~
o]
@
i
a
Y rbp-24 -> // cardNumber
o w
:
2 char[64] a
¢ rbp-96 + 8 -> 2 // payment
= 8
e 3
i o
E rbp-96 -> uint64 £
o
& rbp-104 -> char* // billingstr

Fig. 3. Stack Layout from Debug Information.

B. Memory Bug Detection

Memory bugs are among the most common and severe
software security vulnerabilities in the software world [18].
Table II lists the common memory bugs. We observe that
detecting almost all these memory bugs requires only knowing
the data type of memory regions.

Example 3. Identifying memory bugs like buffer overflow
necessitates the knowledge of memory layout and array types.
The code in Figure 2(a) is potentially vulnerable to buffer
overflow, with Figure 2(b) presenting its assembly code. If
billingStr initialized at line 11 exceeds 64 bytes, the
invocation of strncpy at line 14 will cause a buffer overflow
because payment.billingDetail is of the type char[64].
With the array types and memory locations in DIG, we can
get the stack layout as Figure 3, which illustrates how local
variables of different types, including the vulnerable array
payment.billingDetail, are located on the stack. Without
types and memory locations in the DIG, the stack layout is
unknown. Then, we cannot locate the array or determine its
size and, thus, cannot detect the buffer overflow. In contrast,
debug information, such as the variable names and source code
location, is not important for memory bug detection.

The observation above (i.e., bug detection could relate only
to a little source code information like types) provides an op-
portunity to significantly reduce source code information from
non-stripped binaries while still enabling effective memory
bug detection. As such, we can achieve the following goal.

Goal: When software vendors are required to demonstrate
that their programs are free of memory bugs, they can then
reveal as little source code information as possible while
simultaneously justifying that they have provided sufficient
source code information for memory bug detection.

C. Approach in a Nutshell

As shown in Figure 4, DIREDUCER reduces source code
information in four steps: (1) Taking a non-stripped binary as
input, constructing a control flow graph (CFG), and separating

the debug information from the binary. (2) Building DIG
and employing selective pruning to remove irrelevant source
code information, yielding a pruned DIG. (3) Constructing
a type dependency graph (TDG) based on the CFG and the
pruned DIG from the previous step, and then performing
type minimization based on the TDG to further reduce debug
information. (4) Reconstructing the reduced debug information
with the stripped binary to produce the final binary as the
output. The practical implementation of the above workflow
must overcome several challenges, which, together with our
solutions, are briefly discussed below.

Selective Pruning. This step aims to identify the source code
information unrelated to memory bug detection from more
than 400 kinds of debug information in DIG [6], [7]. As
mentioned earlier, memory bug detection relies on just a little
source code information, such as the memory locations and
types of program variables. Thus, the challenge below arises.

Challenge 1: What key elements within numerous kinds of
debug information are valuable for memory bug detection?

Given that not all debug information contributes to the effec-
tiveness of memory bug detection, we systematically identified
the debug information that needs to be preserved after review-
ing the DWARF documentation and the implementations of
relevant compilers. Consider the DIG in Figure 2(c). This step
prunes name and src_loc in all nodes (n; through ng), which,
as discussed in Example 3, are not related to the bug in the
code, yielding a source exposure metric P(G’, G) = 54.5%.

Type Minimization. The following challenge asks whether we
should retain all types, even though types are critical source
code information for memory bug detection. We observe that
retaining only a subset of types in debug information is
sufficient for memory bug detection.

Challenge 2: How can we minimize types while preserving
the effectiveness of memory bug detection?

To address this challenge, we propose a type minimization
technique to identify and remove redundant types embedded
in DIG. Intuitively, assuming that the set of types embedded
in DIG is O, and the set of types after reduction is ©’, we
ensure that all types in the set © can be inferred from set ©' in
some manner, such that we can justify that the retained debug
information is sufficient for detecting memory bugs. To this
end, we reduce the type minimization problem to a classic set
cover problem, which, although NP-hard, provides an efficient
approximation algorithm for a nearly optimal solution.

Consider the DIG in Figure 2(c). We can remove the type
uint64 in the node ns by our type minimization technique,
because these types can be inferred from the types embedded
in ns. To facilitate type minimization, we extend DIG as
Figure 2(d) by adding red dashed lines (between ns and ng)
to indicate that one type can be inferred from others.

After type minimization, since the node n3 no longer
contains any information (e.g. type, mem_loc), it can be

U

1)) (@) .
fore] final | Output |
10110 | _strip__ [Debug| DIG Selective 110 | 77T

01001 Info Construction Pruning 01001

Binary w/ Debug Pruned DIG ~ Binary w/
Debug Info Information Minimal Debuginfo

smpl \ Reconstruction

[===]AN
=
Debug

10110 Type
] — T
01001 CEIEEN (g Minimization info
Sibeed GRERCIRRTITRRRRIARENN DG Minimal
$ 1

Binary CFG Debug Information
L

Fig. 4. Overview of DIREDUCER.

entirely removed. Consequently, the source exposure metric
P(G', G) is further reduced from 54.5% to 45.5%. In practice,
according to our evaluation, we can reduce the metric to 5.45%
on average, meaning that only a little source code information
has to be revealed.

ITII. SELECTIVE PRUNING

This step aims to prune all debug information irrelevant
to memory bug detection, such as the DIG attributes name,
config, src_loc, mem loc, and type, listed in Table L
While this step appears straightforward, it is particularly chal-
lenging because, in practice, an abstract attribute, e.g., type,
corresponds to a number of concrete attributes in the DWARF
standard, and we must identify all useful ones from among
thousands of concrete attributes. To determine whether or not
to retain particular debug information, we conducted extensive
empirical investigations, including reviewing DWARF docu-
mentation and implementations in relevant compilers (e.g.,
gcc, clang) to check if it is related to memory bug detection.
As a result, for the first time to the best of our knowledge, we
systematically cataloged the DWARF attributes valuable for
memory bug detection in Table III, which includes two kinds
of debug information indicating the memory locations storing
program variables and the variable types.

Since DWARF is the de facto standard for debug informa-
tion, the manual efforts in this step only need to be carried
out once. Thus, we do not try to automate this step.

Memory Locations. The first group of attributes in Table III
specifies where program variables or functions are stored
in memory, including seven attributes in total. The attribute
DW_AT_low_pc records the entry point of a function, while
the attribute DW_AT_high_pc specifies its length. Such infor-
mation is particularly valuable for fundamental binary analysis
techniques like disassembly, as disassemblers cannot always
accurately identify function boundaries [47].

The attribute DW_AT frame_base records the stack
pointer’s position, which is essential for computing variable
memory location since locations are stack-pointer-relative. The
DW_AT_location attribute specifies the memory location of
a variable, while DW_AT_return_addr records the memory
location storing the function return address, enabling static an-
alyzers to detect potential overflow bugs that may maliciously
rewrite the return address. When a variable is on the stack, its
location is computed based on both DW_AT_frame_base and
DW_AT location. When a variable is in register, its location
can be computed based on DW_AT_location only.

The attribute DW_AT_data_member_location specifies the
offset of a field relative to its parent compound type’s base
address. The attribute DW_AT_vtable_elem_location spec-
ifies the offset of a virtual function table pointer relative to its
class’s base address in class types.

Example 4. In Figure 2(c), the attribute specifying memory
location, mem_1loc, in each variable node is computed based on
DW_AT frame_base and DW_AT_location. For example, the
variables payment, cardNumber, and billingStr are stored
at memory location RBP — 96, RBP — 24, and RBP — 104 re-
spectively, where RBP is computed as per DW_AT_frame_base
and the offsets to RBP are computed from DW_AT_location.

Types. While the debug information of memory locations
specifies a bounded memory region for each program variable,
the type metadata in Table III indicates the layouts and data
types of the memory region. Attributes prefixed with DW_TAG
denote specific types. For instance, DW_TAG_base_type repre-
sents primitive types such as int, long, float, etc. The others
like DW_TAG_structure_type specify composite types de-
rived from the primitive types. In addition, attributes prefixed
with DW_AT provide detailed type specifications. For example,
the attribute DW_AT byte_size indicates the size of a type
in bytes, and the attribute DW_AT_upper_bound specifies the
number of elements in an array.

Example 5. In Figure 2(c), querying the attribute DW_AT_type
of the variable payment reveals its type as Payment Info. Fur-
ther inspection of the attributes, DW_TAG_structure_type,
confirms that payment is a structure-type variable contain-
ing two fields: cardNumber and billingDetail. Moreover,
the field billingDetail is annotated with the attribute
DW_AT data_member_ location, which records the field’s
offset of 8 bytes relative to the structure’s base address.

As discussed before, the selective pruning step removes all
attributes not in Table III from the DIG nodes. In Figure 2(d),
attributes masked by ‘-’ indicate they were removed during
the selective pruning process. As shown, all attributes such as
name and src_loc have been eliminated, as these attributes
are unrelated to memory bug detection. In contrast, attributes
related to memory bug detection, such as type and mem_1loc,
are preserved. These attributes correspond to those enumerated
in Table III and will be further anonymized in the next step.

To conclude, this step makes two contributions. First, to
our knowledge, this represents the first systematic study that
(1) analyzes mainstream debug information standards and (2)
establishes a taxonomy of debug information. Second, it is a
necessary step in our overall solution, which enables software
vendors to provide sufficient source code information for
memory bug detection while simultaneously revealing as little
source code information as possible.

IV. TYPE MINIMIZATION

From the perspective of software vendors, we should reduce
as much debug (or source code) information as possible, even
though some information may be theoretically recoverable. To

TABLE III: DWARF Debug Information for Memory Bug Detection

Classification

Debug Info Attribute

DW_AT_low_pc
DW_AT_high_pc
DW_AT_frame_base

DW_AT _location

DW_AT _return_addr
DW_AT_data_member_location
DW_AT_vtable_elem_location
DW_TAG_base_type
DW_TAG_union_type
DW_TAG_structure_type
DW_TAG_enumeration_type
DW_TAG_subroutine_type
DW_TAG_array_type
DW_TAG_class_type
DW_TAG_reference_type
DW_TAG_pointer_type
DW_AT _byte_size

DW_AT _type
DW_AT_bit_size
DW_AT_upper_bound
DW_AT_encoding

Description

Function entry point.
Function length.

Function stack base.
Variable memory address.
Subroutine return address.
Data member offset.
Virtual function vtable slot.
Indicates a base type.
Indicates a union type.
Indicates a structure type.
Indicates an enumeration type.
Indicates a subroutine type.
Indicates an array type.
Indicates a class type.
Indicates a reference type.
Indicates a pointer type.
Size of the type in bytes.
Reference of other types.
Size of the type in bits.
Upper bound of the array.
Encoding of primitive types.

Memory Location

Type Metadata

this end, type minimization allows vendors to reduce more
debug information, while still justifying that the revealed
source code information is sufficient for memory detection.
The basic idea is that all types and memory locations in debug
information that can be theoretically recovered from retained
debug information can be removed. This section elaborates
on this idea in two steps: the data structure (§IV-A) and the
algorithm (§IV-B) for type minimization.

A. Type Dependency Graph

Abstract Program. To ease the explanation, we use the
abstract program in Figure 5 to describe common binary
programs (e.g., x86 binaries). At the top level, a program
is viewed as a sequence of instructions. We abstract x86
assembly instructions into five categories: copy, load, store,
binary, and merge instructions. Each instruction has several
operands, which are an arithmetic expression over a register,
denoted as o, or a memory location whose address is o,
denoted as [0]. These abstract instructions have counterparts in
real x86 assembly. For example, mov eax, ebx corresponds to
a copy instruction eax = ebx. In addition, we also introduce
an extra merge instruction, which merges multiple definitions
of the same variable from different paths. Each operand in a
binary instruction must be a primitive type, such as a number
or a pointer. From the perspective of source code or debug
information, these primitive types can be combined into a
compound type as shown in Figure 6.

Type Dependency Graph. For type minimization, i.e., reduc-
ing the types that can be inferred from others, we define the
type dependency graph as below.

Definition 3 (Type Dependency Graph (TDG)). Given a
DIG G = (N, E), a type dependency graph is an undirected
graph G' = (N',E') where
e For each DIG node n € N of a primitive type, if it
denotes a variable, n € N'; if it denotes a field of a
compound-type variable, we have a TDG node n' € N’
which is a copy of n for that variable. Each node n' € N’

Program P = I+
Instruction 1 = 0] =02 sicopy
| [o1] = 02 ::store
| 01 = [o2] ::load
| 01 =02 0 03 ::binary
| 01 = ®(02,03,...) ::merge
Operand o == r | r4+num | r—num
O € {+ - x5 <<)
r € Registers
num S Z
Fig. 5. Abstract program in DIREDUCER.
Type T = Tprim | Tcomp
Primitive Type Tpriym = int | uint | float | .. | T*

Compound Type T comyp {T1 : offsety, T : offseta, ...}

Fig. 6. Typing in DIREDUCER.

essentially consists of a pair of a memory location and
the type of the memory location, because other debug
information has been removed from DIG nodes.

o Each undirected edge in E' C N’ x N’ represents a type
dependency, which will be discussed later.

Example 6. In Figure 2(d), the DIG nodes nz and ny
denote primitive-type variables. Thus, they belong to the TDG.
Furthermore, DIG nodes ns and ng represent primitive-type
structure fields and can be referenced by multiple variables.
Thus, we create copies of ns and ng in the TDG for each
variable referring to the fields. The copies in TDG aim to
distinguish the structure fields of different variables.

TDG Construction. Algorithm 1 shows how we build a TDG,
G' = (N',E’). Lines 2-3 initialize the nodes and edges.
Lines 5-9 build the TDG edges, i.e., the dependency relation
between two nodes. Given an instruction, Line 5 determines
if the two operands used in the instruction depend on each
other in terms of types, according to Table IV. If there exists
a dependency relation, Lines 6-7 acquire the nodes of the
operands by calling the procedure Node(-): if there is a cor-
responding TDG node, the node is returned; otherwise, a new
fake node is created and returned. Since each operand must
be of a primitive type in a binary instruction, if the operand
has a corresponding DIG node in the debug information, the
corresponding TDG node must have been added to the node
set in Line 2. Thus, we have the code comments between
lines 5 and 6. Line 8 then adds the edge to the TDG. After all
instructions are processed, line 9 iterates and removes every
fake node by connecting its predecessors and successors.

Table IV features a simple type dependency analysis, which
defines dependency relations for five types of instructions. For
copy, load, store, and merge instructions, it is straightfor-
ward to determine that there is a dependency relation between
the operands. For binary instructions, it is necessary to
determine whether the operands are pointers. For example,
consider the instruction eax = ebx + edx. If ebx and edx
hold a pointer and an integer, respectively, we can infer that
eax also holds a pointer based on ebx. Therefore, we only
establish dependency between eax and ebx.

Algorithm 1: TDG Construction
1 procedure BuildTDG (P)

2 N’ « all nodes created based on Definition 3;
3 B+ o;
4 for instruction I € P do
5 if operand o1 relies on o2 in I as per Table IV then
/* mi,ng € N’ or are fake nodes */
6 n1 <+ Node (o1, N');
7 ng < Node (02, N');
8 E' (—E/U{(TLLTLQ)};
9 remove each fake node by connecting its predecessors and

SUCCESsors;
10 return (N', E');

11 procedure Node (o, N')

12 if there exists a corresponding node n for o in N’ then
13 L return n;
14 return fake node for o;

TABLE IV: Connection Rules of Instruction

Connection Rules

rely_on(o1, 02)

rely_on(o1, 02)

rely_on(o1, 02)

@ —IsPtr(o1) = Vi > 1 : rely_on(o1, 0;)
@ IsPtr(o1) A IsPtr(oz) = rely_on(oq, 02)
® IsPtr(o1) A IsPtr(oz) = rely_on(o1, 03)
Vi > 1 : rely_on(o1, 0;);

Instructions
copy: 01 = 02
store: [01] = 02
load: 01 = [02]

binary: o1 = 02 O 03

merge: 01 = (02,03, ...)

Example 7. Figure 7(a) shows a source code snippet and its
corresponding assembly code using the syntax in Figure 5.
Figure 7(b) shows the TDG, in which each circle node is a
DIG node denoting a primitive-type variable or a field of a
compound type. Multiple circle nodes may belong to the same
variable, e.g., msgA, and, thus, are placed in the same dashed
box. The rhombus node in the TDG is a fake node created
during TDG construction, which is removed at the end of the
TDG construction algorithm.

Consider the source code msgA.b = empty and its corre-
sponding assembly in green. In the assembly code, we use
a suffix after a register, e.g., RAXQ16, to denote the register
defined at line 16. When using Algorithm 1 to process the
assembly code and visit line 16, we create a fake node for
RAX@16 because it does not correspond to any DIG node. We
also make an edge between the fake node and the DIG node
of [RBP — 8], which represents the variable empty and, thus,
is placed in the dashed box labeled empty in Figure 7(b).

Similarly, when processing the assembly instruction at line
17, we connect the fake node representing RAX@Q16 and the
node of [RBP — 40], which represents the field msgA.b. At the
end, Line 9 in Algorithm 1 removes all fake nodes.

Complexity. The procedure for TDG construction in Algo-
rithm 1 is of linear time complexity with respect to the
program size. Essentially, the algorithm consists of two steps.
The first step, lines 4-8, processes each instruction once in
constant time. Thus, this step has linear complexity. The
second step is in line 9, which removes fake nodes from the
graph. Since the number of fake nodes is linear in the number
of instructions and removing each fake node takes constant

msgB

@

»

d

1 struct MsgA { int a; MsgA* b; float msgA
2 struct MsgB { int a; float b; int
3 struct Result { float a; int b; int
4
5 Result merge(int flag) {

6 MsgA *empty = malloc(sizeof(MsgA));
7 MsgA msgA = getMsgA();

8 MsgB msgB = getMsgB();

9 msgA.b = empty;

10 Result result;

11 result.a = msgA.c * msgB.b;

12 result.b = msgA.a + msgB.a;

13 result.c = flag;

14 return result;

(S
S H
S H

@

o

%‘éﬂb
@ :

result emptyii flag
; msgA.b = empty; SR A
16 LOAD : RAX@16 = [RBP-8] ; empty: [RBP-8]
17 STORE: [RBP-40] = RAX@16 ; msgA.b:[RBP-40] Variable Set
e msgA N N
; result.b = msgA.a + msgB.a; 8 {O O O}
18 LOAD : EDX@18 = [RBP-48] ; msgA.a:[RBP-48] msgB {0.0.0}
19 LOAD : EAX@19 = [RBP-60] ; msgB.a:[RBP-60] result {0,0- O1r
20 ADD : EAX@20 = EAX@19+EDX@18
21 STORE: [RBP-68] = EAX@20 ; result.b:[RBP-68] empty (O}
e flag {O1}
(a) (b)

Connected Variable Connected Variable
component fields component fields

O <o {msgA.a, msgB.a, result.b}| (O cc, {result.c, flag}

C) cc, {msgA.b, empty} C) ccg {msgB.c}

C) ccy {msgA.c, msgB.b, result.a} / /

(<)
Fig. 7. (a) C language example code and corresponding abstract program

instructions for TDG Construction. (b) The TDG corresponding to the example
code. (c) Connected components in the TDG.

time, this step also has linear complexity. Thus, in total, the
complexity of Algorithm 1 is linear in the program size.

B. Type Minimization

Recall that type minimization aims to reduce redundant
(theoretically recoverable) type and mem_loc from debug in-
formation. However, in practice, we cannot remove redundant
type and mem_loc in DIG nodes denoting fields within a
compound type, e.g., ns in Figure 2, as these nodes may
be referenced by other variables. Their removal would yield
DIGs non-compliant with the DWAREF standard. Instead, we
can only remove type and mem_loc in a DIG node denoting
a variable, e.g., ng in Figure 2. As such, the objective of
type minimization becomes to find the minimum number of
variable nodes such that their type and mem_1loc attributes can
infer all other variables’ type and mem_loc, which then can
be removed from DIG. If the nodes removed are of primitive
types, we can fully recover their type and mem_loc. If the
nodes removed are of compound types, we can recover the
types at the granularity of primitive types, i.e., recovering the
type and mem_loc for all fields within a compound type.
In what follows, we formally define the problem of type
minimization, show that this is an NP-hard problem, and
provide a suboptimal solution.

Formalization. Recall that each TDG node is a DIG node (or
its copy) of a primitive type, and each TDG edge represents
a type dependency. Types at both ends of an edge can be
mutually inferred. As such, we can divide a TDG into a set of
connected components (CCs), denoted as C = {ccy, cca, ... },

where the type of any node within a CC can infer the types
of all other nodes in that same CC. For example, the TDG
in Figure 7(b) contains five CCs, denoted as ccy, cco, cc3, ccyq,
and ccs. Elements in each CC are illustrated in Figure 7(c).
As illustrated in Figure 7, a program variable, say v €
V, may cover multiple connected components, denoted as
V(v) = {cc1,cca, ... }. For example, as shown in Figure 7,
V(msgA) = {ccy, cea, ces} because cey, cea, and ceg contain
msgA.a, msgA.b, and msgA.c, respectively. Based on the above
data structure, the type minimization problem is defined below.

Definition 4 (Type Minimization Problem). Ler C = {ccy,
cco, ...} be the set of CCs and V = {v1,va,...} be the set
of variables. Our goal is to determine the minimal variable
set Vyin € V such that

U vw)=c

Vi €Vinin
where V (v;) denotes the set of CCs connected to v;.

Example 8. In Figure 7, V = {msgA, msgB, result, empty,
flag}, and Vi, can be {msgB, empty, flag}. Vi, allows
us to infer the types of each field of msgh and result indepen-
dently along the edges in the TDG. Since we recover the field
types independently, compound types cannot be reassembled
into their original composite form, thereby providing a degree
of protection for source code privacy.

NP-Hardness. To prove the NP-hardness of the type mini-
mization problem, we construct a polynomial-time reduction
from the classic set cover problem, which is NP-hard, to type
minimization. The set cover problem is defined below.

Definition 5 (Set Cover Problem). Let U = {u,us,...} be
a universal set and S = {S1,5s,...} such that each S; CU
and USieS S; = U. The goal is to find S, C S satisfying

U si=vu

Si€ESmin
where |Spin| is minimized.

Example 9. Given the universe set U = {uy, us, ug, ug, us}
and S = {{u1,us}, {us, ug, us}, {uz,us}}, we need to select
at least two subsets, such as S, = {{u1,u2}, {us, us, us}},
to cover all elements in U.

Theorem IV.1. The Type Minimization Problem is NP-hard.

Proof. We prove the existence of the reduction by constructing
a mapping from the set cover problem to the type min-
imization problem. Specifically, We map the universal set
U = {uj,us,...} in the set cover problem to connected
components set C' = {ccy, cea, ...} in the type minimization
problem. For each variable v;, its associated set of connected
components V (v;), corresponds to element .S; in the collection
S of the set cover problem. Let V = {V(vy), V(v2), ...}, then
collection S can be directly mapped to V. Through the above
mapping from the set cover problem to the type minimization
problem, we observe that both share the same optimization

Algorithm 2: Type Minimization

1 procedure minimize (C,V)

2 Vinin — @; C' + C ;
3 while C’ # @ do
4 Select the set V(v;),v; € V' \ Vipin that covers the most

uncovered CCs of C';

5 Vmin — Vmin U {7—11} 5
6 C'+ C'"\ V() ;
7 return V,,,;, ;

objective. In other words, the type minimization problem is at
least as hard as the set cover problem, thereby establishing its
NP-hardness. O

An H(|C|)-Approximation Solution. The discussion above
reduces the set cover problem to type minimization, demon-
strating its NP-hardness. In what follows, we discuss the
reduction from type minimization to the set cover problem,
demonstrating their computational equivalence and allowing
us to reuse existing suboptimal solutions.

Theorem IV.2. The type minimization problem is compu-
tationally equivalent to the set cover problem and has an
H(|C|)-approximation solution.

Proof. Given the structural similarity between the type min-
imization problem and the set cover problem, this reduction
follows an analogous procedure. We map the set of connected
components C' in the type minimization problem to the uni-
versal set U in the set cover problem. Similarly, the set V =
{V(v1),V(v2),...} is mapped to the collection S in the set
cover problem. The above mapping establishes a polynomial-
time reduction from the type minimization problem to the set
cover problem. O

Given the theorem above, we can apply existing sub-optimal
approximation algorithms for the set cover problem to address
our type minimization problem. Particularly, we use the classic
greedy algorithm [37]. Algorithm 2 outlines the procedure for
greedily selecting the variables to cover all the CCs. In the
algorithm, we create two sets V,,,;,, and C’, where V,,;,, tracks
the variable we choose and C’ represents the CCs remaining
to be covered by the variables. Line 2 initializes the minimal
variable set V., to empty and sets C’ to C, meaning that
all CCs have not been covered. Each iteration in the loop
(Lines 4-6) chooses one variable v; to cover the most CCs in
C’ until all CCs are covered.

The greedy algorithm is an H(|C|)-approximation algo-
rithm, where |C| is the number of connected components in
TDG, and H(n) is the n-th harmonic number, i.e., H(n) =
X7 _,1/k < Inn + 1. In other words, the greedy algorithm
will always find a cover at most H(n) times as large as
the optimal cover [37]. The time complexity of the greedy
algorithm is almost linear [37], i.e., O(|C|log|C]). Such an
almost linear complexity ensures its efficiency in practice. In
the next section, we provide a comprehensive evaluation of its
effectiveness and efficiency.

TABLE V: Results of Debug Information Reduction.

Before After (DIREDUCER)
Prgram KLoC | Size [Attr] Size [Attr] PG, G)
(MB) (x10°%) | MB) (x10°%)

perlbench 710 2.60 5.99 0.24 0.60 11.53%
gce 2,576 16.9 47.9 0.96 2.32 4.84%
mcf 7 0.04 0.09 0.00 0.01 7.67%
omnetpp 647 9.70 24.1 0.47 1.12 4.63%
xalancbmk 1,632 335 80.4 1.30 3.27 4.47%
X264 145 0.82 2.17 0.11 0.32 14.82%
deepsjeng 27 0.17 0.40 0.01 0.02 5.14%
leela 92 1.80 4.48 0.08 0.19 4.24%
Xz 46 0.30 0.69 0.04 0.10 13.98%
sqlite3 553 1.70 2.78 0.22 0.53 19.20%
openssl 90 0.53 1.19 0.04 0.10 8.59%
nginx 204 2.20 7.86 0.25 0.75 9.53%
git 923 6.40 18.7 0.56 1.38 7.39%
libiconv 34 0.17 0.27 0.02 0.05 19.51%
curl 40 0.40 1.17 0.03 0.07 6.50%
Avg | 515 | 514 1321 | 029 0.72 | 545%

V. EVALUATION

We implemented DIREDUCER on top of Capstone [2] and
LibDWAREF [9] for x86-64 binaries. The former is a disassem-
bly framework that allows us to analyze binary instructions.
The latter is a standard library for manipulating debug in-
formation. With the tool in hand, we conduct experiments to
address the following three research questions regarding the
goal of this work: revealing as little debug (or source code)
information as possible while still being able to justify that the
revealed information is sufficient for memory bug detection.

o RQ1 (Effectiveness). How effective is DIREDUCER in
reducing source code exposure?

+ RQ2 (Efficiency). How efficient is DIREDUCER in re-
ducing source code exposure?

+ RQ3 (Sufficiency). Does DIREDUCER retain sufficient
debug information for memory bug detection?

Benchmarks. As shown in Table V, our experimental bench-
marks include two categories of C/C++ programs: SPEC
CPU 2017 INT [10], which is widely used in the research
community, and a set of commonly-used real-world programs.
The sizes of these programs are quite representative, ranging
from 7 KLoC to 2,576 KLoC, with 515 KLoC on average. All
programs are compiled into binaries using GCC 13.2.0.

Evaluation Method. Since the problem we try to address is
quite challenging, to the best of our knowledge, there is only
one work closely related to ours, as it also tries to protect
source code privacy during program analysis but based on
zero-knowledge proofs [30]. However, this technique is too
expensive and can only analyze small code snippets with only
a few hundred lines of code, thus failing to analyze all our
benchmark programs. Thus, we cannot empirically compare it
to DIREDUCER. Instead, this section aims to demonstrate the
extent to which our goal is achieved through the three RQs.

Environment. All experiments were conducted on a server
running Ubuntu 22.04 with 256 GB of memory and two Intel
Xeon Gold 6430 processors for 64 physical cores.

A. RQI - Effectiveness

Effectiveness. Table V lists the sizes (in MB) of debug
information and the number of attributes (in x10°) in DIG
before and after applying DIREDUCER. The table shows
that DIREDUCER is highly effective in anonymizing debug
information. From the perspective of sizes, the average debug
information size of the tested programs is 5.14 MB. After
reduction, this decreases to merely 0.29 MB, achieving an ap-
proximately 95% reduction. From the perspective of attributes,
on average, DIREDUCER reduces 94.55% of attributes in the
DIG, and the corresponding source exposure metric PP (G/, QG)
averages 5.45%, indicating that only a little debug information
needs to be exposed for memory bug detection.

Breakdown of Debug Information Reduction. Figure 8
illustrates the respective contributions of selective pruning and
type minimization. In the figure, each bar labeled by selective
pruning represents the proportion of DIG attributes reduced
during selective pruning, while a bar labeled by type mini-
mization represents the proportion of additional DIG attributes
reduced through type minimization. Selective pruning removes
attributes such as name, src_loc, and config. Type mini-
mization conducts deeper analysis by eliminating partial type
and mem_Jloc attributes. On average, selective pruning removes
22.88% of DIG attributes, while type minimization removes
71.67%, achieving an overall reduction rate of 94.55%.

Breakdown of Compound Type Recovery. While type min-
imization ensures all types are theoretically recoverable at the
granularity of primitive types, compound types (e.g., struct
in C) may not be reassembled into their original composite
forms, thus providing further protection of the source code.
In Figure 9, Retained denotes the number of compound-type
variables, whose types are preserved after type minimization.
Reduced denotes the number of compound-type variables
whose types are removed after type minimization and can be
recovered only at the granularity of primitive types. On aver-
age, 40.5% of compound-type variables cannot be reassembled
into their composite forms, showing that type minimization
also provides a degree of source code protection.

B. RQ?2 - Efficiency

Efficiency. Figure 11 shows that DIREDUCER’s memory and
time overhead exhibit a roughly linear growth relationship
with the program sizes. The coefficient of determination,
R? € [0, 1], measures the degree of fit between the data and the
regression lines, where the value of R? closer to 1 indicates a
better fit. For time overhead, the test results show R2=0.8417,
while for memory overhead it reaches R2=0.9819.

For all test programs, DIREDUCER completes within a
short time frame and with acceptable memory usage. Use
the largest program, gcc, as an example. DIREDUCER takes
only 35 seconds to process and only uses about 10GB of
memory. These results demonstrate the graceful scalability of
DIREDUCER in handling large-scale real-world programs.

Breakdown of Time Cost. In Figure 10, we break down the
time overhead of DIREDUCER into four steps: Disassembly,

> & & ¥ Q> S OD E N & D
& &S z‘QQ s ‘é&\é’\ & & & v &
‘(c &Q ,’Q" 8‘3 [\ QQQ > @\
$ &S &

ORetained OType Minimization OSelective Pruning

Fig. 8. Breakdown of Debug Information Reduction.

100%
80%
60%
40%
20%

0%

S & & & & o O D& &
FSEFSFTFHF FSFE O S
& PO & N SF S o
& e“\“)\‘b & ~

O Retained OReduced

Fig. 9. Breakdown of Compound Type Reduction.

Selective Pruning, Type Minimization, and Binary Recon-
struction. For most programs, type minimization accounts for
the most costly part, while selective pruning consumes the
least. Additionally, the time overhead distribution across these
four steps remains relatively consistent across most programs.
However, we observed that for some programs (e.g., Xz, nginx,
and libiconv), the proportion of time spent on type minimiza-
tion is significantly lower. Through debugging DIREDUCER,
we observed that the time required for type minimization
varies significantly based on function complexity. For large
functions, i.e., those containing a higher number of variables
and complex data structures, constructing the type dependency
graph incurs higher overhead. In contrast, simpler functions
with fewer variables and straightforward data structures re-
quire less time for type minimization.

C. RQ3 - Sufficiency

While we have shown that DIREDUCER can reduce most
of the source code information, the other goal of our work is
to allow software vendors to justify that they have provided
sufficient source code information for memory bug detection.
In other words, we must show that, with proper techniques, the
retained debug information (the type metadata and the memory
locations) is sufficient for memory bug detection.

Evaluation Setup. To evaluate whether the retained debug
information is sufficient for memory bug detection, we set
up the experiments as follows. In the experiments, we use
the static analyzers (saber [60] and ae [25]) from the SVF
tool set [59] to check all common memory bugs it supports,
including buffer overflow, memory leak, double free, etc. Since
the static analyzers are LLVM-based, all source code and its
binaries are compiled or decompiled into the LLVM IR before
memory bug detection.

For the source code, we use WLLVM [12] to compile it into
LLVM IR. For binaries, we employ Plankton [72], a state-of-
the-art binary decompiler, to decompile them into LLVM IR.
Three kinds of binaries are used in the experiment:

TABLE VI: Memory Bug Detection Results Compared with Full DI.

Full DI Partial DI Without DI

Program | upeport | #TP #EN #FP | #TP #FN #FP
perlbench 76 73 3 3 0 76 10
gee 115 109 6 12 0 115 0
mcf 6 4 2 0 6 0 0
omnetpp 8 8 0 0 8 0 3
xalancbmk 0 0 0 0 0 0 0
x264 20 20 0 0 9 11 1
deepsjeng 0 0 0 0 0 0 0
leela 0 0 0 0 0 0 0
XZ 4 4 0 0 1 3 0
sqlite3 5 5 0 0 2 3 2
openssl 0 0 0 0 0 0 0
nginx 7 5 2 2 1 6 0
git 274 261 13 5 0 274 0
libiconv 2 2 0 0 2 0 0
curl 4 4 0 0 4 0 0

521 517 49

Total - 95 26 22 | 33 48 16

Rate 95.0% 5.0% 4.2% 63% 93.7% 31%

o Binaries with full debug information (Full DI).

« Binaries with all recoverable types and memory locations
after being processed by DIREDUCER (Partial DI).

o Binaries without any debug information (Without DI).

It should be noted that while DIREDUCER significantly
reduces the types and memory locations in DIG, this experi-
ment uses binaries with all types and memory locations that
can be recovered after being processed by DIREDUCER (i.e.,
Partial DI). The rationale of this design is explained as follows.
When proving to a third party that software is free of memory
bugs, software vendors can argue the sufficiency of debug
information by claiming that all types and memory locations
reduced by DIREDUCER are recoverable, as DIREDUCER
only removes types that can be inferred from others, and after
all type metadata and memory locations are recovered, it is
sufficient for memory bug detection. Thus, in this experiment,
we aim to show the sufficiency of Partial DI.

Comparing Partial DI to Full DI. Our objective is not to
evaluate the performance of static analysis tools themselves
but rather to assess the sufficiency of the debug information
retained in binaries. Therefore, we use the bug reports pro-
duced by checking Full DI as the ground truth and compare
the ground truth to the bugs reported on Partial DI and Without
DI. True Positive (TP) denotes that a bug is detected in both
Full DI and other binaries under comparison. False Negative
(FN) denotes that a bug is reported in Full DI but is missing in
others. False Positive (FP) denotes that a bug is not reported
in Full DI but reported by others.

Table VI presents the bug detection results. The group with
Full DI generates 521 bug reports, with git contributing over
200 reports. When using Partial DI, the TP rate reaches 95.0%,
with 5.0% FN and 4.2% FP, demonstrating the sufficiency
of the debug information retained by DIREDUCER. Through
manual analysis of bug reports, we attribute the minor gap
between Partial DI and Full DI to limitations in SVF’s
implementation, which occasionally causes SVF to fail when
processing complex memory operations.

10

100%

80%

60%

40%

8 RS > Y RS
S ELSSFTFSE PESE &S S
N S S S F &
Qé N .@@ & S
oD bly OType M OSelective Pruning O Reconstruction
Fig. 10. Breakdown of Time Cost.
40
EMemory @ Time °

)
g
z
=]
£
3
=
3
2
Py
£
=)

KLOC

400

800 1200 1600 2000 2400

Fig. 11. Time and Memory Cost of DIREDUCER.

In contrast, without the debug information, the TP rate drops
to only 6.3%, while the FN rate increases to 93.7%. This result
shows that static analysis performs poorly on binaries without
debug information, demonstrating the necessity of the debug
information retained by DIREDUCER.

Comparing Partial DI to Source Code. We also compare the
bug detection results produced by Partial DI and the source
code, using the bug reports generated from the source code
as ground truth. The definitions of TP, FN, and FP remain
analogous to those previously stated, but the comparison
baseline shifts from Full DI to the source code.

As shown in Table VII, static analysis on the source code,
Full DI, and Partial DI yielded very similar numbers of bug
reports, i.e., 515, 521, and 517 reports, respectively. For both
Full DI and Partial DI, the TP rates are over 90%, with FP
and FN rates less than 10%. In other words, using Partial DI
(the binaries processed by DIReducer), the static analyzers
produce comparable results, reporting over 90% of the reports
with only a few FPs and FNs.

We manually examined the bug reports generated from the
source code that were missed by Partial DI. On the one hand,
all missed reports turned out to be false warnings (i.e., not
genuine memory issues) that should not have been reported
in the first place. On the other hand, the small discrepancies
between the reports stem primarily from minor differences in
the LLVM IR: Partial DI relies on the Plakton decompiler to
produce LLVM IR, whereas the source-based analysis uses
WLLVM. Although the two IRs are semantically equivalent
and both provide sufficient type information for memory bug
detection, subtle variations in instructions and control-flow
structures can cause the bug detectors to behave slightly dif-
ferently. For example, when a bitcast instruction is expressed
as an equivalent getelementptr instruction, the analyzers may

TABLE VII: Memory Bug Detection Results Compared with Source Code.

Source Code Full DI Partial DI

Program #Report #TP #FEN #FP | #TP #FN #FP
perlbench 74 73 1 3 73 1 3
gce 124 108 16 7 106 18 15
mcf 4 4 0 2 4 0 0
omnetpp 11 8 3 0 8 3 0
xalancbmk 0 0 0 0 0 0 0
X264 22 20 2 0 20 2 0
deepsjeng 0 0 0 0 0 0 0
leela 0 0 0 0 0 0 0
XZ 4 4 0 0 4 0 0
sqlite3 2 2 0 3 2 0 3
openssl 0 0 0 0 0 0 0
nginx 6 5 1 2 5 1 2
git 262 241 21 33 238 24 28
libiconv 2 2 0 0 2 0 0
curl 4 4 0 0 4 0 0

Total 515 521 517

- 471 44 50 466 49 51

Rate 91.5% 85% 97% | 90.5% 95% 9.9%

diverge in their results. We regard such inconsistencies as
implementation-specific issues of the static analyzers, which
fall outside the scope of this paper.

In conclusion, static memory bug detectors exhibit compa-
rable behavior when applied to source code, Partial DI, or
Full DI. This observation is consistent with prior work [72],
reinforcing that Partial DI provides sufficient information for
effective memory bug detection.

VI. DISCUSSION

Reverse Engineering Risks. Source code privacy is never
absolute: even completely stripped binaries can be reverse
engineered with sufficient manual effort. By retaining only
minimal debug information (around 5%), DIREDUCER sub-
stantially increases the human effort required for reverse
engineering compared to preserving full debug information.
Meanwhile, this small portion of debug information is essen-
tial, as it enables us to demonstrate sufficiency for memory
bug detection. We therefore believe that the trade-off in DIRE-
DUCER i.e., balancing effective memory bug detection against
reverse engineering risk, is both necessary and reasonable.

Necessity of DIREDUCER. First, as reported by the BBC [1],
with growing demands for software security, vendors are often
passively required (e.g., by governments) to provide source
code for bug scanning, whereas vendors do not want to
release their source code. Second, since deploying private and
effective bug scanners is expensive, vendors (e.g., startups)
may also actively want to send their code to a third party for
bug scanning but still protect as much source code as possible.
Thus, the industry needs such an approach that can justify the
sufficiency for bug detection while protecting the source code.

Generality of DIREDUCER. DIREDUCER is currently im-
plemented for the DWARF debug information format and
x86-64 binaries. However, our methodology is applicable to
other architectures and debug information formats. For debug
information formats, DWARF is the de facto standard, and
the Windows PDB format shares similar structural properties.

11

For architectures, our methodology is architecture-agnostic
and does not rely on any x86-64-specific features. Therefore,
adapting DIREDUCER to other debug information formats or
architectures does not involve higher theoretical barriers except
for some engineering efforts.

VII. RELATED WORK

Binary-Oriented Bug Detection. Bug detection in binaries
is crucial in the fields of software quality assurance and often
rely on static program analysis, dynamic program analysis, or a
combination of both. BDA [20] and Bitblaze [57] are two well-
known static analysis frameworks that provide extensive func-
tionality for analyzing binaries. Pin [41] is a dynamic binary
instrumentation framework that serves as the foundation for
dynamic binary analysis. Over the years, a number of binary-
oriented bug detection approaches have been developed to
identify a variety of software vulnerabilities, such as numeric
overflow [43], [55], [63], memory corruption [26], [27], [36],
[45], [46], [49], [50], [56], [69], and uninitialized variable [31],
to name a few. DIREDUCER is designed to detect these bugs
and, meanwhile, protect the source code from being revealed.

Privacy-Preserving Program Analysis. Traditional program
analysis techniques cannot be applied in certain sensitive
scenarios due to the risk of source code leakage. Privacy-
preserving program analysis techniques, however, enable pro-
gram analysis while minimizing or entirely avoiding privacy
disclosure. For example, Fang et al. [30] show the feasibility
of privacy-preserving static analysis in a simplified language
using zero-knowledge proof. However, due to the reliance on
advanced cryptographic techniques, it typically suffers from
significant performance overhead, making it challenging to
deploy in real-world scenarios. Some other techniques [62],
[64] also aim to preserve privacy but do not work for memory
bugs. In contrast, DIREDUCER is inspired by conventional
data anonymization techniques, which introduce minimal per-
formance overhead and offer practical deployability in real-
world scenarios for memory bug detection.

VIII. CONCLUSION

In this paper, we propose DIREDUCER, an approach to
anonymizing debug information in binaries via selective prun-
ing and type minimization. In situations where software
vendors are required to demonstrate that their programs are
free of memory bugs, DIREDUCER allows software vendors
to reveal only a little (5%) source code information while
simultaneously justifying that they have provided sufficient
source code information for memory bug detection.

ACKNOWLEDGMENT

We express our gratitude to the anonymous reviewers for
their insightful comments and to Dr. Anshunkang Zhou for
his assistance in setting up Plankton [72]. This work was
partially supported by the NJU-HW Laboratory for Novel Soft-
ware Technology (TC20230202021-2023-03). Rongxin Wu
also works as a member of the Xiamen Key Laboratory of
Intelligent Storage and Computing at Xiamen University.

[1]
[2]

[3]
[4]

[5]
[6]
[7]

[8]

[9]
[10]
(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

BBC. https://www.bbc.com/news/business-20053511.
Capstone - The Ultimate Disassembly Framework.
capstone-engine.org/.

Clang command line argument reference. https://clang.llvm.org/docs/
ClangCommandLineReference.html.

Cppcheck - A tool for static C/C++ code analysis. https://cppcheck.
sourceforge.io/.

DIReducer. https://github.com/Compiler-Security/DIReducer.

DWAREF debugging information format. https://dwarfstd.org/.

Dwarf program information. https://www.ibm.com/docs/en/zos/2.4.0?
topic=architecture-dwarf-program-information.
GCC - Options for Debugging Your Program.
sourceforge.io/.

libdwarf. https://www.prevanders.net/dwarf.html.
SPEC CPU 2017. https://www.spec.org/cpu2017/.
The PDB (Program Database) Symbol File format. https://github.com/
microsoft/microsoft-pdb.
Wllvm: whole program
whole-program-1lvm.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max
Schifer. Ql: Object-oriented queries on relational data. In Proceedings
of the 30th European Conference on Object-Oriented Programming
(ECOOP’16), 2016.

Nathaniel Ayewah and William Pugh. Null dereference analysis in
practice. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering, pages 65-72,
2010.

Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library
detection in android and its security applications. In Proceedings of
the 2016 ACM SIGSAC conference on computer and communications
security (CCS’16), pages 356-367, 2016.

Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham,
and Alexander Pretschner. Code obfuscation against symbolic execution
attacks. In Proceedings of the 32nd Annual Conference on Computer
Security Applications (ACSAC’16), pages 189-200, 2016.

Roberto J Bayardo and Rakesh Agrawal. Data privacy through optimal
k-anonymization. In Proceedings of the 21st International Conference
on Data Engineering (ICDE’05), pages 217-228, 2005.

Irena Bojanova and Carlos Eduardo Galhardo. Classifying memory bugs
using bugs framework approach. In 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC’21), pages 1157-
1164, 2021.

Michael D Brown, Matthew Pruett, Robert Bigelow, Girish Mururu, and
Santosh Pande. Not so fast: understanding and mitigating negative im-
pacts of compiler optimizations on code reuse gadget sets. Proceedings
of the ACM on Programming Languages, 5(OOPSLA):1-30, 2021.
David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J
Schwartz. Bap: A binary analysis platform. In Proceedings of the 23rd
International Conference on Computer Aided Verification (CAV’1I),
pages 463-469, 2011.

Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
Undangle: Early detection of dangling pointers in use-after-free and
double-free vulnerabilities. In Proceedings of the 21st ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA’12),
pages 133-143, 2012.

Juan Caballero, Noah M Johnson, Stephen McCamant, and Dawn
Song. Binary code extraction and interface identification for security
applications. In Network and Distributed Systems Security Symposium
(NDSS’10), 2010.

Mariano Ceccato, Massimiliano Di Penta, Jasvir Nagra, Paolo Falcarin,
Filippo Ricca, Marco Torchiano, and Paolo Tonella. The effectiveness
of source code obfuscation: An experimental assessment. In 2009 I[EEE
17th International Conference on Program Comprehension (ICPC’09),
pages 178-187, 2009.

Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues,
Graham Neubig, and Bogdan Vasilescu. Augmenting decompiler output
with learned variable names and types. In 31st USENIX Security
Symposium (USENIX Security’22), pages 4327-4343, 2022.

Xiao Cheng, Jiawei Ren, and Yulei Sui. Fast graph simplification
for path-sensitive typestate analysis through tempo-spatial multi-point
slicing. In Proceedings of the 32nd ACM Joint Meeting on European

https://www.

https://cppcheck.

1lvm. https://github.com/travitch/

12

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE’21), pages 494-516, 2024.

Tobias Cloosters, Michael Rodler, and Lucas Davi. Teerex: Discovery
and exploitation of memory corruption vulnerabilities in sgx enclaves.
In 29th USENIX Security Symposium (USENIX Security’20), pages 841—
858, 2020.

David Dewey and Jonathon T Giffin. Static detection of c++ vtable
escape vulnerabilities in binary code. In Network and Distributed
Systems Security Symposium (NDSS’12), 2012.

Yufei Du, Omar Alrawi, Kevin Snow, Manos Antonakakis, and Fabian
Monrose. Improving security tasks using compiler provenance infor-
mation recovered at the binary-level. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security
(CCS’23), pages 2695-2709, 2023.

Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, and
Rajeev Barua. Scalable variable and data type detection in a binary
rewriter. In Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation (PLDI’13), pages
51-60, 2013.

Zhiyong Fang, David Darais, Joseph P Near, and Yupeng Zhang. Zero
knowledge static program analysis. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS’21), pages
2951-2967, 2021.

Behrad Garmany, Martin Stoffel, Robert Gawlik, and Thorsten Holz.
Static detection of uninitialized stack variables in binary code. In
European Symposium on Research in Computer Security (ESORICS’19),
pages 68-87, 2019.

Aristides Gionis and Tamir Tassa. k-anonymization with minimal loss
of information. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 21(2):206-219, 2008.

Binfa Gui, Wei Song, Hailong Xiong, and Jeff Huang. Automated use-
after-free detection and exploit mitigation: How far have we gone? IEEE
Transactions on Software Engineering (TSE), 48(11):4569-4589, 2021.
Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuf-
frida, Herbert Bos, and Erik Van Der Kouwe. Typesan: Practical
type confusion detection. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS’16), pages
517-528, 2016.

Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin
Vechev. Debin: Predicting debug information in stripped binaries. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS’18), pages 1667-1680, 2018.

Liang He, Yan Cai, Hong Hu, Purui Su, Zhenkai Liang, Yi Yang,
Huafeng Huang, Jia Yan, Xiangkun Jia, and Dengguo Feng. Au-
tomatically assessing crashes from heap overflows. In Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering (ASE’17), pages 274-279, 2017.

David S Johnson. Approximation algorithms for combinatorial prob-
lems. In Proceedings of the fifth annual ACM symposium on Theory of
computing, pages 38-49, 1973.

Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin.
Obfuscator-llvm—software protection for the masses. In 2015 ieee/acm
1st international workshop on software protection, pages 3-9, 2015.
Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. Type
casting verification: Stopping an emerging attack vector. In 24th USENIX
Security Symposium (USENIX Security’15), pages 81-96, 2015.
JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Princi-
pled reverse engineering of types in binary programs. In Network and
Distributed Systems Security Symposium (NDSS’11), 2011.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: building customized program analysis tools with dynamic
instrumentation. page 190-200, 2005.

Xutong Ma, Jiwei Yan, Wei Wang, Jun Yan, Jian Zhang, and Zongyan
Qiu. Detecting memory-related bugs by tracking heap memory man-
agement of c++ smart pointers. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering (ASE’21),
pages 880-891, 2021.

David Molnar, Xue Cong Li, and David A Wagner. Dynamic test
generation to find integer bugs in x86 binary linux programs. In
Proceedings of the 18th Conference on USENIX Security Symposium
(USENIX Security’09), pages 67-82, 2009.

Suntherasvaran Murthy, Asmidar Abu Bakar, Fiza Abdul Rahim, and
Ramona Ramli. A comparative study of data anonymization techniques.

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

In 2019 IEEE 5th Intl Conference on Big Data Security on Cloud
(BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing (HPSC), and IEEE Intl Conference on Intelligent Data
and Security (IDS), pages 306-309, 2019.

Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz,
and Matthieu Lemerre. Binary-level directed fuzzing for use-after-free
vulnerabilities. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 47-62, 2020.

Bindu Madhavi Padmanabhuni and Hee Beng Kuan Tan. Buffer overflow
vulnerability prediction from x86 executables using static analysis and
machine learning. In Proceedings of the 2015 IEEE 39th Annual
Computer Software and Applications Conference (COMPSAC’15), pages
450-459, 2015.

Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios
Portokalidis, Bing Mao, and Jun Xu. Sok: All you ever wanted to know
about x86/x64 binary disassembly but were afraid to ask. In 2021 IEEE
symposium on security and privacy (SP’21), pages 833-851, 2021.
Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen,
Songchen Yao, David Williams-King, Vikas Ummadisetty, Junfeng
Yang, Baishakhi Ray, and Suman Jana. Stateformer: fine-grained type
recovery from binaries using generative state modeling. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE’21), pages 690-702, 2021.

Aravind Prakash, Xunchao Hu, and Heng Yin. vfguard: Strict protection
for virtual function calls in cots c++ binaries. In Network and Distributed
Systems Security Symposium (NDSS’15), 2015.

Manish Prasad and Tzi-cker Chiueh. A binary rewriting defense against
stack based buffer overflow attacks. In Proceedings of the 2003 USENIX
Conference on Annual Technical Conference (USENIX ATC’03), pages
211-224, 2003.

Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg
Merzdovnik, and Edgar Weippl. Protecting software through obfusca-
tion: Can it keep pace with progress in code analysis? Acm computing
surveys (CSUR), 49(1):1-37, 2016.

Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and
Charles Zhang. Pinpoint: Fast and precise sparse value flow analysis
for million lines of code. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’18), pages 693-706, 2018.

Qingkai Shi, Xiaoheng Xie, Xianjin Fu, Peng Di, Huawei Li, Ang Zhou,
and Gang Fan. Datalog-based language-agnostic change impact analysis
for microservices. In Proceedings of the International Conference on
Software Engineering (ICSE’25), pages 652-652, 2025.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, et al. Sok:(state of) the art of war:
Offensive techniques in binary analysis. In 2016 IEEE symposium on
security and privacy (SP’16), pages 138-157, 2016.

Stelios Sidiroglou-Douskos, Eric Lahtinen, Nathan Rittenhouse, Paolo
Piselli, Fan Long, Deokhwan Kim, and Martin Rinard. Targeted
automatic integer overflow discovery using goal-directed conditional
branch enforcement. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’15), pages 473-486, 2015.

Asia Slowinski, Traian Stancescu, and Herbert Bos. Body armor
for binaries: preventing buffer overflows without recompilation. In
Proceedings of the 2012 USENIX Conference on Annual Technical
Conference (USENIX ATC’12), pages 125-137, 2012.

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. Bitblaze: A new approach to computer
security via binary analysis. In Proceedings of the 4th International
Conference on Information Systems Security (ICISS’08), pages 1-25,
2008.

Venkatesh Srinivasan and Thomas Reps. Recovery of class hierarchies
and composition relationships from machine code. In International
Conference on Compiler Construction (CC’14), pages 61-84, 2014.
Yulei Sui and Jingling Xue. Svf: Interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th International Conference
on Compiler Construction (CC’16), pages 265-266, 2016.

Yulei Sui, Ding Ye, and Jingling Xue. Static memory leak detection
using full-sparse value-flow analysis. In Proceedings of the 2012

13

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

International Symposium on Software Testing and Analysis (ISSTA’12),
pages 254-264, 2012.

David A Tomassi and Cindy Rubio-Gonzilez. On the real-world
effectiveness of static bug detectors at finding null pointer exceptions. In
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE’21), pages 292-303, 2021.

Huaijin Wang, Zhibo Liu, Yanbo Dai, Shuai Wang, Qiyi Tang, Sen
Nie, and Shi Wu. Preserving privacy in software composition analysis:
A study of technical solutions and enhancements. In Proceedings of
the 47th International Conference on Software Engineering (ICSE’25),
pages 592-592, 2025.

Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou. Intscope: Auto-
matically detecting integer overflow vulnerability in x86 binary using
symbolic execution. In Network and Distributed Systems Security
Symposium (NDSS’09), 2009.

Zhaoyu Wang, Pingchuan Ma, Huaijin Wang, and Shuai Wang. Pp-csa:
Practical privacy-preserving software call stack analysis. Proceedings of
the ACM on Programming Languages, 8(OOPSLA1):1264-1293, 2024.
Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. Spatio-temporal
context reduction: A pointer-analysis-based static approach for detect-
ing use-after-free vulnerabilities. In Proceedings of the International
Conference on Software Engineering (ICSE’18), pages 327-337, 2018.
Chengfeng Ye, Yuandao Cai, Anshunkang Zhou, Heqing HUANG, Hao
Ling, and Charles Zhang. Manta: Hybrid-sensitive type inference toward
type-assisted bug detection for stripped binaries. In Proceedings of
the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’24), 2024.
Kyungjin Yoo and Rajeev Barua. Recovery of object oriented features
from c++ binaries. In 2014 2Ist Asia-Pacific Software Engineering
Conference, pages 231-238, 2014.

Yizhuo Zhai, Zhiyun Qian, Chengyu Song, Manu Sridharan, Trent
Jaeger, Paul Yu, and Srikanth V Krishnamurthy. Don’t waste my efforts:
Pruning redundant sanitizer checks by {Developer-Implemented} type
checks. In 33rd USENIX Security Symposium (USENIX Security’24),
pages 1419-1434, 2024.

Chao Zhang, Chengyu Song, Kevin Zhijie Chen, Zhaofeng Chen, and
Dawn Song. Vtint: Protecting virtual function tables’ integrity. In
Network and Distributed Systems Security Symposium (NDSS’15), 2015.
Haoxiang Zhang, Shaowei Wang, Heng Li, Tse-Hsun Chen, and
Ahmed E Hassan. A study of c/c++ code weaknesses on stack overflow.
IEEE Transactions on Software Engineering (TSE), 48(7):2359-2375,
2021.

Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee,
Yonghwi Kwon, Yousra Aafer, and Xiangyu Zhang. Osprey: Recovery of
variable and data structure via probabilistic analysis for stripped binary.
In 2021 IEEE Symposium on Security and Privacy (SP’21), pages 813—
832. IEEE, 2021.

Anshunkang Zhou, Chengfeng Ye, Heqing Huang, Yuandao Cai, and
Charles Zhang. Plankton: Reconciling binary code and debug informa-
tion. In Proceedings of the ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS 24), pages 912-928, 2024.

