
Validating Interior Gateway Routing Protocols via
Equivalent Topology Synthesis

Bing Shui
State Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing, Jiangsu, China
bingshui@smail.nju.edu.cn

Yufan Zhou
State Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing, Jiangsu, China
yufanzhou@smail.nju.edu.cn

Jielun Wu
State Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing, Jiangsu, China
jielunwu@smail.nju.edu.cn

Baowen Xu
State Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing, Jiangsu, China
bwxu@nju.edu.cn

Qingkai Shi∗
State Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing, Jiangsu, China
qingkaishi@nju.edu.cn

Abstract

Routers, relying on routing protocols to determine how data pack-
ets travel across the Internet, serve as the backbone of modern
networks. Vulnerable routing protocols can lead to serious conse-
quences, including data leaks and network congestion. This work
focuses on validating the implementation of a key class of rout-
ing protocols known as Interior Gateway Protocols (IGPs). Unlike
communication protocols such as TCP/IP, which define structured
data packets and state machines to facilitate communication, IGPs
are designed to automatically manage the network topology. Thus,
conventional techniques, which primarily focus on communication
correctness, cannot be applied directly to IGPs. We propose ToDiff,
a differential validation technique to uncover IGP bugs in three
steps: (1) it uses a network generation algorithm to create random
yet valid IGP networks, (2) it applies a semantics-guided program
synthesizer to generate equivalent topological programs, and (3)
it simulates the network via the equivalent topological programs,
with any discrepancies suggesting the presence of a potential bug.
We have evaluated ToDiff on the implementation of two common
IGP protocols, OSPF and IS-IS. The results demonstrate that ToDiff
outperforms existing approaches. To date, our tool has successfully
identified 26 bugs, all confirmed or fixed by developers.

CCS Concepts

• Security and privacy→ Software security engineering; Net-
work security.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3744826

Keywords

Routing Protocols; Interior Gateway Protocols; Differential Valida-
tion; Topology Synthesis.

ACM Reference Format:

Bing Shui, Yufan Zhou, Jielun Wu, Baowen Xu, and Qingkai Shi. 2025.
Validating Interior Gateway Routing Protocols via Equivalent Topology
Synthesis. In Proceedings of the 2025 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’25), October 13–17, 2025, Taipei, Taiwan.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3744826

1 Introduction

Unlike communication protocols such as TCP/IP, routing protocols
aim to automatically manage network topology, establish routing
tables, adapt to network changes, and ensure robust network con-
nectivity. Given the critical role routing protocols play, any vulnera-
bilities in their implementations may lead to severe disruptions. For
instance, in 2018, attackers exploited such a vulnerability to redirect
traffic intended for Amazon’s cloud service to a malicious IP ad-
dress, causing users to lose at least $150,000 [41]. Thus, it is crucial
to validate the correctness of routing protocol implementations.

Existing Works. Many existing works can validate routing proto-
col implementations, but are subject to various limitations. First,
if we treat routing protocol implementations as common software,
traditional methods, such as symbolic analysis [4, 6, 48, 52, 57],
fuzzing [18, 20, 24], and LLM-based analysis [51, 53] can be em-
ployed to detect general program defects like memory corruptions.
However, network protocol bugs usually manifest as subtle de-
viations from specifications rather than obvious crashes, making
their detection and analysis highly dependent on protocol-specific
insights — an area where traditional methods often fall short.

In contrast, many works, such as network protocol fuzzing,
e.g., [1, 29, 37, 44, 47, 49], differential analysis, e.g., [15, 16, 61],
integrate protocol-specific knowledge. The former generates and
mutates network packets within protocol constraints to explore
execution states, effectively identifying memory safety issues and

https://doi.org/10.1145/3719027.3744826
https://doi.org/10.1145/3719027.3744826

CCS ’25, October 13–17, 2025, Taipei, Taiwan Bing Shui, Yufan Zhou, Jielun Wu, Baowen Xu, and Qingkai Shi

packet-level errors. The latter heavily relies on multiple implemen-
tations of the same protocol and compares different implementa-
tions to detect bugs. However, both methods focus on detecting
bugs related to communication among multiple parties but ignore
problems in routing the communication messages. In other words,
the approaches discussed above are ineffective in validating routing
protocols, whose main functionality is not to exchange messages
but to build a proper topology for routing.

Regarding the main functionality of routing protocols, a few tech-
niques have been introduced, ranging from applying handcrafted
topology test suites [10, 11, 13] to automated testing or model-
checking techniques [25, 30, 31, 34, 35, 50, 56, 59, 60]. Manually
crafted test suites use predefined topology cases to validate specific
routing functionalities but often suffer from limited coverage and
miss edge cases. Although capable of generating diverse topolog-
ical structures for testing or model checking, existing automated
techniques still suffer from the notorious testing oracle problem.
For example, they have to rely on non-trivial manual efforts to build
testing oracles, i.e., manually compute the correct routing tables
and compare them to the ones derived from routing protocols.

Our Approach. To automate the validation procedure for rout-
ing protocols and address the testing oracle problem, this work
proposes ToDiff, a differential testing technique to validate the
implementation of Interior Gateway Protocols (IGPs), a critical cat-
egory of routing protocols including OSPF [38] and IS-IS [5]. Our
key observation is that the same network topology can be estab-
lished via different but equivalent commands, which we refer to as
topological programs. As such, ToDiff systematically synthesizes
multiple equivalent topological programs, which yield multiple net-
work topologies. Since the synthesized topological programs are
equivalent, any discrepancies in the outcome network topologies
indicate potential bugs in IGP implementations.

More specifically, ToDiff works in three steps. First, a target
network with a random number of routers and a random topology
is generated by a dedicated algorithm. Despite being random, we
must follow certain constraints so that the outcome topology is
valid. Second, ToDiff synthesizes multiple and equivalent topo-
logical programs that are expected to yield the target network. To
ensure equivalence and efficiency, we formally define the language
semantics and apply a semantics-guided program synthesizer that
is guaranteed to generate programs with bounded length. Third, by
entering the topological programs into the IGP implementations,
routers in the network will communicate with each other so that
a correct network topology (e.g., router tables in each router) can
be created at the end. Since it usually takes a long time for a topol-
ogy to be built, ToDiff includes a series of heuristic yet effective
methods to facilitate the convergence of the topology building pro-
cedure, thereby improving the whole testing efficiency. Finally, we
compare the topologies derived from the topological programs to
find potential bugs in IGP implementations.

Contributions. Putting the three steps above together yields ToD-
iff, a new differential analyzer capable of generating diverse net-
works and uncovering functionality errors in IGP implementations
via automated testing oracles. Our design significantly reduces the
testing complexity and makes ToDiff practical for different IGP
protocols. In summary, we make the following contributions:

r0 r1

r2 r3

area0 (normal)

area1 (nssa) area2 (normal)

External
World

NS
SA
 E

xL
SA

Normal ExLSA
ABRABR, ASBR

ASBR
External

World

No
rm
al
 E
xL
SA

ASBR

eth1

eth0 eth0

eth1

Figure 1: An OSPF network containing 4 routers and 3 areas.

interface r0-eth0 ip address 177.70.31.169/255.0.0.0
interface r0-eth0 ip ospf area 0

interface r0-eth1 ip address 207.235.166.37/255.255.255.0
interface r0-eth1 ip ospf area 1

router ospf area 1 nssa

1.
2.
3.
4.
5.
6.
7.

Figure 2: An example of the topological program.

• We propose a novel differential testing framework to detect
hidden bugs in IGP implementations.
– It leverages a network generation algorithm that is capable
of producing random yet valid routing topologies among a
number of routers.

– It features a program synthesizer that can generate equiva-
lent topological programs with bounded length, under the
guidance of first-order-logic formulated semantics.

– It designs a series of heuristic methods to accelerate network
convergence and differentiate topologies, thus improving
the efficiency of testing.

• We implement our approach as a tool, namely ToDiff, to val-
idate the correctness of multiple IGP implementations. Our
tool is efficient, as it can produce tens of topologies in one
minute and complete hundreds of differential analyses in one
hour. Our tool is also effective, as we have detected 26 zero-day
bugs in the FRRouting project [12], a widely used and mature
routing protocol suite for Linux and Unix platforms. In con-
trast, existing approaches fail to detect any of them. All the
bugs detected have been confirmed or fixed by the developers.
Notably, despite the extensive testing conducted on the proto-
col implementation, we uncovered some deeply hidden bugs
that had remained undiscovered for over 20 years. ToDiff is
publicly available at https://todiff.github.io/.

2 Preliminaries

IGP is a class of essential routing protocols that enable efficient
and secure routing within an autonomous system. By dynamically
detecting and adapting to network topology changes, IGPs such
as OSPF and ISIS help prevent routing loops and ensure reliable
data transmission, enhancing overall network integrity. Without
IGPs, networks would be more vulnerable to misconfigurations,
unauthorized access, and traffic disruptions. Thus, it is a critical
task to validate the correctness of IGP implementations. This sec-
tion provides preliminary background on IGPs, using OSPF as an
example. Other IGPs are similar to OSPF.

https://todiff.github.io/

Validating Interior Gateway Routing Protocols via Equivalent Topology Synthesis CCS ’25, October 13–17, 2025, Taipei, Taiwan

Routers. A network often contains many interconnected routers,
denoted as r𝑖 . Each router r𝑖 has multiple interfaces eth𝑗 , denoted as
r𝑖 -eth𝑗 . Routers are connected via interfaces. In Figure 1, Router r0
and Router r1 are connected via the interfaces r0-eth0 and r1-eth0.
IP Address and Subnet Mask. For communication, each router
interface is assigned an IP address and a subnet mask, both 32-bit
integers, but often written as 𝑎.𝑏.𝑐.𝑑 where 𝑎, 𝑏, 𝑐 , and 𝑑 are the
first, second, third, and fourth 8 bits of an integer, respectively. Two
interfaces are in the same subnet if the subnet masks are the same
and the bitwise-and operation of the IP address and the subnet
mask yields identical values. For instance, 192.168.10.11/255.255.0.0
and 192.168.13.12/255.255.0.0 are in the same subnet because they
have the same result of the bitwise-and operation, 192.168.0.0, and
the same subnet mask, 255.255.0.0.
OSPF Network and Topological Program. OSPF, as a routing
protocol, helps routers build routing tables such that data packets
can travel from their source to the destination through the most
optimal or feasible routes. We refer to a network using OSPF as
an OSPF network. OSPF partitions a network into multiple areas,
say area0, area1, area2, . . . , to simplify management and enhance
efficiency. Each area contains a subset of interconnected routers.
Figure 1 shows an OSPF network with four routers and three areas:
area0 consists of two routers, r0 and r1; area1 consists of two routers,
r0 and r2; and area2 consists of two routers, r1 and r3.

To enable area partitioning and the computation of routing ta-
bles, each router in the network installs an OSPF implementation,
which then reads a topological program, often provided by the net-
work administrators and reflecting how they want to configure the
network topology. Figure 2 shows a simple topological program
for Router r0. Lines 1-2 and Lines 4-5 respectively specify the IP
addresses of two interfaces, r0-eth0 and r0-eth1, as well as the areas,
area0 and area1, they belong to. Line 7 specifies that area1 is of a
special type, namely NSSA, which is explained later.

According to the topological program, the network is automati-
cally partitioned into areas by the OSPF implementation installed
in each router. The routing information is also automatically com-
puted at both the intra- and inter-area levels. Within an OSPF area,
each router describes its known network topology in a data struc-
ture known as Link State Advertisement (LSA) and forwards LSAs
to its neighbor routers. Upon receiving LSAs from neighbors, a
router stores them in its link-state database and floods them to
other neighbors. This process continues until all routers in the area
have an identical view of the area’s topology. In other words, each
router finally knows how routers are connected in the area.

At the inter-area level, routers at the boundary of an area, known
as Area Border Routers (ABRs), e.g., r0 and r1 in Figure 1, summarize
and distribute information about one area’s topology to other areas.
As such, an area can have an overview of other area’s topology to
facilitate data packet transmission across different areas.

To sum up, an OSPF network consists of inter-connected routers
with necessary topological information, such as the router types,
area types, and other parameters such as the IP address and the
cost of each router interface. An OSPF network can be described
by a set of topological programs for each router in the network.
OSPF Areas. There are multiple special areas in an OSPF network.
We use area0 to denote the area that connects all other areas. An

1. int ospf_area_nssa_unset(...) {
2. auto *area = ospf_area_lookup_by_area_id(ospf, area_id);
3.
4. area->NSSATranslatorRole = OSPF_NSSA_ROLE_CANDIDATE;
5. + if (area->NSSATranslatorState == OSPF_NSSA_TRANSLATE_ENABLED)
6. + ospf_asbr_status_update(ospf, --ospf->redistribute);
7. area->NSSATranslatorState = OSPF_NSSA_TRANSLATE_DISABLED;
8.

Figure 3: A bug in an OSPF implementation.

OSPF network ensures the existence of area0. As demonstrated in
Figure 1, area0 connects area1 and area2.

An area could be a normal area, e.g., area0 and area2 in Figure 1,
or of special types. For example, area1 is of a special type known as
NSSA, which does not forward complete topological information
to other routers so as to reduce the workload.
OSPF LSAs. Routers maintain the topological information they
have known in a data structure known as Link State Advertisement
(LSA). As discussed before, routers exchange LSAs so as to have a
complete view of the network topology. An LSA could be of special
types. For instance, an external LSA (ExLSA) describes the topology
of the network outside the OSPF network. In Figure 1, Router r2 and
Router r3 forward ExLSA to other routers such that other routers
have a view of the external world. Particularly, ExLSA traveling in
a normal area is a Normal ExLSA, which is different from the one
propagated in an NSSA area, i.e., NSSA ExLSA.
OSPF Routers. Routers in an OSPF network may be of different
types. In addition to Area Border Routers (ABRs), which connect
multiple areas, ASBR is the other important category of routers
in an OSPF network. Usually, an ASBR, e.g., r2 and r3 in Figure 1,
connects an OSPF network to the external world. However, some
special routers are automatically designated as ASBRs to complete
some special functionalities. For instance, in Figure 1, Router r0 is
set to ASBR such that it can translate the NSSA ExLSA into Normal
ExLSA and forward the ExLSA to the normal area area0.

3 Motivation and Overview

This section discusses a real-world bug detected by our tool, which
shows the limitations of existing works and the merits of ToDiff.

3.1 Motivation

Bug Example. Let us study a zero-day bug found by our tool
in an OSPF implementation from the FRRouting protocol suite, a
widely used and mature routing protocol suite for Linux and Unix
platforms [12]. Unfortunately, the bug has been hidden for 22 years
due to the lack of effective validation techniques.

Consider the OSPF network in Figure 1. The bug happens when
area2 is set to NSSA and then switched back to a normal area. Like
Router r0 in area1, when area2 is set to NSSA, Router r1 becomes
an ASBR so that it can translate NSSA ExLSA into Normal ExLSA.
When area2 is switched back to a normal area, the translation is no
longer needed. Thus, Router r1 is no longer an ASBR, either. How-
ever, the OSPF implementation fails to cancel its role as an ASBR.

If we look into the OSPF implementation in Figure 3, we can
find that the task of canceling an NSSA area is in the function
ospf_area_nssa_unset. The function misses Lines 5-6, which up-
dates router to the correct role. This bug may lead to a series of
network problems. For example, the bug forces ABR to generate

CCS ’25, October 13–17, 2025, Taipei, Taiwan Bing Shui, Yufan Zhou, Jielun Wu, Baowen Xu, and Qingkai Shi

1. Network
Generation

2. Topology
Synthesis

3. Differential
IGP Validation

Equivalent topo programs

IGP networks Bugs

Figure 4: The overall workflow of ToDiff.

unnecessary LSAs, which then spread widely throughout the net-
work and increase the overhead of LSA propagation. In some cases,
external network traffic may be misdirected to this false ASBR,
resulting in a traffic black hole that drops all traffic destined for a
specific destination, or even more severe network issues.
Limitation of Existing Works. General bug detection techniques
such as symbolic analysis [4, 6, 48, 57] and fuzzing [18, 20] struggle
to detect this bug because this bug relates to the OSPF specification
rather than conventional vulnerabilities like memory corruptions.
For example, missing Lines 5-6 in Figure 3 does not violate any
memory safety property. Thus, the aforementioned techniques for
general software bugs do not work.

Existing works such as network protocol fuzzers [1, 29, 37, 44],
differential analyzers [15, 16, 61], and model checkers [2, 9, 39, 40]
integrate protocol-specific knowledge to identify bugs. However,
these methods primarily focus on issues related to network packet
transmission or protocol state transition, treating the process of
establishing network topology as a black box. As a result, they are
incapable of identifying topology establishment errors, such as the
one in the motivating example.

As discussed in Section 1, although there are a few approaches
to testing routing protocols, they heavily depend on manual efforts
to either construct different topologies [10, 11, 13] or build testing
oracles [3, 21–23, 34, 56]. This labor-intensive procedure is error-
prone and easy to miss scenarios that should be thoroughly tested.
Consequently, this bug had been kept in the OSPF implementation
for 22 years before we detected it.

3.2 ToDiff in a Nutshell

Our approach, ToDiff, has three key advantages over existingmeth-
ods. First, our approach is specially designed for routing protocols
and aims to detect bugs during topology establishment. Second, our
approach does not rely on predefined topologies but randomly gen-
erates diverse network topologies for testing. Third, our approach
does not rely on manual efforts to build testing oracles but applies
differential testing to address the oracle problem.

Despite these advantages, the practical implementation of ToD-
iff must still overcome several network-related challenges. Next,
following the workflow shown in Figure 4, we walk through each
step of our approach, demonstrating how it identifies the bug in
the motivating example and discussing our strategies to address
these challenges. Again, we use OSPF as an example. Other IGPs
follow similar methodologies.
Step 1: Generating Random yet Valid OSPF Network. The
first step is to generate a random yet valid OSPF network. While
randomness ensures the diversity of scenarios in which we test
OSPF implementations, validity ensures that the generated OSPF

area0

area1

area2

area3

(a) (b)

Figure 5: (a) A random yet invalid network. (b) A valid net-

work generated by ToDiff.

network can be used for testing purposes. The next step will syn-
thesize multiple equivalent topological programs to specify this
generated network.

Although it seems straightforward to generate a random graph
where each node denotes a router and each edge represents the
link between routers, such an approach could often produce invalid
OSPF networks. For instance, recall that OSPF partitions a network
into multiple areas, and all areas must be connected to area0. If we
randomly generate a graph like Figure 5(a) and randomly partition
it into four areas, none of the four areas can play the role of area0
because there must exist a disconnected area. In addition to the
area constraint, there are also multiple other constraints a valid
OSPF network must follow. Thus, the challenge below arises:

Challenge 1: How can we systematically generate random yet valid
OSPF networks?

To satisfy the area constraint discussed above, we do not directly
generate an OSPF network but randomly generate a list of OSPF
areas, among which we randomly select one as area0. All other
areas are then connected to area0 and are also randomly connected
to each other. Figure 5(b) shows an example where the four areas are
independently produced by a random graph generation algorithm,
each with 4, 3, 3, and 5 routers. When connecting two areas, the
area border routers are merged into one. Section 4 will detail how
other constraints (e.g., IP address constraints) an OSPF network
should follow are satisfied.
Step 2: Synthesizing Equivalent Topological Programs. Given
the target network generated by Step 1, this step generates multiple
equivalent topological programs describing the target network.
For example, let us consider the OSPF network in our motivating
example (see Figure 1). We can generate two topological programs
for Router r1 as shown in Figure 6. Figure 6(a) does not set the type
of area2. Thus, it is a normal area by default. In Figure 6(b), area2
is designated as an NSSA area at Line 8, which is then canceled
at Line 9. Thus, the semantics of the two topological programs
are equivalent but may lead to different router behaviors, thereby
helping us find bugs in the next step.

However, unlike the simple example, a real-world topological
program can be highly complex, comprising a large variety of com-
mands with different semantics. This complexity introduces a sig-
nificant challenge:

Challenge 2: How can we generate equivalent topological programs
consisting of a rich set of commands?

Validating Interior Gateway Routing Protocols via Equivalent Topology Synthesis CCS ’25, October 13–17, 2025, Taipei, Taiwan

1. /* Program (a) */
2. interface r1-eth0 ip address 177.70.31.170/255.255.255.0
3. interface r1-eth0 ip ospf area 0
4.
5. interface r1-eth1 ip address 207.215.156.37/255.255.255.0
6. interface r1-eth1 ip ospf area 2

1. /* Program (b) */
2. interface r1-eth0 ip address 177.70.31.170/255.255.255.0
3. interface r1-eth0 ip ospf area 0
4.
5. interface r1-eth1 ip address 207.215.156.37/255.255.255.0
6. interface r1-eth1 ip ospf area 2
7.
8. router ospf area 2 nssa
9. router ospf no area 2 nssa

Figure 6: An example of the equivalent topological programs.

To address the challenge, we describe the target OSPF network
as a first-order logic constraint, denoted as𝜓 , and formally define
the semantics of each command in the topological program via
first-order logic, too. With the semantics in hand, we can generate
a sequence of random commands, say 𝑐1, 𝑐2, . . . , 𝑐𝑛 , and compute
the aggregate semantics, denoted as a constraint 𝜙 . With careful
guidance, ToDiff generates a topological program (i.e., a command
sequence) with semantics 𝜙 such that 𝑛 is less than a predefined
constant and 𝜙 ≡ 𝜓 . In other words, the length of the synthesized
topological program is bounded and it has equivalent semantics as
the target OSPF network. More details can be found in Section 4.

Step 3: Determining Network Convergence and Differenti-

ating Results. We enter the synthesized topological programs
into the OSPF implementations (which are installed in the routers),
routers will start to exchange topology information and build rout-
ing tables. Our goal is to compare the running results (e.g., the
routers’ status) of multiple equivalent topological programs. Any
inconsistencies between the running results imply possible bugs
in the OSPF implementations. Note that we often have to wait for
a long time until the network converges, i.e., all routers have a
complete view of the whole network and have successfully built
the routing table. Comparing the intermediate results before net-
work convergence is not meaningful. Thus, to improve the testing
efficiency, we have to address the following challenge.

Challenge 3: How can we determine and accelerate the convergence
of an OSPF network?

Since the OSPF specification does not provide a standard way
to determine network convergence, we provide a few heuristic
methods to determine and speed up network convergence by, for
example, checking if all routers have successfully established con-
nections to their neighbors. We provide more details in Section 4.

In the motivating example, after separately running the two
equivalent topological programs generated in Step 2 and confirming
the network converges according to the above rules, we observe
that Router r1 demonstrates inconsistent status — one indicates that
Router r1 is an ABR, while the other says it could be both ABR and
ASBR. This inconsistency implies a bug in the OSPF implementation
and helps us locate the buggy code in Figure 3.

4 Design: OSPF as an Example

This section formally details the three steps in ToDiff: generating
random yet valid networks (Section 4.1), synthesizing equivalent
topological programs (Section 4.2), as well as determining network
convergence and differentiating results (Section 4.3). Note that
while this section uses OSPF as an example, the methodology is
general for other IGPs.

4.1 Step 1: Network Generation

The first step of our approach is to generate a random yet valid
network. This includes a physical network and configurations that
adhere to Ethernet protocols and routing protocol specifications. A
valid network ensures that routing functionalities can be correctly
activated. Below, we use a graph model to define a valid network
and detail the random network generation algorithm.

4.1.1 Valid Networks. Formally, we define a valid network running
routing protocols as below.

Definition 4.1 (Network). A network is an undirected graph, G =

(I,L,R), where I = {eth0, eth1, . . .} is a set of Ethernet interfaces
and L ⊆ I× I is a set of links between the interfaces. R = {r0, r1, . . .}
denotes a set of routers in the network. A router r𝑖 ∈ Rmay contain
multiple interfaces, denoted as ∇(r𝑖) ⊆ I, and an interface can only
belong to one router.

A valid network has to satisfy the following constraints, namely,
unique IP address and subnet consistency, given that ip(eth𝑖) and
mask(eth𝑖) represent the IP address and subnet mask, respectively.
Constraint 1: Unique IP Address. This constraint requires that
each interface has an IP address different from all others in a net-
work G = (I,L,R):

∀ eth𝑖 , eth𝑗 ∈ I : ip(eth𝑖) ≠ ip(eth𝑗) .

Constraint 2: Subnet Consistency. This constraint requires that
the interfaces at the two ends of a link are in the same subnetwork:

∀(eth𝑖 , eth𝑗) ∈ L : ip(eth𝑖) &mask(eth𝑖) = ip(eth𝑗) &mask(eth𝑗)
∧mask(eth𝑖) = mask(eth𝑗),

where & denotes the bitwise-and operation.
When applying a specific routing protocol like OSPF, an interface

will have more attributes, including but not limited to the following:
• area(eth𝑖): the area the interface belongs to (recall that OSPF
partitions a network into multiple areas).
• area_type(eth𝑖): the type of the area the interface belongs to
(recall that an area could be a normal area, an NSSA area, etc.).
• hello(eth𝑖): the time interval at which a router sends a Hello
message to its neighbor via the interface. Routers in an OSPF
network send Hello messages periodically to their neighbors
to maintain connectivity.
• dead(eth𝑖): the time interval at which a router considers the
neighbor to be down. Routers in an OSPF network consider
their neighbor is down after this time interval without receiv-
ing a hello message from their neighbor.
• cost(eth𝑖): the costmeasures the resource consumption to send
data via this interface, which is used for traffic optimization.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Bing Shui, Yufan Zhou, Jielun Wu, Baowen Xu, and Qingkai Shi

At the same time, additional constraints (discussed below) should
be satisfied to keep an OSPF network valid. Note that, to ease
discussion, we present the most important constraints.
Constraint 3: Area Consistency. This constraint requires that
interfaces at the two ends of a link are in the same area:

∀(eth𝑖 , eth𝑗) ∈ L : area(eth𝑖) = area(eth𝑗) .

Constraint 4: Area Connectivity. This constraint requires that
interfaces in the same area should be interconnected:

area(eth0) = area(eth𝑛) ⇒ ∃ (eth0, eth1, . . . , eth𝑛), r ∈ R :
area(eth𝑖) = area(eth0)
∧ (eth𝑖 , eth𝑖+1 ∈ ∇(r) ∨ (eth𝑖 , eth𝑖+1) ∈ L).

Constraint 5: Existence of Area 0. Recall that a valid OSPF net-
work ensures the existence of a special area, namely area0:

∃ eth𝑖 ∈ I : area(eth𝑖) = area0 ∧ area_type(eth𝑖) = normal.

Constraint 6: Connecting to Area 0. Recall that a valid OSPF
network requires all areas other than area0 to connect to area0 via
at least one router:

∀area𝑘 ≠ area0, ∃ r ∈ R, eth𝑖 , eth𝑗 ∈ ∇(r) :
area(eth𝑖) = area𝑘 ∧ area(eth𝑗) = area0 .

Constraint 7: Time Interval Consistency. Given two connected
interfaces in an OSPF network, the hello and dead intervals of the
two interfaces must be the same:

∀(eth𝑖 , eth𝑗) ∈ L : hello(eth𝑖) = hello(eth𝑗)
∧ dead(eth𝑖) = dead(eth𝑗).

4.1.2 Random Network Generation. Algorithm 1 shows our ap-
proach to generating a random yet valid OSPF network satisfying
the seven constraints discussed before. Basically, the algorithm
can be split into three parts (Line 2, Lines 3-6, and Lines 7-8). The
first part (Line 2) is to generate random OSPF areas. Each area
is created by invoking the procedure in Lines 10-18. Lines 11-12
created random links, each connecting two interfaces, as illustrated
in Figure 7(a), where each square is an interface. Lines 13-16 merge
interfaces to form a router (recall that a router consists of multiple
interfaces), as illustrated in Figure 7(b). In this procedure, we should
ensure that all routers are interconnected, satisfying Constraints
3 and 4. Line 17 names the area as area𝑘 and specifies the type
of area, where 𝑘 is an input integer ranging from 0 to a random
positive integer. When 𝑘 = 0, area0, which must be a normal area,
is created to satisfy Constraint 5.

The second part (Lines 3-6) connects the areas by invoking the
procedure at Line 19, as exemplified in Figure 7(c). Particularly,
Lines 3-4 ensure that all areas other than area0 are connected to
area0, satisfying Constraint 6. Lines 5-6 randomly connect other
areas. The third part (Lines 7-8) is straightforward, which is to as-
sign random attributes to routers’ interfaces, satisfying Constraints
1, 2, and 7. For instance, if we assign an IP address to an interface,
the IP address cannot be assigned to others.

Algorithm 1: OSPF Network Generation.
1 procedure gen_ospf_network()
2 G← {G𝑖 = (I𝑖 ,L𝑖 ,R𝑖) : G𝑖 ← gen_ospf_area(𝑖) for 𝑖 = 0, 1, 2, . . . };
3 foreach G𝑖 ∈ G and 𝑖 ≠ 0 do
4 con_ospf_area (G𝑖 , G0);

5 for random times do
6 con_ospf_area (G𝑖 , G𝑗) where 𝑖 ≠ 𝑗 ;

7 foreach interface eth in G do

8 assign ip(eth), mask(eth), hello(eth), dead(eth) with respect to
Constraints 1, 2, and 7;

9 return G;

10 procedure gen_ospf_area(k)
11 I← a random set of interfaces;
12 L← a random subset of I × I such that links do not share interfaces;
13 R← ∅;
14 for random times until there’s a path between any pair of interfaces do
15 I′ ← a random subset of I such that all interfaces in I′ are from

different links and have not been assigned to a router;
16 R← R ∪ {r}; ∇(r) ← I′ ;

17 ∀eth ∈ I : area(eth) ← area𝑘 ; area_type(eth) ← normal or nssa;
18 return G = (I,L,R) ;
19 procedure con_ospf_area(G𝑖 , G𝑗)
20 randomly pick two routers from G𝑖 and G𝑗 , respectively;
21 merge the two routers into one;

area1

area0 area2

area1

area0 area2

area1

area0
area2

(a) (b) (c)

Figure 7: Example to show the network generation algorithm.

4.1.3 Extensions. We provide a simplified network model above to
simplify the explanations of our approach. In practice, it can be eas-
ily extended to include network devices, such as switches and hosts.
Unlike a link connecting two interfaces, a switch can be regarded as
a special link connectingmore than two interfaces, forming a subnet.
As such, Constraint 2 should be rewritten as ∀ eth𝑖 , eth𝑗 ∈ subnet :
ip(eth𝑖) & mask(eth𝑖) = ip(eth𝑗) & mask(eth𝑗) ∧ mask(eth𝑖)
= mask(eth𝑗). In addition to switches, hosts can be viewed as
special routers that do not run OSPF.

It is also easy to extend our network model to other IGPs, such
as IS-IS. Section 5 reports our experimental results on both OSPF
and IS-IS, the two most popular IGPs.

4.2 Step 2: Topological Program Synthesis

Given a random yet valid network generated in Step 1, Step 2
generates multiple equivalent topological programs to specify this
network, via a novel semantics-guided program synthesis. This sub-
section consists of two parts, explaining the syntax and semantics
of each command in a topological program (Section 4.2.1) and the
program synthesis algorithm (Section 4.2.2), respectively.

Validating Interior Gateway Routing Protocols via Equivalent Topology Synthesis CCS ’25, October 13–17, 2025, Taipei, Taiwan

Program := Command+
Command := Router | Interface

Router := router ospf no? RouterSubCmd

RouterSubCmd := area <num> nssa
| network <ip>/<mask> area <num>

Interface := interface <r𝑖 -eth𝑗 > no? InterfaceSubCmd

InterfaceSubCmd := ip address <ip>/<mask>
| ip ospf area <num>
| ip ospf cost <num>
| ip ospf hello-interval <num>
| ip ospf dead-interval <num>

<ip>, <mask>, <num> ∈ { 0, 1, 2, . . . } ∪ { ⊤ }

Figure 8: Syntax of a Topological Program.

4.2.1 Syntax and Semantics of a Topological Program. Each IGP
implementation provides certain commands to control the network
topology. Although the commands may differ, they follow a sim-
ilar syntax. Figure 8 illustrates an abstract syntax of topological
programs for OSPF.

Basically, a topological program is a list of commands as demon-
strated by the first rule in the grammar. To ease the explanation,
the syntax is simplified to include a subset of important commands:
either a router command or an interface command. A router com-
mand can control all interfaces and other information of a router
while an interface command controls a single interface. In these
commands, <ip>, <num>, and <mask> are all integers with a special
value ⊤ meaning an undefined value.

A router command starts with the keywords “router ospf” or
“router ospf no”, followed by a sub-command. Assume <num> = 𝑘 .
A sub-command in the simplified syntax could update the type of
an area, i.e., area𝑘 , to a special type, namely NSSA, or specify that
all interfaces, eth𝑖 , satisfying ip(eth𝑖) & <mask> = <ip> & <mask>,
belongs to area𝑘 . If a router command contains the keyword “no”,
it performs an inverse operation of the sub-command. For instance,
Line 9 in Figure 6 is a router command that cancels area2’s role as
an NSSA. The detailed semantics of a router command are listed in
Table 1 (see ID 1-4).

An interface command configures the interface eth𝑗 of the router
r𝑖 . The corresponding sub-commands sets the IP address, area, cost,
hello interval, and dead interval, respectively. A typical example is
illustrated in Figure 6, where Lines 1-2 set the IP address of the inter-
face r1-eth0. Similar to a router command, if an interface command
contains the keyword “no”, it performs an inverse operation of the
sub-command. The detailed semantics of an interface command are
listed in Table 1 (see ID 5-14).

In a topological program, the effects of a command 𝑐𝑖 occurring
before the other 𝑐 𝑗 could be covered by the effects of 𝑐 𝑗 . More
complicated, the effects of a command could cover the partial effects
of multiple commands. For instance, in Figure 9, Lines 2, 5, and 8 set
the areas of the interfaces eth0, eth1, and eth2 to area1, area0, and
area0, respectively. Line 10 affects all three interfaces — because all
three IP addresses start with 177 — and changes the areas to area2,
area2, and area2, respectively. Line 11 only changes the areas of eth1
and eth2 to area1 because their IP addresses start with 177.235.166
while the IP address of eth0 does not. Finally, the areas of the three
interfaces are area2, area1, and area1, respectively.

1. interface r0-eth0 ip address 177.70.31.169/255.0.0.0
2. interface r0-eth0 ip ospf area 1
3.
4. interface r0-eth1 ip address 177.235.166.37/255.255.0.0
5. interface r0-eth1 ip ospf area 0
6.
7. interface r0-eth2 ip address 177.235.166.38/255.255.0.0
8. interface r0-eth2 ip ospf area 0
9.
10. router ospf network 177.0.0.0/255.0.0.0 area 2
11. router ospf network 177.235.166.0/255.255.255.0 area 1

Figure 9: Example to explain some complicated commands.

Algorithm 2: Topological Program Synthesis for a Router.
1 procedure synthesize_program(𝜓 ≡ 𝜙1 ∧ 𝜙2 ∧ · · · ∧ 𝜙𝑛)
2 U← {𝜙1, 𝜙2, . . . , 𝜙𝑛 };
3 S← ∅;
4 P← empty list;
5 while U ≠ ∅ do
6 𝑐 ← select_command(U, S) ; /* Alg. 3 */

7 add command 𝑐 to the tail of P;

8 return P;

In practice, there are many complicated commands as above.
Although the syntax used in this section is simplified to ease expla-
nation, it covers sufficient and non-trivial cases we often encounter
in practice. In the next part, we use the semantics of these com-
mands to guide equivalent program synthesis.

4.2.2 Equivalent Program Synthesis. Given a valid network gener-
ated by Step 1, we now synthesize multiple equivalent topological
programs for each router in the network. Each synthesized pro-
gram should drive a router to the expected status in the network.
The expected status of a router can be formulated as a conjunctive
first-order logic formula, 𝜓 = ∧𝑖𝜙𝑖 , where each 𝜙𝑖 specifies the
value of router interfaces’ attributes. For instance, Step 1 may gen-
erate the network in Figure 1, where r0 is expected to satisfy𝜓 ≡
ip(eth0) = 177.70.31.169 ∧mask(eth0) = 255.0.0.0 ∧ area(eth0) =
area0 ∧ area_type(eth0) = normal ∧ ip(eth1) = . . . ∧

As such, we send the target constraint 𝜓 of a router to Algo-
rithm 2 such that it synthesizes a random program, which can
drive the router to the expected status denoted by 𝜓 . Invoking
Algorithm 2 multiple times yields multiple equivalent programs.
Lines 2-3 of Algorithm 2 creates two sets, U representing the target
constraints we expect to satisfy but have not been satisfied, and S
is a set of constraints we expect to satisfy and have been satisfied.
Clearly, the set U contains all 𝜙𝑖 in the target constraint 𝜓 . Line
4 initializes an empty command list to represent the synthesized
topological program. Each iteration in the follow-up loop (Lines
5-7) produces one command until U = ∅, meaning that all expected
constraints have been satisfied.

Algorithm 3 presents the procedure of command selection in-
voked at Line 6 of Algorithm 2. This is the key part of our program
synthesis, which guarantees the synthesis procedure can terminate
by generating a program whose length is bounded.
Termination Guarantee. Line 2 of Algorithm 3 selects a random
command, and Line 3 checks if this command is good enough via
Algorithm 4. The criteria of a good command are discussed later. If

CCS ’25, October 13–17, 2025, Taipei, Taiwan Bing Shui, Yufan Zhou, Jielun Wu, Baowen Xu, and Qingkai Shi

Table 1: Command Semantics for Router r𝑖 .

ID Command 𝑐 Semantics ⟦𝑐⟧

1 router ospf no area <num> nssa ∀eth𝑖 ∈ ∇(r𝑖), area(eth𝑖) = <num> : area_type(eth𝑖) = nssa
2 router ospf no area <num> nssa ∀eth𝑖 ∈ ∇(r𝑖), area(eth𝑖) = <num> : area_type(eth𝑖) = normal (by default)
3 router ospf no network <ip>/<mask> area <num> ∀eth𝑖 ∈ ∇(r𝑖), ip(eth𝑖) & mask(eth𝑖) = <ip> & <mask> : area(eth𝑖) = <num>
4 router ospf no network <ip>/<mask> area <num> ∀eth𝑖 ∈ ∇(r𝑖), ip(eth𝑖) & mask(eth𝑖) = <ip> & <mask> : area(eth𝑖) = ⊤
5 interface <r𝑖 -eth𝑗 > no ip address <ip>/<mask> ip(eth𝑗) = <ip> ∧mask(eth𝑗) = <mask>
6 interface <r𝑖 -eth𝑗 > no ip address <ip>/<mask> ip(eth𝑗) = ⊤ ∧mask(eth𝑗) = ⊤
7 interface <r𝑖 -eth𝑗 > no ip ospf area <num> area(eth𝑗) = <num>
8 interface <r𝑖 -eth𝑗 > no ip ospf area <num> area(eth𝑗) = ⊤
9 interface <r𝑖 -eth𝑗 > no ip ospf cost <num> cost(eth𝑗) = <num>
10 interface <r𝑖 -eth𝑗 > no ip ospf cost <num> cost(eth𝑗) = 10 (by default)
11 interface <r𝑖 -eth𝑗 > no ip ospf hello-interval <num> hello(eth𝑗) = <num>
12 interface <r𝑖 -eth𝑗 > no ip ospf hello-interval <num> hello(eth𝑗) = 10 (by default)
13 interface <r𝑖 -eth𝑗 > no ip ospf dead-interval <num> dead(eth𝑗) = <num>
14 interface <r𝑖 -eth𝑗 > no ip ospf dead-interval <num> dead(eth𝑗) = 40 (by default)

Algorithm 3: Command Selection for Program Synthesis.
1 procedure select_command(U, S)
2 𝑐 ← randomly generate a command;
3 if check_command(S, 𝑐) = Good then

4 foreach 𝜙 ∈ U do

5 if ⟦𝑐⟧ ⇒ 𝜙 then U← U \ {𝜙 }; S← S ∪ {𝜙 };
6 foreach 𝜙 ∈ S do

7 if ⟦𝑐⟧ ∧ 𝜙 ≡ false then U← U ∪ {𝜙 }; S← S \ {𝜙 };
8 return c;
9 else

10 𝜙 ← random constraint from U;
11 𝑐 ← generate one command to satisfy 𝜙 ;
12 U← U \ {𝜙 }; S← S ∪ {𝜙 };
13 return c;

a command is good enough, we choose this command and update
U and S at Line 4-8. In detail, Lines 4-5 move a constraint 𝜙 from
U to S if 𝜙 is satisfied by the command, i.e., ⟦𝑐⟧ ⇒ 𝜙 . Recall that
⟦𝑐⟧ denotes the constraint a command implies and is listed in
Table 1. Similarly, Lines 6-7 move a constraint 𝜙 from S to U if 𝜙 is
dissatisfied by the command, i.e., ⟦𝑐⟧ ∧ 𝜙 ≡ false.

If a command is not good enough, Line 10 randomly selects
a constraint from U. Lines 11-12 generate a command to satisfy
this constraint and move it from U to S. Note that we can always
generate a command to satisfy a given constraint. As an example,
the second command in Figure 9 can always set the area of interface
r0-eth0 to area1.

As for the criterion of a good enough command, Algorithm 4
provides a solution. In the algorithm, we check if the command
𝑐 will dissatisfy a constraint 𝜙 in S at Line 3. If so, the constraint
𝜙 will be moved from S to U, which is not an expected operation
because the goal of our algorithm is to satisfy constraints in U (i.e.,
reduce the size of U). Thus, Line 3 also checks the other condition,
i.e., #(𝜙) > 𝑘 , where #(𝜙) denotes the times of we move 𝜙 into U
and 𝑘 is a predefined upper bound of #(𝜙).

As such, the algorithm keeps a trend that constraints are moved
from U to S. In other words, U will gradually decrease in size until
it becomes an empty set, jumping out of the loop in Algorithm 2
and terminating the algorithm.

Algorithm 4: Command Check for Program Synthesis.
1 procedure check_command(S, 𝑐)
2 foreach 𝜙 ∈ S do

3 if ⟦𝑐⟧ ∧ 𝜙 ≡ false and #(𝜙) > 𝑘 then

4 return Bad;

5 return Good;

Example 4.2. Assume U = {𝜙1, 𝜙2} and S = {} at the beginning
of the program synthesis procedure, i.e., Algorithm 2. Our goal is to
generate commands to satisfy𝜙1 and𝜙2, thereby moving them from
U to S. If we always generate random commands, e.g., 𝑐1, 𝑐2, 𝑐3, . . . ,
the constraint 𝜙1 could be satisfied by 𝑐1, 𝑐3, 𝑐5, . . . and dissatisfied
by 𝑐2, 𝑐4, 𝑐6, Consequently, 𝜙1 is constantly moved between the
two sets, and there may be no chance for 𝜙2 to be moved out of U.

In our algorithm, we limit the times, i.e., 𝑘 , of moving 𝜙 from S to
U. For instance, if 𝑘 = 1, after generating at most three commands
(one moving 𝜙1 from U to S, one moving from S to U, and one from
U to S again), we cannot dissatisfy 𝜙1 any longer and, thus, have
a chance to generate commands for 𝜙2, thereby clearing the set U
and terminating the algorithm.

Lemma 4.3. Algorithm 2 can always terminate.

Boundedness Guarantee. Recall the previous example and that 𝑘
is a predefined constant limiting the times of moving a constraint
𝜙 from S to U. Thus, we generate at most 2𝑘 + 1 commands to
move one constraint 𝜙 from U to S. That is to say, we generate at
most (2𝑘 + 1) |U| commands to move all constraints from U to S,
synthesizing a program of length at most (2𝑘 + 1) |U|.

Lemma 4.4. The length of a synthesized program is up to (2𝑘 +
1) |U|, where 𝑘 is a predefined constant.

Putting the previous two lemmas together, we have the following
theorem to conclude our program synthesis algorithm.

Theorem 4.5. Algorithm 2 can always terminate by synthesizing
a topological program whose length is up to (2𝑘 + 1) |U|, where 𝑘 is a
predefined constant.

Validating Interior Gateway Routing Protocols via Equivalent Topology Synthesis CCS ’25, October 13–17, 2025, Taipei, Taiwan

4.3 Step 3: Differential Analysis

The third step is to input the synthesized topological programs into
the routers, which then communicate with each other to exchange
topological information until all routers compute complete routing
tables. After the network converges, we compare the execution
results of equivalent topological programs. Any inconsistency in
the execution results indicates potential bugs.

4.3.1 Network Simulation. To facilitate the testing procedure, we
do not use physical routers and networks. Instead, the routers, as
well as the networks, are simulated by the open-sourced Mininet
framework [27]. Mininet also allows us to install different routing
protocol implementations into the simulated routers.

We then input the synthesized topological programs into the
routers such that the protocol implementations can run the topo-
logical programs. The entire program is randomly split into several
subsequences. At random intervals, a subsequence is entered until
the entire program has been input. This is because a command may
take some time to take effect. If commands are entered too quickly,
earlier commands may be overwritten by later ones before they
have had a chance to take effect.

4.3.2 Determining & Accelerating Network Convergence. After in-
putting the topological programs into the routers, it usually takes
some time for the routers to exchange information and calculate
routing data. We have to wait until this procedure is completed,
i.e., the network converges — all commands in the topological pro-
grams have been executed, and all routers finish computing the
routing table. Checking the intermediate status of the network
is less meaningful for differential testing because a network may
converge through different intermediate statuses.

Unfortunately, it is challenging to determine if a network con-
verges because the specification of routing protocols, e.g., OSPF,
does not explicitly define how to determine and speed up network
convergence. To address this challenge, we use a few heuristic meth-
ods to estimate and accelerate convergence, as discussed below. The
effectiveness of these methods is proven in our experiments, as dis-
cussed in Section 5.
Strategy 1: Neighbor Establishment. Like the TCP [14] hand-
shake process, each router running OSPF maintains a state machine
when it connects to another router. When the state machine reaches
a final (a.k.a., terminated) state, the connection completes. Thus, to
determine if a network converges, we check all routers’ neighboring
states to see if the states have been set to the final states.
Strategy 2: LSA Exchange. Recall that routers exchange LSAs to
build routing tables. When a network converges, all LSA transmis-
sion queues in routers should be empty, meaning that a router no
longer needs to exchange LSAs with others. Thus, we check if LSA
transmission queues are empty to determine network convergence.
Strategy 3: Immediate Routing Calculation. By default, a router
may calculate its routing table after some time to collect multiple
LSAs from other routers. To speed up network convergence, we let
all routers compute their routing table immediately after receiving
an LSA from other routers.
Strategy 4: Time Interval Reduction. To establish a connection
to neighboring routers and exchange LSAs, a router sends a packet,

Table 2: Differential Oracle in Five Groups.

Group Fields Description

1. Commands - Effective commands in a topological program

2. Interfaces

IfAddress IP address of the interface
IfType Interface type (e.g. broadcast, point-to-point, etc.)
IfArea Area the interface belongs to
IfCost Cost of the interface
...

3. Neighbors

NbState State of a neighboring router
NbPriority Priority of the neighbor in the connection
NbRole Role of a neighbor, e.g., ABR, ASBR
NbLXRe Length of neighbor’s retransmission packet list
...

4. LSAs

LsaOption Various options of a router
LsaFlags Router’s role, e.g., ABR, ASBR
LsaType Types of the LSA
LsaID ID of the router sending the LSA
...

5. Routes

RtDst Destination address of the route
RtCost Cost to reach the destination address
RtNxtHop Next router in the route to the destination
RtIntf The interface via which a packet should be sent out
...

e.g., a Hello/LSA packet, to its neighbors periodically, e.g., every
𝑛 seconds. Since 𝑛 > 5 by default in most cases, which is too long
and slows down network convergence, we set 𝑛 = 0.5 to speed up
convergence as well as the whole differential testing procedure.

4.3.3 Differential Analysis. After runningmultiple equivalent topo-
logical programs, we collect the execution results from each router
and compare the execution results derived from equivalent topolog-
ical programs. In practice, there are a lot of execution results but not
all of them can be used in differential analysis. For example, each
router maintains the routing information as a database of LSAs and
the age of each LSA (i.e., when an LSA is created). The ages of an
LSA across different executions may differ, but the core contents
of LSAs should be the same. Thus, in the differential analysis, we
do not compare the LSA ages but other information that should
be the same across different executions, which we refer to as the
differential oracles.

Table 2 lists important differential oracles used in our approach,
which can be put into five groups. First, a router in an OSPF network
often outputs commands (from a topological program) that really
take effect, i.e., the commands whose effects are not canceled by
other commands. For instance, the command at Line 8 in Figure 6
is not included in the output commands because it is canceled by
the command at Line 9. Thus, given two equivalent topological
programs, the output effective commands should be the same. If
comparing the final effective commands yields any inconsistency,
it indicates some bugs in the protocol’s implementation. Second,
some information of an interface can play the role of differential or-
acles, including its IP address, type, area, cost, to name a few. Third,
a router maintains the information for each of its neighbors. Thus,
in the differential analysis, we can compare a router’s neighbor
information, including but not limited to the neighboring router’s
state, priority, type, etc. Fourth, recall that routers exchange LSAs
(see Section 2) to compute a complete topology of the whole net-
work. Each router records the LSAs it receives from other routers
in a database. Thus, in the differential analysis, we can compare

CCS ’25, October 13–17, 2025, Taipei, Taiwan Bing Shui, Yufan Zhou, Jielun Wu, Baowen Xu, and Qingkai Shi

void ospf_area_nssa_unset (…) {
 // FIX: + ospf->redistribute--;
 asbr_status_update(ospf->redistribute);
}

void init_ospf (…) {
 ospf->redistribute = 0;
 asbr_status_update(ospf->redistribute);
}

redistribute = 0 (✓) redistribute = 1 (✘)

Call chain if topological program (a) in Fig. 6 is used Call chain if topological program (b) in Fig. 6 is used

void asbr_status_update(uint8_t redistribute) {
 ospf->flags = redistribute ? OSPF_FLAG_ASBR : NO_OSPF_FLAG_ASBR;
}

set the LSA flag as per the value of redistribute

Figure 10: Example to show the process of root cause analysis.

the LSAs recorded by routers, including LSA’s sources, flags, types,
etc. Last but not least, we compare the routing tables computed
across multiple executions of equivalent topological programs. An
entry in a routing table includes the destination a route, the cost of
sending a packet to the destination, the next hop to send a packet,
and many others.

4.3.4 Root Cause Analysis. Once ToDiff detects a discrepancy
between router fields (see Table 2) across equivalent topological
programs, we perform a root cause analysis to identify bugs in the
IGP implementation under test. Specifically, given two equivalent
topological programs that lead to inconsistent router fields, we run
both in parallel and perform single-step debugging using GDB [17],
carefully monitoring their execution step by step until the inter-
nal program states begin to diverge. To narrow down the scope
of debugging, we apply program slicing [54] to the inconsistent
router fields reported by ToDiff. This allows us to extract and
track the relevant variables and control paths associated with the
divergence, significantly reducing the amount of code that needs
to be examined.

Example 4.6. Let us take the bug discussed in Section 3 as an
example to illustrate the root cause analysis. Recall that we executed
two equivalent topological programs in Figure 6 and observed a
discrepancy in the LSA flag: one indicates that a router is both an
ABR and an ASBR, while the other shows that it is only an ABR.

Since the struct field ospf->flags in the code captures the LSA
flag of routers, we apply a program slicer to identify all statements
and variables related to ospf->flags, including the function param-
eter redistribute and another struct field ospf->redistribute
shown in Figure 10. When debugging, we track the values of these
variables until their values diverge.

As illustrated in Figure 10, the LSA flag is set in the function
asbr_status_update based on the value of ospf->redistribute.
If this value is not zero, the ASBR bit in ospf->flags is set; oth-
erwise, it is unset. When debugging, we find that the function
asbr_status_update is invoked in different call sites: one topo-
logical program lets the function be invoked by init_ospf, where
ospf->redistribute = 0; the other equivalent topological pro-
gram lets the function be invoked by ospf_area_nssa_unset, where
ospf->redistribute = 1. This difference explains the divergence
in the LSA flag and identifies the root cause of the bug.

In our experience, the root cause analysis illustrated above typi-
cally allows us to identify root causes in 30 minutes. In the future,
we plan to integrate existing automatic root cause analyzers, e.g.,
[58], into ToDiff to fully automate the whole validation procedure.

4.4 Discussion

ToDiff is fully automated except for a few manual efforts before
and after the differential analysis. First, before applying ToDiff,
we must follow the official documents of IGPs to establish the
constraints of an IGP network, as well as the semantics of IGP
commands. Establishing these network constraints and command
semantics allows us to build valid networks, thus avoiding the waste
of resources exploring invalid networks and invalid topological
programs in Steps 1 and 2. Note that themanual work above is a one-
time effort and is common among modern automated techniques.
For instance, automatic program analyzers, such as those for C/C++
programs, also require a one-time manual effort to model C/C++
semantics. Second, since root cause analysis is not the focus of this
paper, we currently rely on a manual process to identify root causes
after the differential analysis. In the future, we can replace it with
automated root cause analyzers, e.g., [58].

5 Evaluation

We implement ToDiff on top of Mininet [27], an open-source and
widely-used network simulation framework. Mininet enables us to
build a virtual network with multiple routers on a single server and
run different IGP implementations. Rather than being a limitation,
the use of a network simulated by Mininet brings two significant
advantages. On the one hand, Mininet offers strong applicability as
it creates realistic virtual networks by running real Linux kernel
code, making it a widely adopted tool in both academia and industry
for testing protocol implementations [8, 27]. As such, any approach
that works in Mininet is also applicable to industry-grade routers
and real-world deployment scenarios. Our method is therefore
transferable to real environments without requiring fundamental
modifications. On the other hand, the simulated network provides
excellent scalability. Mininet supports the creation of large-scale
virtual networks, which are often infeasible to construct or access in
physical environments for testing purposes. This capability enables
our method to be evaluated across a diverse range of topologies,
demonstrating its scalability in testing complex protocol behaviors.

To show the efficacy of our approach, we conduct experiments
with ToDiff to address the following three research questions:

• RQ1. How efficient are the three steps of ToDiff?

• RQ2. How effective is ToDiff in detecting bugs, compared to
state of the art?

• RQ3. What are the root causes of the discovered bugs?

Subjects. In the experiments, we use ToDiff to test multiple im-
plementations of OSPF and IS-IS from FRRouting [12]. We choose
OSPF and IS-IS because they are the two most popular IGPs. We
use implementations from FRRouting as it is an open-source rout-
ing protocol suite designed for Linux and Unix platforms and has
been integrated into the software repositories of major Linux-based
operating systems like Debian and CentOS. FRRouting is widely
utilized in critical networking scenarios, including ISPs and SaaS
infrastructure, and is trusted by technology giants such as NVIDIA
and VMware. FRRouting has experienced robust growth in recent
years, gradually becoming the standard implementation for popu-
lar routing protocols. To date, it has garnered 3.5K stars and 1.5K

Validating Interior Gateway Routing Protocols via Equivalent Topology Synthesis CCS ’25, October 13–17, 2025, Taipei, Taiwan

Table 3: Details of OSPF and IS-IS Implementations.

IGP Implementations Size (KLoC) # Files # Commands

OSPF
frrouting-10.2 145 181 167
frrouting-9.0 135 175 161
frrouting-8.0 121 157 147

IS-IS
frrouting-10.2 135 183 100
frrouting-9.0 126 177 100
frrouting-8.0 108 158 74

forks on GitHub, with a continuous stream of contributions from
hundreds of developers worldwide.

Particularly, the details of the OSPF and IS-IS implementations
are listed in Table 3.We choose the three most recent major versions
of the FRRouting project for testing. The OSPF and IS-IS implemen-
tations consist of hundreds of thousands of lines of code, with
OSPF ranging from 121KLoC to 145KLoC and IS-IS from 108KLoC
to 135KLoC. The project has a relatively complex structure, com-
prising hundreds of source code files, with OSPF involving 157
to 181 files and IS-IS from 158 to 183 files. The implementations
support a rich set of commands to write topological programs and
provide precise control over the protocols, with 147 to 167 kinds of
commands for OSPF and 74 to 100 commands for IS-IS, respectively.

It is worth noting that although our evaluation is conducted on
the open-source IGP implementation, FRRouting [12], the results
are expected to generalize well to other routing protocol imple-
mentations. This is because, while we do not evaluate ToDiff on
commercial implementations (e.g., Cisco, which are closed-source),
these systems typically share similar architectural designs with
FRRouting. For example, they use similar commands to configure
and drive routers [7]. This architectural consistency ensures that
ToDiff can be effectively applied to both open-source and com-
mercial implementations, and seamlessly extended to support these
implementations with minimal adaptation effort.
Baselines. To show the effectiveness of ToDiff, we compare ToD-
iff against existing validation techniques the FRRouting commu-
nity is using. First, the FRRouting community actively handcrafts
a rich test suite [10]. Currently, the test suite contains around 460
manually crafted test cases covering awide range of network topolo-
gies. Second, we compare ToDiff to OSS-Fuzz [19], which is a pop-
ular fuzzing framework developed by Google, having successfully
detected 36,000 bugs across 1,000 projects, including the OSPF and
IS-IS implementations in FRRouting.
Environment. All experiments were conducted on a server with
the following configuration: 32 cores, 64 threads, 3.4 GHz CPU, and
256 GB of memory, running Ubuntu 20.04 and Mininet 2.3.0.

5.1 RQ1: Efficiency of ToDiff

To answer RQ1, we measure the execution time of each step in
our method and conduct a detailed analysis. The experiment is
conducted under different scenarios where 1 to 15 routers are gen-
erated in a network. A network of 15 routers is sufficiently large to
trigger deeply hidden bugs through our approach. We record the
time taken by ToDiff for its three main steps: network generation,
topology synthesis, and differential IGP validation. The experiment
is repeated ten times in different implementations, and the average
time cost and number of generated commands are reported.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Routers

0.1

1

10

100

E
xe

cu
tio

n
T

im
e

(s
)

1: Network Generation 2: Topology Synthesis 3: Network Execution

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Routers

0.1

1

10

100

E
xe

cu
tio

n
T

im
e

(s
)

1: Network Generation 2: Topology Synthesis 3: Network Execution

(b)

Figure 11: The time cost of the three steps and the number

of generated commands for (a) OSPF and (b) IS-IS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Routers

50

75

100

125

150

175

E
xe

cu
tio

n
Ti

m
e

(s
)

max w/o acceleration
average with acceleration
min-max with acceleration
convergence oracle

Figure 12: The time cost of Step 3 before and after applying

our approach.

As plotted in Figure 11, (a) and (b) show the experiment results
for OSPF and IS-IS, respectively. The X-axis denotes the number
of routers in a generated network. The Y-axis, which is on a log
scale, together with the bar chart, illustrates the time consumption
of the three steps. The results demonstrate that our tool is highly
efficient, with the total time cost of all three steps remaining under
3 minutes for both OSPF and IS-IS, with up to 15 routers. The
testing time does not increase significantly with the network size,
demonstrating the good scalability of our approach. For both OSPF
and IS-IS, we complete Step 1, i.e., network generation, in less than
one second, and Step 2, i.e., the synthesis of equivalent topological
programs, within 2 seconds. Step 3, i.e., the network execution, can
be completed in 100 seconds for OSPF and 170 seconds for IS-IS.
The total testing time for IS-IS is longer than that of OSPF, because
IS-IS inherently has a slower convergence speed than OSPF.

Since the time cost of Step 1 is negligible, we provide a detailed
analysis for Step 2 and Step 3 below.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Bing Shui, Yufan Zhou, Jielun Wu, Baowen Xu, and Qingkai Shi

Table 4: Bugs Discovered by ToDiff.

ID IGP Root Causes ToDiff FRRouting Test Suite Google’s OSS-Fuzz Status

1 OSPF Incorrect setting internal states about area structure ✓ ✗ ✗ PR merged
2 OSPF Incorrect setting internal states about nssa status ✓ ✗ ✗ PR merged
3 OSPF Incorrect setting internal states about area structure ✓ ✗ ✗ PR merged
4 OSPF Incorrect setting internal hello timer ✓ ✗ ✗ PR merged
5 OSPF Incorrect setting internal spf hold timer ✓ ✗ ✗ PR merged
6 OSPF Incorrect setting wait timer ✓ ✗ ✗ Confirmed
7 OSPF Incorrect setting dead multiplier timer ✓ ✗ ✗ PR merged
8 OSPF Incorrect parsing the commands of no VLINK ✓ ✗ ✗ PR merged
9 OSPF Incorrect parsing the commands of no AREANSSA ✓ ✗ ✗ PR merged
10 OSPF Incorrect parsing the commands of no AREANSSARANGE ✓ ✗ ✗ PR merged
11 OSPF Incorrect parsing the commands of no AREANSSACOST ✓ ✗ ✗ PR merged
12 OSPF Incorrect parsing the commands of no AREADEFAULTCOST ✓ ✗ ✗ PR merged
13 OSPF Incorrect parsing the commands of no OSPFWRITEMULTIPLIER ✓ ✗ ✗ PR merged
14 OSPF Incorrect parsing the commands of no DEFUALTINFORMATION ✓ ✗ ✗ PR merged
15 OSPF Incorrect parsing the commands of no DISTANCE ✓ ✗ ✗ PR merged
16 OSPF Incorrect parsing the commands of no AREARANGECOST ✓ ✗ ✗ PR merged
17 OSPF Incorrect parsing the commands of no AREASHORTCUT ✓ ✗ ✗ PR merged
18 OSPF Incorrect parsing the commands of no DEADINTERVAL ✓ ✗ ✗ PR merged
19 OSPF Incorrect parsing the commands of no ABRTYPE ✓ ✗ ✗ PR merged
20 OSPF Incorrect parsing the commands of no WRITEMULTIPLIER ✓ ✗ ✗ PR merged

21 IS-IS Incorrect setting interface’s psnp-interval. ✓ ✗ ✗ PR merged
22 IS-IS Incorrect setting interface’s csnp-inveral. ✓ ✗ ✗ PR merged
23 IS-IS Incorrect setting interface’s priority. ✓ ✗ ✗ PR merged
24 IS-IS Incorrect setting interface’s hello-inveral ✓ ✗ ✗ PR merged
25 IS-IS Incorrect setting interface’s hello-multipllier ✓ ✗ ✗ PR approved
26 IS-IS Incorrect setting interface’s circuit-type ✓ ✗ ✗ PR approved

Detailed Analysis of Step 2. To show the scalability of our pro-
gram synthesizer, we try to generate larger topological programs
with up to 1,000 commands per router. For validation, the topologi-
cal program comprising 1,000 commands is rich enough to cover a
wide range of diverse network scenarios. The results show that this
step takes less than 9 seconds to complete, attributable to our effi-
cient program synthesis algorithm, which ensures good scalability
for large-scale networks and complex topologies.

Detailed Analysis of Step 3. Step 3 is the most time-consuming
step as we have to wait for a long time until the network converges
before we can differentiate the results to find bugs. To reduce the
waiting time, Section 4.3 presents a few heuristic methods to deter-
mine and speed up network convergence. In Figure 12, the dotted
and blue line stands for the maximum time for a network to con-
verge (the experiment uses our methods to determine network
convergence but does not apply our method to accelerate conver-
gence). We can observe that it takes up to about 175 seconds for a
network to converge. It also means that if we do not provide any
method discussed in Section 4.3 to determine and speed up net-
work convergence, we have to always wait for at least 175 seconds
for a network to converge, plotted by the solid and red line in the
chart. With our strategies in Step 3, the average time waiting for
a network to converge is significantly reduced by 1.6× to 4.7×, as
plotted by the dashed and green line in Figure 12.

5.2 RQ2: Effectiveness of ToDiff

Code Coverage.We evaluate both the overall and topology-related
code coverage. The former refers to the coverage across all source
code of OSPF and ISIS. Meanwhile, since our approach focuses on
identifying topology-related bugs, we also evaluate the topology-
related coverage, which removes topology-irrelevant code.

Table 5: Overall / Topology-Related Code Coverage (%).

IGP ToDiff FRRouting Test Suite Google’s OSS-Fuzz

OSPF 62.3 / 85.1 51.8 / 32.2 15.7 / 1.1
ISIS 68.9 / 78.2 63.9 / 38.0 8.9 / 5.3

The coverage of ToDiff is collected during our experiments,
which involve 200 randomly-generated valid networks and 100
equivalent topological programs for each network. We run each
topological program only once. For the FRRouting test suite, we
executed all test cases related to the core functionality of OSPF and
IS-IS. In the case of OSS-Fuzz, the campaign was run continuously
for 24 hours. To mitigate randomness, we repeated each experiment
10 times and reported the average results.

The code coverage is listed in Table 5. ToDiff consistently out-
performs both the FRRouting test suite and OSS-Fuzz, achieving
the highest overall and topology-related coverage. Unlike the FR-
Routing test suite, which depends on manually crafted test cases,
ToDiff automatically generates tests, enabling a more comprehen-
sive exploration of network topologies. This automation results
in a 2× increase in topology-related coverage and is a key factor
in ToDiff ’s ability to uncover 26 bugs that the FRRouting test
suite fails to detect. On the other side, OSS-Fuzz predominantly
generates invalid packets during mutation, which are often limited
to exercising exception-handling paths and rarely reach the core
logic of the protocol, resulting in significantly lower coverage.

The code not covered by ToDiff is mainly related to user-defined
protocol extensions, e.g., OSPF’s opaque LSAs. As ToDiff is de-
signed to verify standard-compliant protocol functionality, such
optional or implementation-specific features are intentionally ex-
cluded from its testing scope.

Validating Interior Gateway Routing Protocols via Equivalent Topology Synthesis CCS ’25, October 13–17, 2025, Taipei, Taiwan

1. DEFUN(ip_ospf_dead_interval, ip_ospf_dead_interval_cmd,
2.- "ip ospf dead-interval minimal hello-multiplier (1-20)",
3.+ "ip ospf dead-interval minimal hello-multiplier (2-20)",
4.

(a)
1. int ospf_vty_dead_interval_set(...){
2.
3.+ re = seconds - event_timer_remain_second(oi->t_wait);
4.+ EVENT_OFF(oi->t_wait);
5.+ if (re > 0) OSPF_ISM_TIMER_ON(oi->t_wait,);
6.

(b)

Figure 13: Case studies of discovered bugs.

Bug Detection Capability. To answer RQ2, we use ToDiff to
detect bugs in OSPF and IS-IS implementations listed in Table 3.
As discussed before, the implementations are from high-quality
open-source projects and have been frequently checked by ma-
ture bug detection tools. Nonetheless, ToDiff can still detect 26
zero-day bugs listed in Table 4. Some of these bugs had even been
hidden in the implementations for over 20 years, showing the high
effectiveness of our approach. Meanwhile, many of the identified
bugs are security-critical and exploitable. For example, the bug
example discussed in Section 3 may redirect network traffic to the
wrong routers, causing black holes, data leaks, and other severe
consequences. As responsible researchers, we also upload patches
to fix detected bugs. As shown in Table 3, “PR merged” means the
patches have been merged into the code; “PR approved” means the
patches have been approved by the developers and are pending
merge; and “Confirmed” means developers confirm the validity of
a bug report but are still working on fixing the bug. The links to
these bug reports are publicly available at https://todiff.github.io/.

For bug detection, ToDiff achieves 100% precision, i.e., none
false positives are reported. This is attributed to the design that
compares router attributes that must be consistent across equiva-
lent topologies. Consequently, any observed discrepancy during
differential testing signals the presence of a bug.

As shown in Table 4, the handcrafted test suite and OSS-Fuzz
cannot detect any bugs we discover. On the one hand, the hand-
crafted test suite, albeit containing many test cases, cannot cover
many cases that we can randomly generate. On the other hand,
OSS-Fuzz fails to detect these bugs because it treats OSPF and IS-IS
as common communication protocols and, thus, does not provide a
special design to validate topology-related business logic in their
implementations. These limitations highlight the advantages of our
approach in effectively uncovering topology-related bugs.

As discussed in Section 1, although there are some automated
approach to testing routing protocol implementations [25, 34, 35,
56], they are either too old and outdated or not publicly available,
making them not directly comparable. As explained before, the key
weaknesses of these existing methods are that they heavily depend
on manual efforts to build testing oracles, whereas our approach
applies differential testing to achieve fully automated validation.

5.3 RQ3: Root Cause of Discovered Bugs

We analyzed the root causes of all the bugs we found (listed in
Table 4) and categorized them into two groups. We also provided
case studies and discussed the potential impacts of these bugs,
typically including network congestion and routing black holes.

Group 1: Incorrect Parsing of Commands (13/26). This type
of error occurs when a protocol implementation incorrectly parses
certain topological commands. These errors can cause the protocol
implementation to reject valid or accept invalid commands, lead-
ing to misinterpretation of topological commands and, ultimately,
incorrect network configurations. As illustrated below, suchmiscon-
figurations may lead to severe network problems like congestion.

Figure 13(a) shows a bug discovered by our tool in the OSPF
protocol, which has been hidden for over 20 years. The code defines
the command: ip ospf dead intervalminimal hello-multiplier <num>,
which is used to set the hello and dead timers of an interface. The
correct value of <num> should range from 2 to 20, but the buggy
code allows 1 to 20. In consequence, if a network administrator
uses the command to set the hello timer to 1 second (i.e., <num>
= 1), the dead timer is automatically set to 1/<num> = 1 second,
too. In this case, OSPF’s hello timer and dead timer are set to the
same value, causing OSPF to continuously restart the neighbor
establishment process and send related packets. This behavior can
result in network congestion along the affected path.

Group 2: Incorrect Action Logic for Routers (13/26). These
errors occur when a protocol implementation contains wrong logic
to set variables that control router states, timers, and so on. Such
errors can lead to incorrect protocol behavior, such as executing
unintended actions or sending malformed packets. These issues
can result in severe network problems like routing black holes. The
bug discussed in the motivating example belongs to this category.

Figure 13(b) shows the other bug in the OSPF implementations.
The code snippet handles the action logic for the command: ip ospf
dead interval <num>, which sets the wait timer and is responsible
for timing the transition from the waiting state to the connected
state during the connection among routers. If a topological pro-
gram uses a very large value for <num>, such as 1000, and then
sets it back to a reasonably small value, the buggy code (without
lines 3-5) fails to update the timer. As a result, the neighbor state
remains stuck in the waiting state, thus preventing two routers
from establishing neighbor relationships. This bug may result in
an incomplete network topology and cause routing black holes or
other potential network problems.

6 Related Work

Routing protocols differ from common (communication, manage-
ment, or security) protocols as routing protocols concern network
topologies. In contrast, the others focus on the communication
among multiple parties and regard the network topology between
two parties as black boxes. As discussed in Section 1, most existing
works, e.g., network protocol fuzzing [1, 29, 32, 37, 42, 44, 45] or
network differential analysis [15, 16, 61] are not designed for rout-
ing protocols and cannot detect errors happening at the time of
topology establishment. In what follows, we discuss related works
regarding the validation of routing protocols, but, in a word, to the
best of our knowledge, ToDiff is the first work that utilizes program
synthesis to enable differential testing for routing protocols.
Validating Routing Protocol Specifications. Unlike our work,
which assumes the protocol specification is correct and validates if
an implementation correctly follows the specification, many exist-
ing work does not validate the implementation of routing protocols

https://todiff.github.io/

CCS ’25, October 13–17, 2025, Taipei, Taiwan Bing Shui, Yufan Zhou, Jielun Wu, Baowen Xu, and Qingkai Shi

but their specifications. They create abstract models according to
the protocol specification and then perform model checking or
verification to check if certain properties may be violated in the
model [26, 33, 36, 55]. Wibling [55] leveraged linear temporal logic
to verify the correctness of connection establishment and message
broadcasting for the LUNAR protocol. Khayou and Sarakbi [26]
used abstract algebraic to model the EIGRP protocol [43], verifying
if its routing calculations converge and adhere to the shortest-path
distance constraints. Maag et al. [33] modeled the MANET pro-
tocol [46] using an extended finite state machines [28], thereby
verifying if the protocol correctly establishes network topology.
Maxa et al. [36] designed a secure protocol, SUAP, and analyzed its
security features via model checking. The techniques used in these
works are fundamentally different from our approach and outside
the scope of this paper because we aim to validate specific routing
protocol implementations instead of the specifications.

Validating Routing Protocol Implementations. Similar to our
work, there are many testing techniques checking if a routing pro-
tocol implementation follows the protocol’s specification. Using
handcrafted test suites [10, 11, 13] is the most straightforward way
to test a protocol’s implementation. However, these test suites face
coverage limitations and cannot thoroughly test protocol correct-
ness across diverse network topologies. Compared to handcrafted
test suites, our workmakes it possible to generate diverse topologies
with automated testing oracles to automate the testing procedure.

Automated methods can generate diverse test cases and can be
categorized as active or passive. Active methods [21–23, 25, 34, 35,
56] use models such as graphs or finite state machines to actively
generate test packets, which are then sent to the protocols’ imple-
mentations for evaluation. Hao et al. [21] propose a probabilistic
algorithm that randomly inserts connections into a network and
calculates the correct routing tables as an oracle. They then test
implementations using the generated networks and compare the
results with the oracle. This approach requires significant manual
effort to compute the testing oracle — the correct routing table
for each protocol. In contrast, our method applies differential test-
ing, which not only provides automated testing oracles but also
analyzes both intermediate router status and the final routing ta-
bles. Helmy et al. [22] and Kasemsuwan et al. [25] mutate a set
of prepared network topologies to generate additional test cases.
These methods generate relatively limited topologies and also suffer
from the testing oracle problem. In contrast, our approach is not
restricted by the prepared networks and the testing oracles. With a
random network generation algorithm and differential testing, our
approach can synthesize diverse topologies with automated testing
oracles, enabling broader test coverage. Maag and Zaidi [34], Malik
[35], Wu et al. [56] have to transform the implementation of rout-
ing protocols into an abstract model, which is often a complex and
error-prone process. Such abstraction is unnecessary for ToDiff,
thereby reducing analysis complexity and enhancing applicability.

Passive methods [30, 31, 50, 59, 60] do not actively generate
networks or routing protocol packets but record and analyze real-
world network traffic to detect bugs in routing protocol implemen-
tations. These passive approaches differ from ToDiff, which is an
active method, in the following aspects. First, we actively generate

diverse networks and, thus, enable more comprehensive test cov-
erage, whereas the passive approaches are restricted by observed
network traffic. Second, we actively synthesize equivalent topo-
logical programs to address the testing oracle problem, while the
passive approaches still rely on manual efforts to build testing ora-
cles. This manual process is both labor-intensive and error-prone,
restricting existing methods to a single protocol or a limited sub-
set of protocol functionalities. Our approach addresses the oracle
problem via differential analysis.

7 Conclusion

This work presents ToDiff, a differential testing technique to de-
tect hidden bugs within IGP implementations. ToDiff first gener-
ates random yet valid networks, applies a semantics-guided and
bounded program synthesizer to generate equivalent topological
programs, and differentiates outcome topologies. To date, ToDiff
has identified 26 bugs across common IGPs, all confirmed or fixed.

References

[1] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roychoudhury. 2022.
Stateful greybox fuzzing. In Proceedings of the 31st USENIX Security Symposium
(SEC ’22). USENIX Association, 3255–3272. https://www.usenix.org/conference/
usenixsecurity22/presentation/ba

[2] Davide Benetti, Massimo Merro, and Luca Viganò. 2010. Model Checking Ad Hoc
Network Routing Protocols: ARAN vs. endairA. In 2010 8th IEEE International
Conference on Software Engineering and Formal Methods (SEFM ’10). IEEE, 191–202.
doi:10.1109/SEFM.2010.24

[3] Sahana Bhosale and Ravindra Joshi. 2008. Conformance testing of OSPF protocol.
In 2008 IET International Conference on Wireless, Mobile and Multimedia Networks
(WoWMoM ’08). IET, 42–47. https://ieeexplore.ieee.org/document/4470071

[4] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’08). USENIX Association, 209–224. https://dl.acm.org/
doi/10.5555/1855741.1855756

[5] R. Callon. 1990. Use of OSI IS-IS for routing in TCP/IP and dual environments.
https://datatracker.ietf.org/doc/html/rfc1195.

[6] Chia Yuan Cho, Vijay D’Silva, and Dawn Song. 2013. BLITZ: compositional
bounded model checking for real-world programs. In 2013 28th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE ’13). IEEE, 136–146.
doi:10.1109/ASE.2013.6693074

[7] Cisco. 2016. IP Routing: OSPF Configuration Guide. https://www.cisco.com/c/en/
us/td/docs/ios-xml/ios/iproute_ospf/configuration/xe-16/iro-xe-16-book/iro-
cfg.html.

[8] Rogério Leão Santos de Oliveira, Christiane Marie Schweitzer, Ailton Akira
Shinoda, and Ligia Rodrigues Prete. 2014. Using Mininet for emulation and proto-
typing Software-Defined Networks. In 2014 IEEE Colombian Conference on Com-
munications and Computing (COLCOM ’14). IEEE, 1–6. doi:10.1109/ColComCon.
2014.6860404

[9] F. de Renesse and A.H. Aghvami. 2004. Formal verification of ad-hoc routing
protocols using SPIN model checker. In Proceedings of the 12th IEEE Mediter-
ranean Electrotechnical Conference (MELECON ’04). IEEE, 1177–1182. doi:10.1109/
MELCON.2004.1348275

[10] FRR Developers. 2024. FRR RFC/Compliance Test. https://github.com/FRRouting/
frr/wiki/RFC_Compliance_Results/OSPF_extended_results.pdf.

[11] FRR Developers. 2024. FRR Topotests. https://github.com/FRRouting/frr/tree/
master/tests/topotests.

[12] FRR Developers. 2024. FRRouting Project. https://frrouting.org/.
[13] Munet Developers. 2024. Munet. https://github.com/LabNConsulting/munet.
[14] Wesley Eddy. 2022. Transmission Control Protocol (TCP). https://datatracker.

ietf.org/doc/html/rfc9293.
[15] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and Alexandra Silva. 2021.

Prognosis: closed-box analysis of network protocol implementations. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21). ACM, 762–774.
doi:10.1145/3452296.3472938

[16] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. 2016. Combining
model learning andmodel checking to analyze TCP implementations. InComputer
Aided Verification: 28th International Conference (CAV ’16). 454–471. doi:10.1007/
978-3-319-41540-6_25

[17] GNU. 2025. GDB: The GNU Project Debugger. https://www.sourceware.org/gdb/.

https://www.usenix.org/conference/usenixsecurity22/presentation/ba
https://www.usenix.org/conference/usenixsecurity22/presentation/ba
https://doi.org/10.1109/SEFM.2010.24
https://ieeexplore.ieee.org/document/4470071
https://dl.acm.org/doi/10.5555/1855741.1855756
https://dl.acm.org/doi/10.5555/1855741.1855756
https://datatracker.ietf.org/doc/html/rfc1195
https://doi.org/10.1109/ASE.2013.6693074
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_ospf/configuration/xe-16/iro-xe-16-book/iro-cfg.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_ospf/configuration/xe-16/iro-xe-16-book/iro-cfg.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_ospf/configuration/xe-16/iro-xe-16-book/iro-cfg.html
https://doi.org/10.1109/ColComCon.2014.6860404
https://doi.org/10.1109/ColComCon.2014.6860404
https://doi.org/10.1109/MELCON.2004.1348275
https://doi.org/10.1109/MELCON.2004.1348275
https://github.com/FRRouting/frr/wiki/RFC_Compliance_Results/OSPF_extended_results.pdf
https://github.com/FRRouting/frr/wiki/RFC_Compliance_Results/OSPF_extended_results.pdf
https://github.com/FRRouting/frr/tree/master/tests/topotests
https://github.com/FRRouting/frr/tree/master/tests/topotests
https://frrouting.org/
https://github.com/LabNConsulting/munet
https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc9293
https://doi.org/10.1145/3452296.3472938
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://www.sourceware.org/gdb/

Validating Interior Gateway Routing Protocols via Equivalent Topology Synthesis CCS ’25, October 13–17, 2025, Taipei, Taiwan

[18] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: whitebox
fuzzing for security testing. Queue 10, 1 (2012), 20–27. doi:10.1145/2090147.
2094081

[19] Google. 2025. OSS-Fuzz. https://google.github.io/oss-fuzz/.
[20] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos.

2013. Dowsing for overflows: a guided fuzzer to find buffer boundary violations.
In Proceedings of the 22nd USENIX Conference on Security (SEC’13). USENIX
Association, 49–64. https://dl.acm.org/doi/10.5555/2534766.2534772

[21] Ruibing Hao, David Lee, Rakesh K. Sinha, and Dario Vlah. 2000. Testing IP
routing protocols — from probabilistic algorithms to a software tool. In Formal
Methods for Distributed System Development Joint International Conference on For-
mal Description Techniques for Distributed Systems and Communication Protocols
(FORTE/PSTV ’00). Springer US, 249–264. doi:10.1007/978-0-387-35533-7_16

[22] A. Helmy and D. Estrin. 1998. Simulation-based ’STRESS’ testing case study:
a multicast routing protocol. In Proceedings. Sixth International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS ’98). IEEE, 36–43. doi:10.1109/MASCOT.1998.693672

[23] Ahmed Helmy, Deborah Estrin, and Sandeep K. S. Gupta. 1998. Fault-oriented
test generation for multicast routing protocol design. In Proceedings of the FIP
TC6 WG6.1 Joint International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols and Protocol Specifica-
tion, Testing and Verification (FORTE XI / PSTV XVIII ’98). Kluwer, B.V., 93–109.
doi:10.1007/978-0-387-35394-4_6

[24] Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang. 2020.
Pangolin: incremental hybrid fuzzing with polyhedral path abstraction. In 2020
IEEE Symposium on Security and Privacy (SP ’20). IEEE, 1613–1627. doi:10.1109/
SP40000.2020.00063

[25] Poonyavee Kasemsuwan and Vasaka Visoottiviseth. 2017. OSV: OSPF vulnerabil-
ity checking tool. In 2017 14th International Joint Conference on Computer Science
and Software Engineering (JCSSE ’17). IEEE, 1–6. doi:10.1109/JCSSE.2017.8025919

[26] Hussein Khayou and Bakr Sarakbi. 2017. A validation model for non-lexical
routing protocols. J. Netw. Comput. Appl. 98, C (2017), 58–64. doi:10.1016/j.jnca.
2017.09.006

[27] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the 9th ACM
SIGCOMMWorkshop on Hot Topics in Networks (HotNets ’24). ACM, 1–6. doi:10.
1145/1868447.1868466

[28] D. Lee and M. Yannakakis. 1996. Principles and methods of testing finite state
machines – a survey. Proc. IEEE 84, 8 (1996), 1090–1123. doi:10.1109/5.533956

[29] Junqiang Li, Senyi Li, Gang Sun, Ting Chen, and Hongfang Yu. 2022. SNPSFuzzer:
A fast greybox fuzzer for stateful network protocols using snapshots. IEEE
Transactions on Information Forensics and Security 17 (2022), 2673–2687. doi:10.
1109/TIFS.2022.3192991

[30] J. Liu, Yougu Yuan, D.M. Nicol, R.S. Gray, C.C. Newport, D. Kotz, and L.F. Perrone.
2004. Simulation validation using direct execution of wireless ad-hoc routing
protocols. In 18th Workshop on Parallel and Distributed Simulation (PADS ’04).
IEEE, 7–16. doi:10.1109/PADS.2004.1301280

[31] Jason Liu, Yougu Yuan, David M Nicol, Robert S Gray, Calvin C Newport, David
Kotz, and Luiz Felipe Perrone. 2005. Empirical validation of wireless models
in simulations of ad hoc routing protocols. Simulation 81, 4 (2005), 307–323.
doi:10.1177/0037549705055017

[32] Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang, Ting Chen,
Abhik Roychoudhury, and Jiaguang Sun. 2023. Bleem: packet sequence oriented
fuzzing for protocol implementations. In 32nd USENIX Security Symposium (SEC
’23). USENIX Association, 4481–4498. https://dl.acm.org/doi/10.5555/3620237.
3620488

[33] Stephane Maag, Cyril Grepet, and Ana Cavalli. 2008. A formal validation method-
ology for MANET routing protocols based on nodes’ self similarity. Comput.
Commun. 31, 4 (2008), 827–841. doi:10.1016/j.comcom.2007.10.031

[34] Stéphane Maag and Fatiha Zaidi. 2006. Testing methodology for an ad hoc
routing protocol. In Proceedings of the ACM InternationalWorkshop on Performance
Monitoring, Measurement, and Evaluation of Heterogeneous Wireless and Wired
Networks (PM2HW2N ’06). ACM, 48–55. doi:10.1145/1163653.1163663

[35] Saif Ur Rehman Malik. 2014. Using formal methods to validate the usage, protocols,
and feasibility in large scale computing systems. Ph. D. Dissertation. North Dakota
State University. https://core.ac.uk/download/pdf/211302484.pdf#page=123

[36] Jean-Aimé Maxa, Mohamed Slim Ben Mahmoud, and Nicolas Larrieu. 2016. Ex-
tended verification of secure UAANET routing protocol. In 2016 IEEE/AIAA 35th
Digital Avionics Systems Conference (DASC ’16). IEEE, 1–16. doi:10.1109/DASC.
2016.7777970

[37] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.
Large language model guided protocol fuzzing. In Proceedings of the 31st Annual
Network and Distributed System Security Symposium (NDSS ’24). IEEE. doi:10.
14722/ndss.2024.24556

[38] John Moy. 1998. OSPF Version 2. https://datatracker.ietf.org/doc/html/rfc2328.
[39] Madanlal Musuvathi and Dawson R. Engler. 2004. Model checking large network

protocol implementations. In Proceedings of the 1st Conference on Symposium

on Networked Systems Design and Implementation - Volume 1 (NSDI’04). USENIX
Association, 12. https://dl.acm.org/doi/10.5555/1251175.1251187

[40] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and
David L. Dill. 2003. CMC: a pragmatic approach to model checking real code.
SIGOPS Oper. Syst. Rev. 36, SI (2003), 75–88. doi:10.1145/844128.844136

[41] Ameet Naik. 2018. Anatomy of a BGP Hijack on Amazon’s Route 53 DNS Service.
https://www.thousandeyes.com/blog/amazon-route-53-dns-and-bgp-hijack.

[42] Roberto Natella. 2022. Stateafl: greybox fuzzing for stateful network servers.
Empirical Software Engineering 27, 7 (2022), 191. doi:10.1007/s10664-022-10233-3

[43] Ivan Pepelnjak. 1999. EIGRP network design solutions. Cisco press. https:
//dl.acm.org/doi/10.5555/519477

[44] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNET: A
greybox fuzzer for network protocols. In 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST ’20). IEEE, 460–465. doi:10.
1109/ICST46399.2020.00062

[45] Shisong Qin, Fan Hu, Zheyu Ma, Bodong Zhao, Tingting Yin, and Chao Zhang.
2023. Nsfuzz: towards efficient and state-aware network service fuzzing. ACM
Transactions on Software Engineering and Methodology 32, 6 (2023), 1–26. doi:10.
1145/3580598

[46] E.M. Royer and Chai-Keong Toh. 1999. A review of current routing protocols
for ad hoc mobile wireless networks. IEEE Personal Communications 6, 2 (1999),
46–55. doi:10.1109/98.760423

[47] Qingkai Shi, Junyang Shao, Yapeng Ye, Mingwei Zheng, and Xiangyu Zhang.
2023. Lifting network protocol implementation to precise format specification
with security applications. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’23). ACM, 1287–1301. doi:10.1145/
3576915.3616614

[48] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.
2018. Pinpoint: fast and precise sparse value flow analysis for million lines
of code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18). ACM, 693–706. doi:10.1145/
3192366.3192418

[49] Qingkai Shi, Xiangzhe Xu, and Xiangyu Zhang. 2023. Extracting protocol format
as state machine via controlled static loop analysis. In Proceedings of the 32nd
USENIX Conference on Security Symposium (SEC ’23). USENIX Association, 7019–
7036. doi:10.5555/3620237.3620630

[50] Hasan Ural, Zhi Xu, and Fan Zhang. 2007. An improved approach to passive
testing of FSM-based systems. In Second International Workshop on Automation
of Software Test (AST ’07). IEEE, 6–6. doi:10.1109/AST.2007.1

[51] Nalin Wadhwa, Jui Pradhan, Atharv Sonwane, Surya Prakash Sahu, Nagarajan
Natarajan, Aditya Kanade, Suresh Parthasarathy, and Sriram Rajamani. 2024.
CORE: Resolving Code Quality Issues using LLMs. Proc. ACM Softw. Eng. 1, 36
(2024), 789 – 811. doi:10.1145/3643762

[52] Chengpeng Wang, Wenyang Wang, Peisen Yao, Qingkai Shi, Jinguo Zhou, Xiao
Xiao, and Charles Zhang. 2023. Anchor: Fast and Precise Value-flow Analysis
for Containers via Memory Orientation. ACM Trans. Softw. Eng. Methodol. 32, 3
(2023), 1–39. doi:10.1145/3565800

[53] Chengpeng Wang, Wuqi Zhang, Zian Su, Xiangzhe Xu, Xiaoheng Xie, and Xi-
angyu Zhang. 2024. LLMDFA: Analyzing Dataflow in Code with Large Language
Models. In Advances in Neural Information Processing Systems (NEURIPS ’24).
Curran Associates, Inc., 131545–131574.

[54] Mark Weiser. 1984. Program slicing. IEEE Transactions on Software Engineering
10, 4 (1984), 352–357. doi:10.1109/TSE.1984.5010248

[55] Oskar Wibling. 2005. Ad hoc routing protocol validation. Ph. D. Disserta-
tion. Uppsala University. https://uu.diva-portal.org/smash/get/diva2:117170/
FULLTEXT01.pdf

[56] Jianping Wu, Zhongjie Li, and Xia Yin. 2003. Towards modeling and testing of
IP routing protocols. In Proceedings of the 15th IFIP International Conference on
Testing of Communicating Systems (TestCom’03). Springer-Verlag, 49–62. https:
//dl.acm.org/doi/10.5555/1764575.1764582

[57] YichenXie andAlexAiken. 2005. Scalable error detection using boolean satisfiabil-
ity. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’05). ACM, 351–363. doi:10.1145/1040305.1040334

[58] Carter Yagemann, Simon P. Chung, Brendan Saltaformaggio, and Wenke Lee.
2021. Automated bug hunting with data-driven symbolic root cause analysis. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’21). ACM, 320–336. doi:10.1145/3460120.3485363

[59] Yixin Zhao, Jianping Ju, and Yin Xia. 2002. From active to passive—progress in
testing Internet routing protocols. Journal of Computer Science and Technology
17, 3 (2002), 264–283. doi:10.1007/0-306-47003-9_7

[60] Yixin Zhao, Xia Yin, and Jianping Wu. 2001. Online Test System, an application
of passive testing in routing protocols test. In Proceedings of 9th International
Conference on Networks (ICON’01). IEEE, 190–195. doi:10.1109/ICON.2001.962339

[61] Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu, Le Yu, Congyu Liu,
Guannan Wei, and Xiangyu Zhang. 2024. ParDiff: practical static differential
analysis of network protocol parsers. Proc. ACM Program. Lang. 8, OOPSLA1
(2024), 1208 – 1234. doi:10.1145/3649854

https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/2090147.2094081
https://google.github.io/oss-fuzz/
https://dl.acm.org/doi/10.5555/2534766.2534772
https://doi.org/10.1007/978-0-387-35533-7_16
https://doi.org/10.1109/MASCOT.1998.693672
https://doi.org/10.1007/978-0-387-35394-4_6
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1109/JCSSE.2017.8025919
https://doi.org/10.1016/j.jnca.2017.09.006
https://doi.org/10.1016/j.jnca.2017.09.006
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/5.533956
https://doi.org/10.1109/TIFS.2022.3192991
https://doi.org/10.1109/TIFS.2022.3192991
https://doi.org/10.1109/PADS.2004.1301280
https://doi.org/10.1177/0037549705055017
https://dl.acm.org/doi/10.5555/3620237.3620488
https://dl.acm.org/doi/10.5555/3620237.3620488
https://doi.org/10.1016/j.comcom.2007.10.031
https://doi.org/10.1145/1163653.1163663
https://core.ac.uk/download/pdf/211302484.pdf#page=123
https://doi.org/10.1109/DASC.2016.7777970
https://doi.org/10.1109/DASC.2016.7777970
https://doi.org/10.14722/ndss.2024.24556
https://doi.org/10.14722/ndss.2024.24556
https://datatracker.ietf.org/doc/html/rfc2328
https://dl.acm.org/doi/10.5555/1251175.1251187
https://doi.org/10.1145/844128.844136
https://www.thousandeyes.com/blog/amazon-route-53-dns-and-bgp-hijack
https://doi.org/10.1007/s10664-022-10233-3
https://dl.acm.org/doi/10.5555/519477
https://dl.acm.org/doi/10.5555/519477
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1145/3580598
https://doi.org/10.1145/3580598
https://doi.org/10.1109/98.760423
https://doi.org/10.1145/3576915.3616614
https://doi.org/10.1145/3576915.3616614
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.5555/3620237.3620630
https://doi.org/10.1109/AST.2007.1
https://doi.org/10.1145/3643762
https://doi.org/10.1145/3565800
https://doi.org/10.1109/TSE.1984.5010248
https://uu.diva-portal.org/smash/get/diva2:117170/FULLTEXT01.pdf
https://uu.diva-portal.org/smash/get/diva2:117170/FULLTEXT01.pdf
https://dl.acm.org/doi/10.5555/1764575.1764582
https://dl.acm.org/doi/10.5555/1764575.1764582
https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1145/3460120.3485363
https://doi.org/10.1007/0-306-47003-9_7
https://doi.org/10.1109/ICON.2001.962339
https://doi.org/10.1145/3649854

	Abstract
	1 Introduction
	2 Preliminaries
	3 Motivation and Overview
	3.1 Motivation
	3.2 ToDiff in a Nutshell

	4 Design: OSPF as an Example
	4.1 Step 1: Network Generation
	4.2 Step 2: Topological Program Synthesis
	4.3 Step 3: Differential Analysis
	4.4 Discussion

	5 Evaluation
	5.1 RQ1: Efficiency of ToDiff
	5.2 RQ2: Effectiveness of ToDiff
	5.3 RQ3: Root Cause of Discovered Bugs

	6 Related Work
	7 Conclusion
	References

