
Functional Code Clone Detection with Syntax and Semantics
Fusion Learning

Chunrong Fang∗
State Key Laboratory for Novel

Software Technology
Nanjing University

China
fangchunrong@nju.edu.cn

Zixi Liu
State Key Laboratory for Novel

Software Technology
Nanjing University

China
lzxcici@qq.com

Yangyang Shi
State Key Laboratory for Novel

Software Technology
Nanjing University

China
doublesea.shi@qq.com

Jeff Huang
Parasol Laboratory

Texas A&M University
USA

jeffhuang@tamu.edu

Qingkai Shi
The Hong Kong University of Science

and Technology
China

qshiaa@cse.ust.hk

ABSTRACT
Clone detection of source code is among the most fundamental
software engineering techniques. Despite intensive research in the
past decade, existing techniques are still unsatisfactory in detecting
"functional" code clones. In particular, existing techniques cannot
efficiently extract syntax and semantics information from source
code. In this paper, we propose a novel joint code representation
that applies fusion embedding techniques to learn hidden syntactic
and semantic features of source codes. Besides, we introduce a
new granularity for functional code clone detection. Our approach
regards the connected methods with caller-callee relationships as a
functionality and the method without any caller-callee relationship
with other methods represents a single functionality. Then we train
a supervised deep learning model to detect functional code clones.
We conduct evaluations on a large dataset of C++ programs and
the experimental results show that fusion learning can significantly
outperform the state-of-the-art techniques in detecting functional
code clones.

CCS CONCEPTS
• Software and its engineering → Functionality; Maintaining
software;

KEYWORDS
Code clone detection, functional clone detection, code representa-
tion, syntax and semantics fusion learning

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397362

ACM Reference Format:
Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020.
Functional Code Clone Detection with Syntax and Semantics Fusion Learn-
ing. In Proceedings of the 29th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA ’20), July 18–22, 2020, Los Angeles, CA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3395363.3397362

1 INTRODUCTION
Code clone detection is fundamental in many software engineering
tasks, such as refactoring [2, 4, 20, 33, 34], code searching [1, 24, 26],
reusing [6, 12], and bug detection [10, 17]. If a defect is identified
in a code snippet, all the cloned code snippets need to be checked
for the same defect. As a result, code clones can lead to error prop-
agation, which can severely affect maintenance costs. Thus, code
clone detection is substantial in software engineering, and has been
widely studied.

Code clone can be divided into four types according to differ-
ent similarity levels [3]. Type-1 (Exactly same code snippets): two
identical code snippets except for spaces, blanks, and comments.
Type-2 (Rename/parameterize code): same code snippets except
for the variable name, type name, literal name, and function name.
Type-3 (Almost identical code snippets): two similar code snippets
except for several statements added or deleted. Type-4 (Functional
clones): heterogeneous code snippets that share the same function-
ality but have different code structures or syntax. Type-1, Type-2,
and Type-3 code clones are well detected by many existing ap-
proaches [28]. However, there are still some unresolved issues on
detecting Type-4 code clones [28]. The Type-4 code clone detection
is the most complicated process because the syntax and seman-
tics of source code are flexible. Detecting functional code clones
is challenging because the code representations not only need to
represent the syntax of source code, but also need to reflect the
structure and relationship between code snippets. In order to detect
the functional code clones effectively, many approaches try to use
syntax-based or semantics-based information to represent source
code.

One of the commonly-used syntax-based code representations
is AST(Abstract Syntax Tree), which can represent the syntax of
each statement. In some cases, code snippets with different syntax

https://doi.org/10.1145/3395363.3397362
https://doi.org/10.1145/3395363.3397362

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi

can implement the same functionality, which can be regarded as
functional clones. For example, the statement "i = i + 1" and "i += 1"
are not identical if we calculate the text-similarity directly. However,
these two statements share the sameAST. Typical approaches [9, 27]
use a syntax parser to parse source code into a syntax tree.

Another commonly-used semantics-based code representation
is PDG (Program Dependence Graph). PDG is a graph notation
that contains both data dependence and control dependence. PDG
can divide code snippets into basic code blocks and characterize
their structures. The same functional code snippets with different
structures can be detected as clones. For example, the loop struc-
ture for and while have different AST but their PDGs are identical.
Typical approaches include Duplix [15] and GPLAG [18] which
detect clones by comparing the isomorphic graphs of code pairs.

However, both syntax-based and semantics-based approaches
have their limitations. On the one hand, although AST can represent
the abstract syntax of source code, it is not able to capture the
control flow between statements. On the other hand, each node
in PDG is a basic code block (i.e., a statement at least), which is
too coarse [36] compared with AST. The improper granularity may
lead to a lack of details inside code blocks. For example, for the
statement "int a = b + c", the AST nodes are int, =, +, a, b, c. However,
this overall statement is stated in a node of PDG. Besides, the PDG
for complex codes can be extremely complicated, and computing
graph isomorphism is not scalable [18].

Moreover, AST is commonly used to represent a method, while
PDG is used to represent an overall file. Thus, most existing ap-
proaches compare code similarity at the granularity of a single
method or a single file [30, 38]. A functionality may consist of
multiple methods. In other words, a single method may not ex-
press the complete implication of a functionality. Meanwhile, a file
may contain several unrelated functionalities. Consequently, these
granularity levels may not be the best choice for functional clone
detection.

To overcome the limitations mentioned above, we use the call
graph to combine related methods, so the granularity is flexible, and
it depends on the granularity of real functionality. Additionally, we
use CFG (Control Flow Graph) to represent the code structure in-
stead of the more complicated PDG. CFG can capture the same con-
trol dependence as PDG, and it can overcome the time-consuming
obstacle. Each method can be generated into an AST and CFG. As
the representations of AST and CFG have different structures, they
cannot be fused directly. Therefore, we apply embedding learning
techniques [7] to generate fixed-length continuous-valued vectors.
These vectors are linearly structured, and thus the syntactic and se-
mantic information can be fused effectively. Note that these vectors
are particularly suitable for deep learning models.

In this paper, we propose a novel approach to detect functional
code clones through syntax and semantics fusion learning. Particu-
larly, we analyze the method call relationship before extracting the
syntactic and semantic features. Our basic idea is to identify the
similar functionality of different code snippets by analyzing the call
graph and combine the syntactic and semantic features based on
AST and CFG by embedding techniques [7]. We use AST and CFG
to represent the syntactic and semantic features, respectively. With
such features, we further train a DNN model to detect functional
code clones. We evaluated our approach on a large functional clone

dataset OJClone [22] for C/C++ programs, which contains 104 pro-
gramming tasks, and each task has 500 source codes submitted by
different students. The different source code files for the same task
can be regarded as functional clones. The experimental results show
that our approach outperforms the state-of-art techniques with F1
value 0.96, including DECKARD [9], SourcererCC [30], CDLH [38],
DeepSim [42], and ASTNN [41].

In summary, the main contributions of this paper are as follows.
(1) We propose a fine-grained granularity of source code for

functionality identification. We regard the methods with caller-
callee relationships as the implementation of a functionality. To the
best of our knowledge, our approach first consider call graph in
functional code clone detection.

(2) We propose a novel code joint representation with embed-
ding learning of both syntactic and semantic features. With the
combination of syntactic and semantic information, functional code
clones can be detected precisely.

(3) We present the design and implementation of the proposed
approach for C++ programs. Our extensive evaluation on a large
real-world dataset shows a promising result on functional code
clone detection. We release all the data used in our studies.1 In
particular, we include all the source codes, datasets, code represen-
tations, embedding features, and analysis results.

The remainder of this paper is organized as follows. Section 2 in-
troduces the background and motivation of our approach. Section 3
illustrates our approach in detail. Section 4 shows our experimental
evaluation on a large dataset. Section 5 represents the related work
of clone detection. Finally, Section 6 concludes this paper.

2 BACKGROUND AND MOTIVATION
A typical code clone detection approach usually follows three steps.
(1) Code pre-processing: remove irrelevant content in source
codes, such as comments; (2) code representation: extract differ-
ent kinds of abstractions in source codes, such as AST (Abstract
Syntax Tree) [40] and PDG (Program Dependence Graph) [15]; (3)
code similarity comparison: calculate the distance between two
source codes. Code clone is detected when this distance reaches a
threshold.

Since the code representation can have a crucial efftect on func-
tional code clone detection, we mainly introduce the background of
syntactic representation AST (Section 2.1) and semantic represen-
tation CFG (Section 2.2). These tree and graph structures cannot be
used for networks directly, and we briefly discuss the background
of word embedding (Section 2.3) and graph embedding (Section
2.4). The embedding techniques can be used to transform these tree
and graph structures into feature vectors.

2.1 Abstract Syntax Tree
Abstract Syntax Tree (AST) is a tree representation of the abstract
syntactic structure of source code written in a programming lan-
guage. 2 This tree defines the structure of source codes. By ma-
nipulating this tree, researchers can precisely locate declaration
statements, assignment statements, operation statements, etc., and

1It is publicly available at: https://github.com/shiyy123/FCDetector
2https://en.wikipedia.org/wiki/Abstract_syntax_tree

https://github.com/shiyy123/FCDetector
https://en.wikipedia.org/wiki/Abstract_syntax_tree

Functional Code Clone Detection with Syntax and Semantics Fusion Learning ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA

(a) CodeSample1 (b) CodeSample2 (c) CFGs of method A, B, and C. The CFG combining method B and C is equivalent
to that of A.

Figure 1: Using call graph to identify the functionality

realize operations such as analyzing, optimizing and changing the
codes.

Some studies use AST in token-based approaches for source code
clone detection [9], program translation [19], and automated pro-
gram repair [39]. Due to the limitation of token-based approaches
[28], these approaches can capture little syntactic information of
source code.

2.2 Control Flow Graph
Control Flow Graph (CFG) is a representation, using graph notation,
of which all paths that might be traversed through a program during
its execution. 3 In each CFG, there is a basic block containing several
code statements. CFG can easily encapsulate the information per
each basic block. It can easily locate inaccessible codes of a program,
and syntactic structures such as loops are easy to detect in a control
flow graph.

2.3 Word Embedding
Word embedding is a collective term for language models and repre-
sentation learning techniques in natural language processing (NLP).
Conceptually, it refers to embedding a high-dimensional space with
the number of all words into a continuous vector space with a much
lower dimension, and each word or phrase is mapped into a vector
on the real number field.

Since the source code and natural language are similar in some
ways, many approaches try to use word embedding techniques to
process the source code. In our approach, we first traverse each
node of AST in preorder and then use word embedding techniques
to transform AST into vectors.

2.4 Graph Embedding
Graphs, such as social networks, flow graphs, and communication
networks, exist widely in various real-world applications. Real
graphs are often high-dimensional and difficult to process. Re-
searchers have designed graph embedding algorithms as part of the

3https://en.wikipedia.org/wiki/Control-flow_graph

dimension reduction technique. Most existing graph embedding
techniques aim to transform each node of the graph into a vector.
Graph algorithms can be used in different graph tasks, such as
graph classification, link prediction, and graph visualization.

Since the CFG is a typical graph, some existing approaches try to
use graph embedding techniques for code representation. For exam-
ple, Tufano et al. [35] uses a kind of graph embedding techniques
to represent the semantic features. In our approach, we compare
several graph embedding techniques and choose the most effective
technique for CFG representation.

2.5 Motivating Example
To detect functional code clones, we first extract the call graph and
analyze the functionality of each file. We regard the methods with
caller-callee relationships as a functionality. The method without
any caller-callee relationship with other methods can be regarded
as a self-contained functionality.

For the two source code files shown in Figure 1(a) and 1(b), a
method A in CodeSample1 implements a simple calculation func-
tionality. In CodeSample2, a method C calls a method B, and their
combination implements the same functionality as the method A.
As shown in Figure 1(c), if we detect code clones inmethod granular-
ity, we can see that the CFGs of method A, B, andC are structurally
different. However, after we combine method B and C according to
the call graph, we can find the control flow of the combination is
equivalent to method A. Therefore, after considering the call graph
between methods, we can conclude that method A inCodeSample1
and the combination of method B and C in CodeSample2 are func-
tional clones. If we only detect the functionality at method level,
the result will be misleading. Besides, it is also inappropriate to
detect functional clones in file granularity. Please note that there
is a method D in CodeSample1, which is irrelevant to the method
A, and it is unreasonable to put them together directly. Thus, it is
more suitable to extract the call graph and identify the functionality
before capturing code features.

After determining the functionalities of each file, we detect func-
tional code clones by analyzing the AST and CFG. CFG can reflect

https://en.wikipedia.org/wiki/Control-flow_graph

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi

Figure 2: AST and CFG for Sample1 and Sample2

the structure of statements and show the control flow, which is
shown in Figure 1(c). The control flow is abstract, and we cannot
clearly identify the differences between nodes in CFG. Thus, we
detect code clones with syntax and semantics fusion learning. We
can capture the syntax by analyzing AST. For instance, if the symbol
"+=" in the for loop is changed into "*=" in method A, the function-
ality is entirely changed. However, since the CFG structure is not
changed, it will lead to a false positive result if an approach only
takes CFG into consideration. The difference between these two
code snippets lies inside the AST of two loop bodies, as shown in
Figure 2. Therefore, it is of necessity to consider both syntax and
semantics for functional code clone detection.

Moreover, some kinds of code structures can achieve the same
functionality, but the AST structures are completely different. For
example, both of the for loop and recursive structure can calculate the
factorial of a given input. The ASTs of these two code structures are
completely different. However, the inter-procedural control-flow
graphs of the two code snippets are very similar, both of which
contain a loop. Since our approach not only analyzes the AST, but
also utilizes inter-procedural information (such as the call graph),
our approach is effective at detecting such inter-procedural code
clones.

3 APPROACH
As illustrated in Figure 3, our proposed approach consists of the
following three components.

(1)Identify the functionalitywith call graph. To identify the
functionality in each source code file, we extract the call graph to an-
alyze the caller-callee relationships among methods. The methods
with caller-callee relationships are combined together as a func-
tionality. The method without any caller-callee relationship with
other methods is regarded as a self-contained functionality.

(2) Extract syntactic and semantic representations. In or-
der to capture the code features, we need to extract the AST and

CFG to represent syntax and semantics. First, we extract the AST
and CFG of each method. Then, we combine the AST and CFG of re-
lated methods according to the call graph. The combined AST/CFG
represents a separate functionality. Finally, we use embedding tech-
niques to encode AST and CFG into syntactic and semantic feature
vectors.

(3) Train a DNN model. To transform the functional clone
detection into binary classification, we train a DNN(Deep Neural
Network) classifier model with labeled data. When encountered
two new functions, we extract and fuse feature vectors and use the
trained model to predict whether they are code clones or not.

3.1 Identifying the Functionality with Call
Graph

We extract the call graph to identify the functionality in each source
code file. The call graph represents calling relationships between
methods in a program. Each node represents a method, and each
edge (f ,д) indicates that the method f calls method д. For the input
source code files, all statements in them are marked with a globally
unique id, which can be regarded as an identifier. The caller-callee
relationship is expressed in the form of a triple

⟨callerId, statementId, calleeId⟩.
callerId and calleeId are the statement id of the corresponding

method, and statementId is the id of call statement. For example, in
Figure 1(b), the method C calls the method B. Therefore, the caller
statement is int C() in line 10, the call statement is c = B(a, b, flag);
in line 14, and the callee statement is int B(int a, int b, bool flag) in
line 1. According to the call graph expression, we can obtain the
connected methods as a functionality.

To illustrate the caller-callee relationships, we list six call graph
cases, as shown in Figure 4. These six cases of static call graph are
the most commonly used call graph. Our approach includes but is
not limited to these six caller-callee relationships. The caller-callee
relationships of methods are explained below. In case (1), there is a
functionality that includes method A; in case (2), method A has a
recursive call for itself, and there is also a functionality that includes
a single method A; in case (3), there exists method A calls method
B, and this case has a functionality that includes method A and B;
in case (4), method A and method B call each other, and there is a
functionality that includes method A and B; in case (5), method A
calls method B and method A calls method C , but there is also only
one functionality, and the functionality includes method A, B, and
C ; in case (6), method B calls method A and methodC calls method
A. There are two functionalities, one including methods {A,B} and
another including methods {A,C}.

3.2 Extracting Syntactic and Semantic
Representations

3.2.1 AST representation. Suppose that C is a code snippet C and
Nroot is its corresponding AST entry node. To extract the syntactic
representation ofC , we start from Nroot and iterate through all the
nodes of AST in preorder. In each AST node, there is an identifier,
such as the symbols and variable names. The identifier sequence

Seq = {ident1, ident2, . . . , identn }
generated in this process can be used to represent the syntactic

information of C .

Functional Code Clone Detection with Syntax and Semantics Fusion Learning ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA

Figure 3: The architecture of our approach

Figure 4: Six kinds of caller-callee relationships among
methods

The naming of variables may vary greatly in different programs.
Thus variable names can have an effect on functional clone de-
tection. Given an identifier sequence Seq, we first normalize it by
replacing constant values and variables by its type: ⟨int⟩, ⟨double⟩,
⟨char ⟩ and ⟨strinд⟩, and add a global self-increasing number, like
⟨int1⟩. When encountered a decimal, no matter it is a ⟨f loat⟩ or
⟨double⟩, we unify them as ⟨double⟩.

We first extract the AST of each method and obtain the cor-
responding identifier sequence Seq. Then according to the caller-
callee relationships extracted by call graph stated in Section 3.1, we
put the AST of each connected method together as a set of AST.
Finally, for the methods with connections, we use the set of their
AST to represent the syntax of the functionality. Similarly, for the
methodwithout caller-callee relationship, we use the corresponding
AST to represent the syntax of the functionality.

3.2.2 CFG representation. Compared to AST, CFG captures more
comprehensive semantic information such as branch and loop. Al-
though CFG also contains syntactic information at the level of basic

blocks, its representation is too coarse for detecting functional
clones compared to the syntactic information extracted from AST
at identifier-level granularity. Thus we focus on extracting semantic
information from CFG.

Given a code snippet C , we extract its CFG G = (V ,E) for each
method, where V is a set of vertexes and E is a set of edges. Each
vertex contains a statement of source codes, and the edges indicate
the control flow of statements.

We first extract the CFG of each method and get the correspond-
ing graph G. Then according to the call graph stated in Section
3.1, we connect the CFGs and generate a larger CFG to represent a
functionality. The specific connection rules are presented as follows.
In case (1), the CFG of a functionality is identical to the CFG of the
method; in case (2), the CFG of a functionality is also identical to
the CFG of the method, and an edge is added from caller statement
to the entry node of the method; in case (3), first we need to add the
CFG of method A and B, then we obtain the parent nodes list and
the child nodes list of the functionality call statement in method
A, and then all the nodes are pointed to the entry node in method
B, and all the child nodes point to the exit node in method B; case
(4), (5) are similar to case (3), and the edges related to another func-
tion call statement are modified, additionally; in case (6), there are
two functionalities, so we need to process these two functionalities
respectively.

3.2.3 Embedding syntactic feature of functionality. Each method
in source code is now represented as a sequence of identifiers. We
then use Word2vec [21], a word embedding technique, to encode
syntactic features. Word embedding is a general term of language
model and embeds high-dimensional space words into amuch lower
dimensional continuous vector space, where each word is mapped
to a vector in the real number field.

As shown in Figure 5, in order to encode the syntactic features
of each method, the normalized identifier sequence Seq for each
method are put together as the corpus. Word2vec uses the corpus as
the input of training model, and output a set of fixed-length vectors
to represent each AST node. To get a syntactic feature vector of each

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi

Figure 5: Syntactic feature embedding

method, we applies average pooling to all the vectors of identifiers
in each method. After this step, the syntactic information of each
method is represented as a fixed-length feature vector

mv = averaдe(hi), i = 1, . . . ,N
Where hi is the feature vector of each identifier.
For each functionality (i.e., the connected methods), we then

apply average pooling on all the methods to produce the corre-
sponding syntactic feature. The syntactic information of each func-
tionality is represented as a fixed-length feature vector

f v = averaдe(mvi), i = 1, . . . ,N
Wheremvi is the syntactic feature vector of each method.

3.2.4 Embedding semantic feature of functionality. We use graph
embedding techniques to encode the CFG. Graph embedding is to
use a low dimensional and dense vector to represent every node in
the graph. The vector representation can reflect the structure in the
graph. In essence, the more adjacent nodes the two nodes share (i.e.,
the more similar the contexts of the two nodes are), the closer the
corresponding vectors of two nodes are. After graph embedding,
each method is represented as a fixed-length feature vector. There
are many graph embedding techniques, e.g. Graph2vec [23] , HOPE
[25], SDNE [37], and Node2vec [5].

Different from other graph embedding techniques, Graph2vec
can generate a vector to reflect the feature of an overall graph. How-
ever, other techniques mentioned above can only generate a vector
for each node in the graph, and the feature vector of the overall
graph is the average value of all nodes. Thus, we use Graph2vec
to generate feature vectors instead of the other techniques. We
compare different embedding techniques and the results in Table 4
show that Graph2vec performs the best F1 value.

For eachmethod, we use the feature vector generated byGraph2vec
to represent the semantic feature vector. For each functionality, we
connect all the CFGs of connected methods according to the call
graph, which is illustrated in Section 3.1. According to the con-
nection rules stated in Section 3.2.2, we can obtain the connected
CFG of connected methods. Then we apply graph embedding on
the connected CFG of this functionality. Finally, we transform the
connected CFG into feature vectors using the technique of graph
embedding.

3.3 Training a DNN Model
To detect functional code clones, we may directly compare the
Euclidean distance between the joint feature vectors of syntactic
and semantic encodings at functionality granularity, as described
in the previous section. This distance-based approach has been
used in prior work to detect syntactic clones, such as Deckard [9].
However, calculating the distance directly does not work in our case
because the distance between the extracted joint feature vectors

is irregular, as illustrated in Figure 6. This is because the weight
of each dimension is different, and it is difficult to manually set
an appropriate threshold to distinguish between functional code
clones.

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

Figure 6: Euclidean distance between feature vectors. The
blue line represents the distance between similar code snip-
pets, and the red line represents the distance between dis-
similar code snippets. The horizontal axis is the id of code
snippets

To address this problem, we propose to use a deep learningmodel
that can effectively detect functional clones between code snippets.
In particular, we fuse syntactic and semantic feature vectors as input
to train a feed-forward neural network [32], and convert code clone
detection to binary classification with the softmax layer at the end
of themodel. Instead of choosing a specific distancemetric or set the
threshold for clone detection, we adopt deep learning techniques
for functional code clone detection that can automatically learn
latent code features from the fused feature vectors.

The architecture of the DNN model is shown in Figure 7, which
consists of four components. Firstly, we obtain the syntactic and
semantic features following Section 3.2.4 and concatenate the two
features together as the input of the model, where syntactic and
semantic information are both represented with a 16-dimensional
vector.

To obtain word embeddings and graph embeddings for AST and
CFG, we use Word2vec and Graph2vec to generate word embed-
dings of length {4, 8, 16, 32}, and graph embeddings of length {4, 8,
16, 32}. We choose the vector length as 16, according to the exper-
iment. In short, the longer vector will increase the training time,
and the shorter vector cannot capture sufficient code features. The
detailed experiment is illustrated in Section 4.4.

As for the input of the DNNmodel, we use a pair of code features
to represent whether the two functionalities are clones. The input
vector contains three portions: the fusion feature vector V1 for
the first functionality, the fusion feature vector V2 for the second
functionality, and a label. The fusion feature vector contains a 16-
dimensional syntactic vector and a 16-dimensional semantic vector.
The label is a boolean value, where 0 represents non-clone pair, and
1 represents clone pair. Thus, the total dimensions of the input are
65(32+32+1).

The order of the fusion features of two functionalities, [V1,V2]
and [V2,V1], may affect the classification results. Therefore, we

Functional Code Clone Detection with Syntax and Semantics Fusion Learning ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA

Figure 7: The architecture of the deep fusion learningmodel

place a fully connected layer before the input of the two features.
Then, the hidden layer uses linear transformation followed by a
squashing non-linearity to transform the inputs into the neural
nodes in the binary classification layer. This step can provide a
complex and non-linear hypothesis model, which has a weight
matrixW to fit the training set. The feed-forward step has been
completed so far. In the next component, this model then uses
back-propagation to adjust the weight matrixW according to the
training set. Finally, there is a softmax layer, which converts the
functional clone detection into a classification task.

Suppose there are two code fusion vectors V1 and V2, and their
distance is measured by d = |v1 − v2 | for syntactic and semantic
relatedness. Then we treat the output as their similarity:

ŷ = so f tmax(x̂) ∈ [0, 1]
x̂ =Wor + bo

WhereWor is the weight matrix of hidden layers. This model
uses a cross-entropy loss function, which performs better than
mean-squared loss function in updating weight. The goal of training
the model is to minimize the loss. We choose AdamOptimizer [13]
because it can control the learning rate in a certain range, and the
parameters are relatively stable. The model is a DNN classifier and
has two classes.

After all the parameters are optimized, the trained models are
stored. For new code fragments, they should be preprocessed into
syntactic and semantic vectors and then fed into the model for
prediction. The output is 1 or 0, which represents clone or non-
clone code pairs.

4 EXPERIMENTAL EVALUATION
With the implementation of our approach, we conducted evalua-
tions to explore the following research questions.

• RQ1: How does our approach perform in functional code
clone detection comparing to state-of-the-art approaches?

• RQ2: How does fused code representations perform in func-
tional code clone detection?

• RQ3: How does our chosen embedding techniques perform
in functional clone detection?

• RQ4: How does DNN perform in functional code clone de-
tection comparing to other traditional machine techniques?

4.1 Experimental Settings
We used joern to abtain ASTS and CFGs of C++ source code. To
extract syntactic features, we trained embeddings of tokens using
word2vec with Skip-gram algorithm and set the embedding size
to be 16. To extract semantic features, we trained embeddings of
graph using Graph2vec and set the embedding size to be 16. There
are 5 hidden layers of the DNN classifier, and the dimension of each
hidden layers are 128, 256, 512, 256, 128, respectively.

We evaluated our approach on a real-world dataset: OJClone [22]
from a pedagogical program online judge system, which mainly
includes C/C++ source code. OJClone contains 104 programming
tasks, and each task contains 500 source code files submitted by
different students. For the same task, the code files submitted by
different students are considered as functional code clones. And
each code snippet pair can be expressed with (s1, s2,y), where s1
and s2 are two code snippets and y is the code clone label of them.
The value of y is {0, 1}. If s1 and s2 are solving the same task, the
value of y is 0. If s1 and s2 are solving different tasks, the value of y
is 1. We choose the first 35 problems from the 104 problems with
100 source files from each problem.

Then, we generated 100*100 clone pairs for each task and 100*100
non-clone pairs for two different tasks. When the problem set is
more than two, the non-clone pairs will be far more than clone
pairs. The imbalance of data will affect the experimental results,
so we adopt under-sample to balance the clone pairs and non-
clone pairs. We randomly divide the dataset into two parts, of
which the proportions are 80% and 20% for training and testing. We
use AdamOptimizer [13] with learning rate 0.001 for training and
the number of training epochs is 10000. All the experiments are
conducted on a server with 8 cores of 2.4GHz CPU and a NVIDIA
GeForce GTX 1080 GPU.

4.2 The Effectiveness of Our Approach
RQ1: How does our approach perform in functional code clone de-
tection comparing to state-of-the-art approaches? To evaluate the
performance of our approach, we compare our approach with sev-
eral state-of-the-art code clone approaches as follows:

• Deckard, a syntax-tree-based approach, which uses Euclidean
distance to compare the similarity between code snippets to
detect code clone.

• SourcererCC, a token-based code clone detector for very
large codebases and Internet-scale project repositories.

• The approach proposed by White et al. converts source code
into the defined tree structure and uses a convolution neural
network to learn unsupervised deep features. Later we will
name it DLC for short.

• CDLH, a deep learning approach to learn syntactic features
of code clone, which converts code clone detection into su-
pervised learning of hash characteristics of source code.

• DeepSim, a semantic-based approach that applies supervised
deep learning to measure functional code similarity.

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi

• ASTNN, a state-of-the-art neural network based source code
representation for source code classification and code clone
detection.

We compare our approach with these code clone detection ap-
proaches in terms of Precision (P), Recall (R), and F1-measure (F1).
Because our dataset mainly belongs to functional code clones, the
detection performance can indicate the ability of these approaches
to detect functional clones.

Table 1: Results on OJClone

Tools P R F1

Deckard 0.99 0.05 0.10
SourcererCC 0.07 0.74 0.14
DLC 0.71 0.00 0.00
CDLH 0.47 0.73 0.57
DeepSim 0.70 0.83 0.76
ASTNN 0.98 0.92 0.95
Our approach 0.97 0.95 0.96

Table 1 shows the precision, recall, and F1 values of the six ap-
proaches. It can be observed that CDLH, DeepSim, ASTNN and
our approach can outperform the other three approaches: Deckard,
SourcererCC, and DLC in terms of F1 value. As most of the code
clones in OJClone belong to functional clones, the results means
that CDLH, DeepSim, ASTNN and our approach can well deal with
functional clones, while the other three approaches cannot. CDLH,
DeepSim and our approach leverage the supervised information to
adjust the training process and improve the clone detection model,
while the other three are unsupervised approaches. This result
means unsupervised approaches can hardly learn the similarity
between functional clones. For Deckard, the syntactic information
of the source code is embedded into a feature vector, and we cal-
culate the Euclidean distance between feature vectors to detect
code clones. In the process of calculating Euclidean distance, the
weight of each dimension is considered the same. However, for
syntactic feature vectors in functional code clone detection, the
importance of each dimension in the feature vector is tend to be
different. So the recall of Deckard is pretty low, but the precision
becomes very high when the syntactic information of the two code
snippets happen to be identical. SourcererCC obtains high recall
while getting pretty low precision since it mistakes too many code
snippet pairs as code clones. This is because the variable name of
these code snippets submitted by students are not standard, and
students tend to use simple names like a, b, and c . SourcererCC
mistakes these code snippets with the same tokens as code clone.
DLC is similar to Deckard and is an approach using the syntactic
features to train the convolutional neural network [11] also failed
to detect functional code clones without the guidance of supervised
information.

Compared with CDLH, a syntax-based deep learning clone de-
tection approach, our approach achieves much higher precision and
a little higher recall. Compared with DeepSim, a semantics-based
deep learning clone detection approach, our approach achieves
higher precision at the sacrifice of a little recall. Compared with
ASTNN, an AST-based deep learning clone detection approach, our

approach achieves higher recall at the sacrifice of a little preci-
sion. This is mainly because our approach leverages both syntactic
and semantic information in functionality granularity. In addition,
since our approach utilizes inter-procedural information (such as
the call graph), we are good at detecting inter-procedural code
clones, which is demonstrated in Section 2.5.

We evaluated the time performance of approaches mentioned
above. We ran each tool to detect code clones in OJClone with the
optimal parameters. And we run each tool three times and report
the average.

Table 2: Time performance on OJClone

Tools Training Time Prediction Time

Deckard - 32s
SourcererCC - 30s
DLC 120s 67s
CDLH 8307s 82s
DeepSim 14545s 34s
ASTNN 9902s 72s
Our approach 8043s 63s

Table 2 reports the time performance of these tools. Deckard
and SourcererCC do not need to train the model and conduct clone
detection directly. Thus, we use "-" in training time for Deckard and
SourcererCC. DLC, CDLH, DeepSim, ASTNN, and our approach
need to train the clone detection model. Our approach also needs
to conduct embedding learning for syntactic and semantic infor-
mation. Thus it takes the long time in the training step. Although
the training time of DeepSim, CDLH, ASTNN, and our approach
are too much compared to the other three approaches, it is a one-
time offline process. Once the model is trained, it can be reused
to detect code clones. DTC incorporates a simple deep learning
model, which cost much less time. Compared with other approach,
especially ASTNN, which is the state-of-the-art approach, the train-
ing time of our approach is much shorter. Thus, our approach is
more efficient. In the long run, the use of deep learning is more
convenient, and the trained model can be reused to detect code
clones.

4.3 The Effectiveness of Fused Code
Representations

RQ2: How does fused code representations perform in functional code
clone detection? In the previous section, we have validated the
superiority of our approach on functional clone detection. In this
section, we further validate the effectiveness of the syntax and
semantics fusion learning.

For this purpose, three different code representations, including
text, AST, and CFG, are used to compare the detection performance.
Code tokens is also a common repsentation of source codes. How-
ever, AST is a higher abstraction of code tokens and contains more
syntactic information than code tokens4. And we do not choose
code tokens in our experiment. To extract the text sequence of
4https://stackoverflow.com/questions/25049751/constructing-an-abstract-syntax-
tree-with-a-list-of-tokens/

Functional Code Clone Detection with Syntax and Semantics Fusion Learning ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA

source codes, we use the Turing eXtender Language proposed in
NICAD [29], a famous text-based clone detection approach. The
extraction of AST and CFG has been detailed in the previous section.

Given a source code snippet and three code representations
R = {R1,R2,R3}, where the three representations are text, AST
and CFG in turn. Word2vec is used to conduct embedding learning
for the first two representations and Graph2vec for CFG. Then
the embeddings E = {E1,E2,E3} are for the three representations
and each embedding is a fixed length continuous-valued vectors.
For each fusion representation FR, a tuple t = h1,h2,h3 is gen-
erated, where hi = True means FR contains this representation
and hi = False otherwise. t can assume 8 possible values, i.e.,
t = {FFF , FFT , . . . ,TTT }. Among them, FFF means that none of
the three representations are selected, which make no sense for
answering RQ1, and thus FFF is eliminated. These FR sets are taken
as input to and evaluate the precision, recall and F1-measure.

Table 3: Precision (P), recall (R) and F1 of all representations

ID Text AST CFG P R F1

1 F F T 0.82 0.92 0.87
2 F T F 0.91 0.62 0.74
3 F T T 0.97 0.95 0.96
4 T F F 0.99 0.21 0.35
5 T F T 0.85 0.52 0.65
6 T T F 0.94 0.44 0.60
7 T T T 0.98 0.92 0.95

Table 3 shows the precision, recall, and F1-measure of seven
combinations of code representations. It can be observed that ID =
3(FTT), the fusion of AST and CFG, achieves the highest F1 values
than others, and it validates that our proposed code representation
can capture the semantics of the source code for functional clone de-
tection. For ID = 1(FFT), the recall of this representation is pretty
high. It is because the source codes in the dataset have relatively
simple control flow, and many functionality pairs belonging to dif-
ferent problems are mistaken for code clones. For ID = 2(FTF), the
precision of it is high but has a relatively low recall. It is due to
different students may realize the same functionality with different
control flow, and this fusion cannot recognize this difference. Simi-
larly, it can be observed that the same phenomenon as ID = 4(TFF),
which also has high precision and low recall. However, the recall
of it is much lower than ID = 2(FTF) because it is not appropriate
to regard the source code as a natural language without any pro-
cessing. Since the source codes submitted by these students tend
to use the similar variable names, such as a, b and c , the similarity
between the text is pretty high, which may lead to many mistakes
for code clone. For ID = 5(TFT) and 6(TTF), after adding the text
representation, their recall have improved to a certain extent com-
pared to ID = 1(FFT) and 2(FTF), but precision are sacrificed a lot
for the same reason as ID = 4(TFF). In ID = 7(TTT), we use all
three representations. Intuitively, it is believed that the more kinds
of code representations are used, the more syntactic and semantic
information can be extracted, and the higher precision and recall is.
However, the experiment result shows that too much information
and too strict clone detection requirements greatly reduce the recall,

and improve a little bit of precision. In summary, we choose to use a
fusion of AST and CFG representations to conduct clone detection.

4.4 The Effectiveness of Word Embedding and
Graph Embedding Techniques

RQ3: How does our chosen embedding techniques perform in func-
tional clone detection? In the previous section, we have validated the
effectiveness of our proposed code representations to conduct func-
tional code clones. As we all know, there are several famous word
embedding techniques: Word2vec and GloVe and graph embedding
techniques: Graph2vec, HOPE, SDNE, and Node2vec. In this sec-
tion, we shall validate the effectiveness of the word embedding and
graph embedding techniques we choose for the embedding learning
of the fusion of AST and CFG. For the purpose, the identifier se-
quence extracted from AST and the structure of CFG is taken as the
input of these word embedding and graph embedding techniques
to get the embeddings of them. Then we take the fusion of the two
embeddings as the input of our deep fusion learning model and
evaluate the precision, recall, and F1 measure under OJClone.

Table 4: Precision, recall and F1 of different embedding tech-
niques

Embedding techniques P R F1

Word2vec+Graph2vec 0.97 0.95 0.96
Word2vec+HOPE 0.88 0.79 0.84
Word2vec+SDNE 0.75 0.56 0.64
Word2vec+Node2vec 0.55 0.79 0.65
GloVe+Graph2vec 0.89 0.81 0.85
GloVe+HOPE 0.84 0.73 0.78
GloVe+SDNE 0.73 0.52 0.61
GloVe+Node2vec 0.54 0.87 0.67

Table 4 shows the precision, recall, and F1 measure of the com-
binations of two word embedding techniques and three graph em-
bedding techniques. As shown in Table 4, for two kinds of word
embedding techniques, Word2vec achieves better performance than
GloVe. Compared with Word2vec, Glove adopted some overall sta-
tistics to make up for the shortcomings of the co-occurrence model,
while the effect was not necessarily better than simple Word2vec
in practice [16]. For the first three combinations, the combination
of Word2vec and Graph2vec achieves the highest F1 value. That
is because different from other approaches, the vectors generated
by Graph2vec can reflect the overall graphs. The vectors generated
by other approaches can only reflect the node structure, and the
average value of all the nodes may lack the structural feature of
the graph.

Sensitivity to the length of embeddings. In previous exper-
imental settings, we use continuous-valued vectors of length 16
for word embeddings and graph embeddings. In this section, we
study the influence of the different lengths of embeddings on func-
tional clone detection performance of our approach, measured by
F1 values. Table 5 shows the F1 value tends to be stable at around
0.96 after the length of word embeddings and graph embeddings
are more than 16. Thus, we choose 16 as the length of the word
embeddings and graph embeddings used in our approaches.

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi

Table 5: The F1 values for different length of embeddings

word
graph 8 16 32 64

8 0.63 0.71 0.76 0.76
16 0.79 0.96 0.93 0.95
32 0.81 0.95 0.96 0.94
64 0.83 0.96 0.96 0.95

4.5 The Effectiveness of Machine Learning
Techniques

RQ4: How does DNN perform in functional code clone detection com-
paring to other traditional machine techniques? Table 6 reports the
performance of SVM, logistic regression, and our approach on OJ-
Clone. Compared with the traditional machine learning techniques,
our approach can better capture the hidden features from syntactic
and semantic vectors. Thus, our approach is efficient for functional
code clone detection.

Table 6: Comparison with machine learning techniques

Techniques P R F1

SVM 0.62 0.81 0.70
logistic regression 0.66 0.71 0.68
Our approach 0.97 0.95 0.96

4.6 Threats to Validity
There are two main threats to the validity. First, only OJClone
dataset is used to demonstrate the effectiveness of our approach.
However, OJClone is widely used to evaluate code clone detection
approaches, such as Deepsim and ASTNN. We also try to turn to
the BigCloneBench dataset, which is a widely-used benchmark for
code clone detection. However, it is not proper for evaluating our
approach, because the dataset does not contain inter-procedural
programs while our approach aims to use caller-callee relation to
detect inter-procedural code clones. Besides, our current experi-
ment is on C++ programs, and we plan to involve other language
in the future.

Second, as incorporating deep learning, the effectiveness of our
approach is limited by the quality of the training set. Even we
generated tens of thousands clone pairs and tried to deal with data
imbalance. As we have release all the data in our studies, we also
plan to build a large and representative dataset.

5 RELATEDWORK
In code clone detection, the representation of source code deter-
mines the upper limit of source code information extraction, and it
will determine the model design and affects the final performance.

According to different aspects of the use of source code, the
representation method can be divided into four categories: text-
based, token-based, syntax-based, and semantics-based techniques.
Text-based techniques treat source code as text encoding, and token-
based techniques parse sources code into tokens, which are then

organized into token sequences. These two code representations
are usually used to detect Type-1 and Type-2 code clones. Since our
proposed approach is mainly dealing with functional code clone
detection, which is regarded as Type-4 code clones, we do not focus
on text-based and token-based techniques.

Syntax-based approaches are not sensitive to the order of source
code and can detect Type-1, Type-2, Type-3, and partial Type-4 code
clones. Syntax-based techniques take syntax rules of the source
code into consideration and mainly contain two types: tree-based
and indicators-based approaches. Deckard [9] uses syntax parser to
parse source code into a syntax tree, then embeds syntax tree into
features, finally uses a locally sensitive hash algorithm for clustering
to find the similar code. Daniel Perez et al. [27] generates the AST of
source code and uses a feed-forward neural network to classify to
code clones. Different from these syntax-based approaches, we visit
each node in AST by preorder and use word embedding techniques
to learn the AST features.

Semantics-based techniques consider the semantic information
of source code. Semantic information refers to the information that
can reflect the functionality of code snippets. The most commonly
used semantic representation is PDG, which is the combination of
control dependence and data dependence. The approach proposed
by Komondoor [14] uses program slices to find isomorphic sub-
graphs of PDGs. Sheneamer et al. [31] extract features from abstract
syntax trees and program dependency graphs to represent a pair
of code fragments to detect functional code clones. However, the
shortcoming of PDG-based approaches is high time cost due to
the complexity of PDG. Since the operational semantics of CFG is
equivalent to that of deterministic PDG [8], we simply use CFG to
represent the semantic features.

In addition to the four categories mentioned above, there are also
some hybrid approaches for the functional code clone detection. For
instance, CDLH [38] learns hash codes by exploiting the lexical and
syntactic information for fast computation of functional similarity
between code fragments. DeepSim [42], one of the state-of-the-art
approaches, encodes both code control flow and data flow into a se-
mantic matrix and uses a deep learning method to detect functional
clones based on the semantic matrix. The semantic representation
in DeepSim contains syntactic information at the granularity of
basic blocks. White et al. [40] fuse information on structure and
identifiers from CFG, identifiers and bytecodes, and adopt recurrent
neural networks to learn features based on syntactic and semantic
analysis. Different from these approaches, we use word embedding
to extract AST and graph embedding to extract CFG, then we use
the combination of syntactic and semantic features to train a deep
learning model.

Tufano et al. [35] uses four different code representation (i.e.,
identifiers, AST, bytecode, and CFG) for clone clone detection. It
uses four code representations to identify the similarity of code
pairs separately and calculate the average as the final similarity
result. The thought of using AST as syntax representation and CFG
as semantics representation is parallel with ours and is very related.
Different from Tufano et al., we combine the syntactic and semantic
features before using the deep learning model instead of calculating
the average. Since considering syntax and semantics, separately
may lead to an opposite result, calculating the average directly may
not be suitable. Besides, we use Graph2vec instead of other graph

Functional Code Clone Detection with Syntax and Semantics Fusion Learning ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA

embedding techniques for feature representation. Different from
HOPE generating vectors for each node, Graph2vec generates a
vector for the overall graph. Since calculating the average of node
vectors may hide the related among nodes, using Graph2vec to
generate a graph vector in more suitable. Furthermore, we extract
the call graph to capture the connected methods, and we combine
the related methods as a functionality. For each functionality, we
analyze the fusion of their syntax and semantics for functional code
clone detection.

6 CONCLUSION
We have presented a novel approach to detect functional code
clones with code representation generated from the fusion embed-
ding learning of syntactic and semantic information at functionality
granularity, and a deep feature learning model that learns the syn-
tactic and semantic features which convert clone detection into
a binary classification problem. We have conducted extensive ex-
periments on a large real-world dataset. The results show that our
approach achieves a significant advance over state-of-the-art ap-
proaches in terms of F1measure, and it has good detection efficiency
after the model training.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers for in-
sightful comments. This work is supported partially by National
Natural Science Foundation of China(61932012, 61802171), and Fun-
damental Research Funds for the Central Universities(14380021).

REFERENCES
[1] Brenda S Baker. 1995. On finding duplication and near-duplication in large soft-

ware systems. In Proceedings of the 2ndWorking Conference on Reverse Engineering.
IEEE, 86–95.

[2] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas
Kontogiannis. 2000. Advanced clone-analysis to support object-oriented system
refactoring. In Proceedings of the 7th Working Conference on Reverse Engineering.
IEEE, 98–107.

[3] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
software engineering 33, 9 (2007), 577–591.

[4] Wen-Ke Chen, Bengu Li, and Rajiv Gupta. 2003. Code compaction of matching
single-entry multiple-exit regions. In Proceedings of the 10th International Static
Analysis Symposium. Springer, 401–417.

[5] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 855–864.

[6] Reid Holmes and Gail C Murphy. 2005. Using structural context to recommend
source code examples. In Proceedings of the 27th International Conference on
Software Engineering. IEEE, 117–125.

[7] Chenping Hou, Feiping Nie, Xuelong Li, Dongyun Yi, and Yi Wu. 2014. Joint
embedding learning and sparse regression: A framework for unsupervised feature
selection. IEEE Transactions on Cybernetics 44, 6 (2014), 793–804.

[8] Sohei Ito. 2018. Semantical equivalence of the control flow graph and the program
dependence graph. arXiv preprint arXiv:1803.02976 (2018).

[9] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th International Conference on Software Engineering. IEEE, 96–105.

[10] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. 2007. Context-based detection of
clone-related bugs. In Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT symposium on the Foundations of
Software Engineering. ACM, 55–64.

[11] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional
neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014).

[12] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting working code ex-
amples. In Proceedings of the 36th International Conference on Software Engineering.
ACM, 664–675.

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[14] Raghavan Komondoor and Susan Horwitz. 2001. Using slicing to identify dupli-
cation in source code. In Proceedings of the 8th International Symposium on Static
Analysis. Springer, 40–56.

[15] Jens Krinke. 2001. Identifying similar code with program dependence graphs. In
Proceedings of 8th Working Conference on Reverse Engineering. IEEE, 301–309.

[16] Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional
similarity with lessons learned from word embeddings. Transactions of the
Association for Computational Linguistics 3 (2015), 211–225.

[17] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner:
A tool for finding copy-paste and related bugs in operating system code. In
Proceedings of the 6th Symposium on Operating Systems Design & Implementation.
USENIX, 289–302.

[18] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. 2006. GPLAG: Detection of
software plagiarism by program dependence graph analysis. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 872–881.

[19] Xing Liu and P Gontey. 1987. Program translation by manipulating abstract
syntax trees. In Proceedings of the C++ Workshop. 345–360.

[20] NaMeng, Lisa Hua,Miryung Kim, and Kathryn SMcKinley. 2015. Does automated
refactoring obviate systematic editing?. In Proceedings of the 37th International
Conference on Software Engineering. IEEE, 392–402.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[22] Lili Mou, Ge Li, Lu Zhang, TaoWang, and Zhi Jin. 2016. Convolutional neural net-
works over tree structures for programming language processing. In Proceedings
of the 30th AAAI Conference on Artificial Intelligence.

[23] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning distributed
representations of graphs. arXiv preprint arXiv:1707.05005 (2017).

[24] Manziba Akanda Nishi and Kostadin Damevski. 2018. Scalable code clone de-
tection and search based on adaptive prefix filtering. Journal of Systems and
Software 137 (2018), 130–142.

[25] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
1105–1114.

[26] J-F Patenaude, Ettore Merlo, Michel Dagenais, and Bruno Laguë. 1999. Extending
software quality assessment techniques to java systems. In Proceedings of the 7th
International Workshop on Program Comprehension. IEEE, 49–56.

[27] Daniel Perez and Shigeru Chiba. 2019. Cross-language clone detection by learning
over abstract syntax trees. In Proceedings of the 16th IEEE/ACM International
Conference on Mining Software Repositories (MSR). IEEE, 518–528.

[28] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165–1199.

[29] Chanchal K Roy and James R Cordy. 2008. NICAD: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code normalization. In
Proceedings of the 16th IEEE International Conference on Program Comprehension.
IEEE, 172–181.

[30] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. SourcererCC: Scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering. IEEE, 1157–1168.

[31] Abdullah Sheneamer and Jugal Kalita. 2016. Semantic clone detection using
machine learning. In Proceedings of the 15th IEEE International Conference on
Machine Learning and Applications. IEEE, 1024–1028.

[32] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. 1997. Introduction to multi-
layer feed-forward neural networks. Chemometrics and Intelligent Laboratory
Systems 39, 1 (1997), 43–62.

[33] Nikolaos Tsantalis, Davood Mazinanian, and Giri Panamoottil Krishnan. 2015.
Assessing the refactorability of software clones. IEEE Transactions on Software
Engineering 41, 11 (2015), 1055–1090.

[34] Nikolaos Tsantalis, Davood Mazinanian, and Shahriar Rostami. 2017. Clone
refactoring with lambda expressions. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 60–70.

[35] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. Deep learning similarities from different
representations of source code. In Proceedings of the 15th IEEE/ACM International
Conference on Mining Software Repositories. IEEE, 542–553.

[36] Tim A Wagner, Vance Maverick, Susan L Graham, and Michael A Harrison. 1994.
Accurate static estimators for program optimization. ACM Sigplan Notices 29, 6
(1994), 85–96.

[37] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 1225–1234.

ISSTA ’20, July 18–22, 2020, Los Angeles, CA, USA Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi

[38] Huihui Wei and Ming Li. 2017. Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in source code..
In Proceedings of the 26th International Joint Conference on Artificial Intelligence.
3034–3040.

[39] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In Proceedings of 31st
IEEE International Conference on Software Engineering. IEEE, 364–374.

[40] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.

ACM, 87–98.
[41] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong

Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In Proceedings of the 41st International Conference on Software Engineering.
IEEE, 783–794.

[42] Gang Zhao and Jeff Huang. 2018. Deepsim: deep learning code functional similar-
ity. In Proceedings of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM,
141–151.

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Abstract Syntax Tree
	2.2 Control Flow Graph
	2.3 Word Embedding
	2.4 Graph Embedding
	2.5 Motivating Example

	3 Approach
	3.1 Identifying the Functionality with Call Graph
	3.2 Extracting Syntactic and Semantic Representations
	3.3 Training a DNN Model

	4 Experimental evaluation
	4.1 Experimental Settings
	4.2 The Effectiveness of Our Approach
	4.3 The Effectiveness of Fused Code Representations
	4.4 The Effectiveness of Word Embedding and Graph Embedding Techniques
	4.5 The Effectiveness of Machine Learning Techniques
	4.6 Threats to Validity

	5 Related work
	6 Conclusion
	References

