Fast Bit-Vector Satisfiability

Peisen Yao
Hong Kong University of Science and Technology, China
pyao@connect.ust.hk

Heqing Huang
Hong Kong University of Science and Technology, China
hhuangaz@cse.ust.hk

 Qingkai Shi
Hong Kong University of Science and Technology, China
qshiaa@cse.ust.hk

Charles Zhang
Hong Kong University of Science and Technology, China
charlesz@cse.ust.hk

ABSTRACT
SMT solving is often a major source of cost in a broad range of techniques such as the symbolic program analysis. Thus, speeding up SMT solving is still an urgent requirement. A dominant approach, which is known as the eager SMT solving, is to reduce a first-order formula to a pure Boolean formula, which is handed to an expensive SAT solver to determine the satisfiability. We observe that the SAT solver can utilize the knowledge in the first-order formula to boost its solving efficiency. Unfortunately, despite much progress, it is still not clear how to make use of the knowledge in an eager SMT solver. This paper addresses the problem by introducing a new and fast method, which utilizes the interval and data-dependence information learned from the first-order formulas.

We have implemented the approach as a tool called Trident and evaluated it on three symbolic analyzers (Angr, Qsym, and Pinpoint). The experimental results, based on seven million SMT solving instances generated for thirty real-world software systems, show that Trident significantly reduces the total solving time from 2.9× to 7.9× over three state-of-the-art SMT solvers (Z3, CVC4, and Boolector), without sacrificing the number of solved instances. We also demonstrate that Trident achieves the end-to-end speedups for three program analysis clients by 1.9×, 1.6×, and 2.4×, respectively.

CCS CONCEPTS
• Theory of computation → Automated reasoning; Program analysis.

KEYWORDS
Satisfiability modulo theory, SAT solving, program analysis

1 INTRODUCTION
Satisfiability Modulo Theories (SMT) solving has undergone steep development during the last decade, enabling a wide range of practical applications, such as the test case generation [20, 40], the static bug finding [78, 87], and the program repair [62]. SAT solvers decide the satisfiability of formulas over first-order theories. Among the many theories within the SMT-LIB initiative [3], the theory of bit-vector is of crucial importance for software analysis, due to its capability of faithfully and precisely modeling the bit-level behavior of the machine instructions [87].

Existing SMT solving algorithms can be classified as being lazy or eager [15, 51]. The latter is the predominant approach to solve bit-vector constraints [43]. As illustrated in Figure 1(a), an eager bit-vector solver first simplifies the input formula with the word-level simplification rules [1, 17], and then translates a bit-vector formula into an equisatisfiable Boolean formula via bit-blasting, which is finally solved by an SAT solver. In practice, the word-level simplification and bit-blasting phases are efficient. However, the SAT solving phase is often the performance bottleneck due to its NP-completeness [43, 50].

While a significant effort has been investigated in the lazy SMT solving [9, 22, 42, 76], to the best of our knowledge, there is little progress on improving the SAT solving algorithms for an eager bit-vector solver. Most existing effort either focuses on enhancing the word-level preprocessing phase via different simplifications and semi-decision procedures [34, 36, 44, 61], or aims to devise better encoders for bit-blasting [45, 57]. These methods attempt to reduce the overhead of SAT solving by translating the bit-vector formulas into smaller Boolean formulas. However, the SAT solver itself still uses the default strategy irrespective of the word-level problem characteristics, thus losing many optimization opportunities.

In this paper, we present an approach that significantly improves the bit-vector SMT solver by leveraging the word-level information, just as shown in Figure 1(b). Our key insight is that the word-level information inferred before bit-blasting can be preserved to boost the SAT solving phase. Specifically, a conventional SAT solver often works as follows: given a Boolean formula, the SAT solver checks its satisfiability by choosing a variable in the formula, assigning a truth value to it, simplifying the formula based on the assignment, and then recursively checking if the simplified formula is satisfiable. If the search fails, the same recursive check is performed assuming the opposite truth value. Clearly, the performance of the SAT solver crucially depends on the branching heuristic [12, 47, 54, 59, 86], which concerns both the order in which Boolean variables are chosen for assignment and the values assigned to them. Therefore,
2 PRELIMINARIES

This section introduces the basic concepts and terminologies used in the paper.

2.1 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some first-order theories. Examples include the theories of linear arithmetics, bit-vectors, arrays, lists, and strings.

A bit-vector is a fixed sequence of bits. The theory of quantifier-free bit-vectors (QF_BV) is a many-sorted first-order theory. The length of a bit-vector is usually referred to as bit-width, and bit-vectors with different widths correspond to different sorts. The functions in the theory include +, −, ×, ÷, &, |, ⊕, ≡, ⊃, ⊃, concat, and extract, interpreted as addition, minus, multiplication, division, bit-wise and, bit-wise or, bit-wise exclusive or, left-shift, right-shift, concatenation, and extraction, respectively. The predicates include =, <, and ≤, which are interpreted as “equal to”, “less than”, and “less than or equal to”, respectively. For the ease of presentation, we assume that all bit-vector variables represent unsigned integers. Deciding the satisfiability of a quantifier-free bit-vector formula is NP-complete, or more exactly NEXPTIME-complete [50].

2.2 Eager Bit-Vector Solving

Existing SMT solving algorithms can be classified as being lazy or being eager. Given a first-order formula, a lazy approach [5, 17, 76] usually iteratively refines an over-abstraction of the formula by combining a SAT solver and a theory solver. First, it abstracts the first-order formula by replacing each atomic predicate with a distinct Boolean variable, producing a formula called the Boolean skeleton. Then, it uses the SAT solver to iteratively enumerate models of the Boolean skeleton, and the theory solver to check these models for satisfiability. In contrast, an eager approach [36, 48] translates the first-order formula, in a single satisfiability-preserving step, into an equisatisfiable Boolean formula, which is delegated to a SAT solver for determining the satisfiability, as shown in Figure 1.

Example 2.1. Consider the bit-vector formula \(\phi \equiv x \geq 3 \land (x = 0 \lor y = 4) \), where \(x \) and \(y \) are two bit vectors. A lazy SAT solver will abstract \(\phi \) as a Boolean skeleton \(b_1 \land (b_2 \lor b_3) \), where the Boolean variables \(b_1, b_2, \) and \(b_3 \) represent \(x \geq 3, x = 0, \) and \(y = 4 \), respectively. Suppose that its SAT solver first suggests a model \((b_1 = 1, b_2 = 1, b_3 = 0) \). The Boolean model is mapped back as conjunctions of atomic predicates \(x \geq 3 \land x = 0 \land y = 4 \), which is then checked by the theory solver. If the conjunctions are satisfiable, so is the original bit-vector formula. Clearly, the conjunctions are unsatisfiable, meaning that the Boolean model is spurious. Then, its SAT solver attempts to suggest another model of the Boolean skeleton. In the worst case, the SAT solver enumerates all models of the Boolean skeleton, which is expensive. In contrast, the eager approach translates \(\phi \) into an equisatisfiable Boolean formula and only calls a SAT solver once to determine the satisfiability.

In the eager approach to SMT solving, the typical method for translating a bit-vector formula into an equisatisfiable Boolean formula is bit-blasting. The procedure encodes a bit-vector variable using a sequence of auxiliary Boolean variables, each of which represents a bit of the bit-vector variable. Bit-vector functions such as addition and multiplication are modeled using Boolean connectives in a way that mimics the hardware circuits of these functions [15, 51]. Note that in order to encode these functions more compactly, the bit-blast also introduces a sequence of auxiliary Boolean variables to represent each bit-vector term, i.e., functions applied to a set of bit-vector variables.\(^2\) In the remainder of the paper, we denote by \(BF(\phi) \) the Boolean formula encoding a bit-vector formula \(\phi \). We denote a \(n \)-bits bit-vector variable or term \(t \) as \(t = \{b_{n-1}, b_{n-2}, \ldots, b_0\} \), where \(BF(t) = \{b_{n-1}, b_{n-2}, \ldots, b_0\} \).

\(^1\)An atomic predicate is a Boolean-type expression without Boolean connectives such as \(x + y = 3 \).

\(^2\)More exactly, a term is inductively defined as either a variable or a function applied to any number of other terms. We differentiate between variable and term for the sake of presentation.
Algorithm 1: Eager bit-vector solving

| Input: A bit-vector formula ϕ. |
| Output: satisfiable or unsatisfiable. |
| 1 $\phi' \leftarrow$ apply word-level simplifications to ϕ; |
| 2 $BF(\phi') \leftarrow$ apply bit-blasting to ϕ'; |
| 3 $BV(\cdot) \leftarrow$ the set of Boolean variables in $BF(\phi')$; |
| 4 return CDCL_SAT($BF(\phi')$); |
| 5 Function CDCL_SAT(ϕ): |
| 6 while true do |
| 7 if there is an unassigned Boolean variable then |
| 8 select and assign a variable from $BV(\cdot)$; |
| 9 while BCP() == CONFLICT do |
| 10 (C, level) = conflict_analysis(); |
| 11 if level < 0 then |
| 12 return unsatisfiable; |
| 13 else |
| 14 backtrack(level); |
| 15 add_clause(C); |
| 16 else |
| 17 return satisfiable; |

t is the set of Boolean variables encoding t. Since we assume that bit-vectors are unsigned, we have

$$t = b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + \cdots + b_0 \times 2^0,$$

(1)

which means that once the values of Boolean variables $BV(t)$ are fixed, we can obtain the value of t, and vice versa.

Example 2.2. Let x and y be two 8-bits bit-vectors such that $x = [a_7, \ldots, a_0]$ and $y = [b_7, \ldots, b_0]$. Consider a term $x \parallel y$, which is the “bit-wise or” of the variables x and y. To encode the term, the bit-blaster first introduces eight Boolean variables, c_0, c_1, \ldots, c_7, to represent the calculation result, i.e., $x \parallel y = [c_7, \ldots, c_0]$, and then translates the term into the following Boolean formula that encodes the semantic of “bit-wise or”:

$$\bigwedge_{i=0}^{7} ((a_i \parallel b_i) \leftrightarrow c_i)$$

One purpose for introducing the auxiliary variables c_i is that we can reuse the translation of the term $x \parallel y$ when the term is used many times in a constraint like $x \parallel y + z > 10 \land x \parallel y + z < 5$.

2.3 SAT Solving and Branching Heuristic

To determine the satisfiability of a Boolean formula generated by bit blasting, a Conflict-Driven Clause-Learning (CDCL) SAT solver will be employed [11, 81]. The function CDCL_SAT of Algorithm 1 presents the basic CDCL search loop. At each step, the branching heuristic picks an unassigned variable and assigns it a truth value of 1 or 0 (Line 8). The picked variable is called the decision variable. Then, the solver uses a method called Boolean Constraint Propagation (BCP) (Line 9) to simplify the formula, by leveraging the current assignment and its logical consequences. If the propagation leads to a falsified clause, a conflict occurs, indicating that a previous decision is not appropriate. The level of that decision is identified by the conflict analysis (Line 10), following which the solver recovers from the conflict by backtracking, undoing the offending decision, and trying some other assignments. A clause learned from the conflict is also added to the original formula (Line 15), to prevent the search from repeating the mistake. The loop repeats until all clauses are satisfied, or some conflict cannot be resolved by backtracking and, thus, the formula is unsatisfiable (Line 12).

Example 2.3. Consider the Boolean formula $(a \lor b) \land (\neg a \lor b)$. If we pick the Boolean variable a as the decision variable and assign 1 to it, the BCP can infer than b should also be 1, because otherwise the clause $(\neg a \lor b)$ would be falsified.

Example 2.4. Consider the Boolean formula $(a) \land (\neg a) \land (\neg b) \land (b \lor c)$. Suppose that we first choose a and assign 1 to it. The BCP can infer that b should be 0 and further deduce that c should be 1. All clauses are satisfied now. In total, only one decision is made. However, if we first choose c and assign 0 to it, the BCP can infer that b should be 1 and further infer that a should be 0. The current assignment $(c = 0, b = 1, a = 0)$ results in a falsified clause (a). The SAT solver has to perform backtracking, undoing the first decision and continuing a new round of search.

CDCL SAT solvers crucially depend on the branching heuristic for their performance. A state-of-the-art branching heuristics Variable State Independent Decaying Sum (VSIDS) [59] maintains a score for each Boolean variable throughout the search. It initializes the score based on the globally statistical information, such as the number of clauses in which a variable appears. At each step, VSIDS selects the variable with the highest score as the next decision variable. The scores are adjusted periodically by aggregating a variable’s effects in the previous conflicts.

3 MOTIVATION

In this section, we use several examples to motivate our approach. We show that the bit-vector level information can be leveraged to partially determine the assignments (§ 3.1) and the order of decision variables (§ 3.2).

3.1 Assignment Restriction

In program analysis, to achieve the bit-level precision, an integer variable in a program is usually modeled as a bit-vector, of which the length is the bit width of the variable’s type. The constraints in a program analysis consist of the operations and the relations among the bit-vector variables. In theory, a 32-bit unsigned bit-vector variable represents a large range of values, i.e., from 0 to $2^{32} - 1$. Besides, the number of variables in a path constraint can be huge. As the consequence, such a vast search space stresses the capability of the constraint solver, causing significant performance issues.

Fortunately, in practice, we find that the feasible solution space of the variables can be small. More specifically, we observe that, in real-world programs, not all statements are complex, e.g., containing non-linear computation and library function calls. Most variables

The decision level of a variable is the number of decision variables occurring before the variable.
are only involved in simple statements, such as linear assignments and linear branch conditions. By inspecting the constraints encoded for these simple statements, we can soundly approximate the solution space of the bit-vector variables and, thus, reduce the search space of SAT solving.

Example 3.1. Suppose that \(x = [a_7, \ldots, a_0] \) and \(y = [b_7, \ldots, b_0] \) encode two 8-bits unsigned integer variables and the formula \(\phi \equiv y = x + 1 \land y < 5 \land x \times x < 60 \) is a constraint generated by a program analyzer. After bit-blasting the formula, we obtain a Boolean formula \(BF(\phi) \). If we are able to infer that \(x < 4 \) from the linear constraint \(y = x + 1 \land y < 5 \) in \(\phi \), then we have that \(a_7, a_6, \ldots, a_2 \) must be 0, because otherwise \(x \) must be greater than or equal to 4. Therefore, we reduce the search space of SAT solving by fixing the values of six Boolean variables, i.e., \(a_7, a_6, \ldots, a_2 \).

Remark 1. Although the SAT solver can leverage Boolean Constraint Propagation (BCP) and backtracking to establish and exploit the correlations of Boolean variables automatically, it is unaware of the restriction about the variables before the search. If having an oracle that narrows down the search space of some bit-vector variables, we can reduce the number of Boolean variables to decide, thereby improving the SAT solving performance by reducing unneeded constraint propagation and backtracking.

3.2 Variable Ordering

Consider a formula with a set \(N \) of bit-vector variables, each having a value range of size \(k \). In the worst case, the SAT solver needs to explore \(k^{\lceil N \rceil} \) possible assignments. Like many other search problems, the order in which we select Boolean variables for assignments has an enormous effect on the performance of SAT solving. Specifically, we observe that the data dependence relations in a constraint can be leveraged. The insight here is that the presence of data dependence means that the values of a subset of variables deterministically derive the values of other variables.

Example 3.2. Let us consider the constraint \(\phi \) in Example 3.1. According to the discussion in Section 2.2, before SAT solving, the constraint \(\phi \) is translated to a Boolean formula consisting of Boolean variables, \(BV(x) \), \(BV(y) \), \(BV(x + 1) \), and \(BV(x \times x) \). In the SAT solving phase, the SAT solver will select and assign values to these Boolean variables in some order. In the example, since \(BV(x) \) are assigned, the values of \(BV(x + 1) \), \(BV(y) \), and \(BV(x \times x) \), can be derived automatically due to the data dependence relations. Thus, giving higher priority to the Boolean variables in \(BV(x) \) than those in \(BV(y) \), \(BV(x + 1) \), and \(BV(x \times x) \) can accelerate the speed of cutting the search space.

Remark 2. Modern SAT solvers have sophisticated scoring schemes to decide the decision order. However, we find that state-of-the-art schemes like VSIDS are not sufficiently accurate at the beginning of the search. This is because they typically initialize the scores via statistical and syntactical information, which may introduce bias. Therefore, it would be beneficial to assist the solver in the initial phase by scheduling the decision order according to the semantic information such as the data dependence relations.

4 APPROACH

The branching heuristic in SAT solving concerns the order in which the Boolean variables are chosen for assignment and the values assigned to them. As shown in Figure 1(b), our techniques aim to guide it by leveraging two abstract domains over bit-vector variables: the non-relational interval domain and the relational data-dependence domain.

First, we utilize the interval information to fix the values of Boolean variables introduced during bit-blasting, thereby reducing the search space of SAT solving. After that, for variables that cannot be fixed yet, the solver still needs to decide their assignments. Second, to further accelerate SAT solving, we exploit the data-dependence information for guiding the decision order of Boolean variables.

The additional overhead of inferring the information is low: the runtime of the word-level preprocessing phase increases by about 15%. Such a price is acceptable because we can pay a small up-front cost to avoid a large amount of work in the later SAT solving phase. In what follows, we detail the two strategies for improving the performance of SAT solving.

4.1 Interval-Guided Variable Assignments

We first present the strategy of using the interval analysis to reduce the search space. Our observation is that in real-world programs, not all statements are complex. Thus, a constraint generated by a program analyzer usually contains many simple sub-constraints, which can be used to infer a sound interval of some bit-vector variables or terms, thereby restricting the values of their corresponding Boolean variables \(BV(t) \).

However, given a bit-vector formula, acquiring the precise interval information of its variables is non-trivial. Specifically, computing the most precise interval of a variable is NP-hard, which can be reduced to Max-SMT problems [53]. For example, to obtain the maximum value of a bit-vector variable \(x \) subject to a formula \(\phi(x, \ldots) \), we can solve the Max-SMT problem:

\[
\begin{align*}
\text{maximize} & \quad x \\
\text{subject to} & \quad \phi(x, \ldots).
\end{align*}
\]

This is impractical because solving the optimization problem can be even harder than checking the satisfiability of the formula.

4.1.1 Interval Analysis

To balance the precision and performance, we employ a lightweight interval analysis, which takes a bit-vector formula as input, and determines a sound approximation, i.e., interval, of the numeric values for the bit-vector variables in a formula [37]. The details of the interval analysis are omitted, as it is direct and not our key contribution. For instance, given the constraint \(z = x + y \), where \(x \in [l_x, u_x] \), \(y \in [l_y, u_y] \). According to the rules in the previous work [37], we have \(z \in [l_x + l_y, u_x + u_y] \). In addition, given a constraint \(z = x + y \land z = u - w \), we need to compute the intervals for \(z = x + y + z = u - w \), respectively, and then conjunct the two intervals to get an interval for the variable \(z \).

Conventionally, let \(R_1 = [l_1, u_1] \) and \(R_2 = [l_2, u_2] \) be two intervals. The logical conjunction and disjunction operations are modeled with the meet (denoted \(\cap \)) and join (denoted \(\cup \)) operations,
respectively:

\[
R_1 \cap R_2 = \begin{cases}
\bot, & \text{if } \max(l_1, l_2) > \min(u_1, u_2) \\
[\max(l_1, l_2), \min(u_1, u_2)], & \text{otherwise}
\end{cases}
\]

\[
R_1 \sqcup R_2 = [\min(l_1, l_2), \max(u_1, u_2)] .
\]

For example, applying the join operator to the intervals, \(R_1 = [1, 3]\) and \(R_2 = [8, 11]\), produces a new interval \(R' = [1, 11]\). Apparently, such a join operation will lose precision as it introduces a set of false values \(\{4, 5, 6, 7\}\) within \(R'\). In the remainder of this subsection, we focus on how to mitigate such precision loss so that the interval analysis can non-trivially improve the performance of SAT solving.

Disjunctive Domain with Lazy Join. One solution to the problem of precision loss is enriching the analysis with disjunction \([68, 74]\). For instance, instead of computing the new interval \(R'\), we record the interval as \(R_1 \sqcup R_2 \) in the above example to avoid the precision loss. Unfortunately, the number of intervals to maintain may grow extremely large, which is exponential in the number of disjunctions in the formula.

To restore the precision loss caused by joins but to avoid the expensive disjunctive abstraction, we employ a selective merging heuristic. The heuristic is responsible for determining whether two intervals should be merged with join or kept separately. The basic idea is that, if a join does not introduce much precision loss (i.e., yields a similar set of abstract states as taking their union), we can perform a join. To measure the precision loss quantitatively, we define a **dissimilarity ratio** \(\sigma\) ranging from 0 to 1. If the ratio is smaller than a threshold, we perform a join. Next, we discuss the method for computing the ratio.

First, we need to quantify the dissimilarity between the two intervals. Conventionally, the Hausdorff distance is a common measure of the discrepancy between two polyhedra \(A\) and \(B\), defined as

\[
H(X, Y) = \max_{x \in X} \min_{y \in Y} \{d(x, y)\}
\]

Hausdorff distance \(H(A, B) = \max\{H(A, B), H(B, A)\}\),

where \(d(x, y)\) is the Euclidean distance between two points \(x\) and \(y\) in Euclidean space.

The Hausdorff distance between two general polyhedra is hard to compute \([6]\). Fortunately, in our setting, \(A\) and \(B\) are both intervals. Suppose that we have \(A = [l_1, u_1]\) and \(B = [l_2, u_2]\). It can be proved that:

\[
\text{Hausdorff}(A, B) = \max(|l_1 - l_2|, |u_1 - u_2|) .
\]

Then, we can measure the proposition of dissimilarities in the new interval introduced after join. Specifically, we define the dissimilarity ratio as

\[
\sigma = \frac{\text{Hausdorff}(A, B)}{|A \sqcup B|} = \frac{\max(|l_1 - l_2|, |u_1 - u_2|)}{(\max(u_1, u_2) - \min(l_1, l_2))} .
\]

Example 4.1. Consider the example in Figure 2. Suppose that we focus on merging intervals of the variable \(x\). Comparing Figure 2(a) and Figure 2(b) where \(R_{1x}\) and \(R_{2x}\) are disjoint, we tend to perform a join for the intervals in Figure 2(a) because fewer false positives would be introduced. Comparing Figure 2(c) and Figure 2(d) where \(R_{1x}\) and \(R_{2x}\) overlap, we tend to perform a join for the intervals in Figure 2(c) because the two intervals have a larger overlap.

Figure 2: An example of selective merge with join operator.

Example 4.2. Consider the bit-vector formula \(\phi \equiv (\varphi_1 \lor \varphi_2) \land (\varphi_3 \lor \varphi_4)\), where \(\varphi_1, \varphi_2, \varphi_3, \) and \(\varphi_4\) are all conjunctions of atomic predicates. Suppose that we can infer from \(\varphi_1, \varphi_2, \varphi_3, \) and \(\varphi_4\) that \(R_1 = [3, 10]\), \(R_2 = [3, 10]\), \(R_3 = [3, 4]\), and \(R_4 = [8, 11]\), respectively. We will merge the two intervals \(R_1\) and \(R_2\) with join because the dissimilarity ratio is 0. The merged interval \(R' = R_1 \sqcup R_2 = [3, 10]\). In contrast, we tend not to merge \(R_3\) and \(R_4\) because by Eq. (6), the dissimilarity ratio is \(7 \div 8\), close to 1. Intuitively, the merged interval \([3, 11]\) would introduce three false positives, i.e., \([5, 6, 7]\). Later, we need to propagate the interval \(R'\) to \(R_3\) and \(R_4\), i.e., compute \(R' \cap R_3\) and \(R' \cap R_4\), respectively.

4.1.2 Reducing Search Space. After obtaining the sound intervals of bit-vector variables, we then guide the branching heuristic by fixing the values for a subset of Boolean variables. For example, let \(x\) be a bit-vector variable representing a \(n\)-bits unsigned integer such that \(x = [b_{n-1}, \ldots, b_0]\). Recalling Eq. (1), once the values of \(b_{n-1}, b_{n-2}, \ldots, b_0\) are fixed, we can obtain the value of \(x\), and vice versa. Therefore, if the interval analysis infers that \(x \in [l, u]\), where \(l > 0\) or \(u < 2^n - 1\), then we fix some Boolean variables from \(BV(x)\) prior to the main CDCL search loop. If the interval \([l, u]\) is precise enough, we can produce a dramatic size reduction of the space of the truth assignments searched in by the SAT solver.

An alternative use of the intervals might be adding them as additional constraints to the original formula. However, specifying the constraints can increase the formula size dramatically, when the number of constraints is large and each variable may eventually increase the burden of SAT solving.

4.2 Dependence-Guided Variable Ordering

The interval analysis does not provide a panacea: there exist Boolean variables whose values cannot be fixed if the interval information is not precise enough. When solving the Boolean formula generated by bit-blasting, how to effectively handle those variables remains a problem. In particular, as demonstrated in Algorithm 1, the order to assign Boolean variables decides the search direction and, thus, is crucial for the performance of SAT solving.

To address the challenge, we now describe the strategy that leverages the word-level data-dependence information to guide
We also discuss the combination of our strategy and the VSIDS branching heuristic (§ 4.2.2). We start by constructing a data-dependence graph in Figure 3:

![Data-dependence graph](image)

Figure 3: Data-dependence graph for the constraint $\phi \equiv x = u + w \land y = 2 * u - w \land x + 2 * y < 10 \land u \cdot w < 60$.

4.2.1 Ordering with Data Dependence

As discussed in § 2.2, in addition to encoding a bit-vector variable with a sequence of Boolean variables, the bit-blasting procedure also introduces auxiliary Boolean variables to represent each bit-vector term, i.e., the outcome of calculations over the bit-vector variables. Thus, we need to schedule the decision order for Boolean variables encoding both the bit-vector variables and the terms.

Our key observation is that for a formula with a set S of variables and terms, the values of a subset S are often sufficient to determine the values of all variables. Intuitively, this is because program variables and statements usually have some data-dependence relations. For instance, it is common in real-world programs that fresh variables are created for naming expressions, i.e., the calculation results of other variables. Such assignments naturally introduce data dependence.

In the SAT solving phase (Algorithm 1), once the Boolean variables in $BV(S)$ are assigned, the BCP can infer the values of other variables in $BV(N \setminus S)$ automatically. Intuitively, at the beginning of the search, the assignments to $BV(S)$ can cause longer chains of constraint propagation, because the values of other variables, as well as the values of terms over the variables, are the deterministic consequence of that choice.

Therefore, our basic idea is to give higher initial scores to the variables in $BV(S)$, which has two benefits. First, if the decisions made within $BV(S)$ do not lead to conflicts, the BCP can infer more truth values for other variables, accelerating the finding of a satisfying model. Second, if some “inappropriate” decisions lead to conflicts, the SAT solver will use the conflicts information to refine the assignments. The refinement can further influence the values of other clauses that are dependent on $BV(S)$.

We now discuss how to identify the subset S and how to prioritize the elements within S. We start by constructing a data-dependence graph for all bit-vector variables and terms. The graph is split into a set of independent sub-graphs with a formula slicing algorithm [84], such that nodes in each sub-graph must have some data dependence. For example, as shown in Figure 3, a node in the graph represents a variable or a term, and an edge represents a data-dependence relation. Then, we schedule the decision order as follows.

Rule 1. Given two nodes v_1 and v_2 such that v_2 is data-dependent on v_1, we have $BV(v_2) \preceq BV(v_1)$, meaning that the Boolean variables in $BV(v_1)$ has a higher priority than those in $BV(v_2)$.

Some clients of SMT solvers, such as symbolic execution, may eliminate intermediate program variables that name bit-vector terms, such that the formulas mention only input variables. In such cases, our approach can still leverage the data dependence to guide the decision order.

Example 4.3. Consider the constraint in Figure 3. Suppose that the variables x and y are the intermediate variables while the others are input variables of a program. A symbolic executor may generate a constraint where the variables x and y are replaced by $u + w$ and $2 * u - w$, respectively, so that the constraint only contains program input variables:

$\phi \equiv u + w + 2 * (2 * u - w) < 10 \land u \cdot w < 60$.

We denote the terms, $u + w$, $2 * u - w$, $u \cdot w$, and $u + w + 2 * (2 * u - w)$, as, t_1, t_2, t_3, and t_4, respectively. As illustrated in Example 2.2, the bitblaster needs to introduce Boolean variables to encode each element in u, w, t_1, t_2, t_3, and t_4. Since all the terms are data-dependent on u and w, we have $BV(t_1), BV(t_2), BV(t_3), BV(t_4) \leq BV(u), BV(w)$.

Meanwhile, we have $BV(t_4) \leq BV(t_1)$ and $BV(t_4) \leq BV(t_2)$ because t_4 is data-dependent on t_1 and t_2.

In addition to data dependence, control dependence relations encoded in a constraint also can be leveraged to order the nodes that do not have data dependence relations. For instance, for a simple program $if (c) \{ v = a; \} else \{ v = b; \}$, where the value of the variable v is control-dependent on the condition c, if the value of c is known, we then only need to compute the value of either a or b. Thus, when solving a constraint encoding this control-dependence relation, it is preferable to have $BV(a), BV(b) \leq BV(c)$ in practice, such a control-depending relation is usually encoded as an ite (if-then-else) constraint: $\phi \equiv v = ite(c, a, b)$, or its equivalent forms. Given such a constraint, we have the following rule.

Rule 2. Given a formula in the form of $v = ite(c, a, b)$ or its other equivalent forms, we have $BV^*(a), BV^*(b) \leq BV^*(c)$, where we use $BV^*(t)$ to represent the Boolean variables in $BV(t)$ and all other variables the term t data-depends on.

4.2.2 In Combination with VSIDS

In principle, our strategy can replace the default VSIDS heuristic, which maintains a score for each variable and updates the scores periodically (§ 2.3). However, in practice, relying exclusively on the dependence-based scheme is not practical because it cannot dynamically refine the scores. The previous study [12] shows that branching strategies with dynamic re-ordering are usually more effective than static ones.

Therefore, we combine our scoring scheme with VSIDS for the decision-making. Recall that VSIDS initializes the variable scores based on only statistical information, such as the number of clauses in which a variable appears. The previous work [56, 86] has shown that guiding VSIDS in initializing the scores can notably increase the efficiency of the solving process. Hence, we initialize the scores by combining the dependence and the statistical information, and then update the scores by following VSIDS.

In general, the impact of the data-dependence information decreases over time because VSIDS favors the most recently detected conflict clauses, which will eventually dominate when the search
progresses. Fortunately, in practice, VSIDS can make more informed decisions when the search progresses, because it can gather more information about the search history to make a sophisticated choice.

To summarize, our design aims to guide the SAT solver at the beginning of the search, when VSIDS is not yet well-formed enough, and allows VSIDS to override the initial decisions when it has a deeper understanding of the formula.

5 EVALUATION

We implement Trident on top of the Z3 SMT solver. Specifically, Trident uses Z3 for parsing formulas in the SMT-LIB v2.6 format, performing word-level simplifications, and conducting the bit-blasting. Finally, the translated Boolean formulas are handed to our customized SAT solver, which leverage our interval and data-dependence analyses to guide its branching heuristics. Our evaluation is designed to answer the following research questions:

- **RQ1**: How effective are the two guidance strategies of Trident (§5.2)?
- **RQ2**: Is Trident faster to solve constraints compared to other state-of-the-art SMT solvers (§5.3)?
- **RQ3**: Can Trident improve the scalability of existing symbolic analysis tools (§5.4)?

5.1 Experimental Setup

Subjects. We use three realistic symbolic analysis tools to generate bit-vector constraints for evaluating our approach. Specifically, ANGR [79] is a binary analysis platform, QSYM [89] is a symbolic execution engine for hybrid fuzzing, and PINPOINT [78] is a path-sensitive static bug finder. We target subjects that cover different scales of programs, whose sizes range from a few thousand lines to multi-million lines, cover a wide range of applications, such as networking libraries and database engines, and cover both standard benchmarks and open-source projects. In total, as listed in Table 2, we collect thirty programs in three groups:

- **ANGR**: is configured to analyze ten programs from Coreutils, a commonly-used dataset in symbolic execution.
- **QSYM**: The ten programs run by QSYM are taken from the tool’s original paper [89], including three programs in the LAVA-M dataset [30] and seven open-source projects.
- **PINPOINT**: to analyze ten industrial-sized C/C++ programs, which are the monthly trending projects on GitHub that we can set up.

To answer RQ1 and RQ2, we run the tools with their default solvers to dump SMT queries as the SMT-LIB v2.6 format, and then conduct the experiments on these queries. The number of total queries generated by ANGR, QSYM, and PINPOINT is 2,123,211, 1,502,958, and 3,806,989, respectively. Among the queries, 5,236,735 instances are satisfiable, and 2,196,423 ones are unsatisfiable. We believe such a large number of instances are sufficient to evaluate the performance of SMT solving.

To answer RQ3, we substitute Trident for Z3, which is the SMT solver used by ANGR, QSYM, and PINPOINT. Since Trident retains the Z3 API, the program analyzers using Z3 can directly benefit from our work. In the experiment, we examine whether the superior performance of Trident translates into end-to-end benefits for the symbolic analysis tools.

Environment. All solvers are compiled with gcc 7.4.0 using the flags -O3 -m64 -march=native, following the prior works [66, 72] on accelerating SMT solving in symbolic analysis. All solvers are compiled with gcc 7.4.0 using the flags -O3 -m64 -march=native. We configure each solver to use a per-query timeout of 30 seconds, following the prior works [66, 72] on accelerating SMT solving in symbolic analysis. All solvers are compiled with gcc 7.4.0 using the flags -O3 -m64 -march=native. We configure each solver to use a per-query timeout of 15 seconds.

5.2 RQ1: Effectiveness of the Guidance Strategies

First, we investigate the effectiveness of the strategies in our solver by comparing its four configurations. Specifically, we compare Trident to the original Z3 solver, two configurations with each of the interval-guided assignment or dependence-guided ordering strategies turned on.

Figure 4 shows the results in terms of solving time. The data for each benchmark group is normalized to the runtime of Z3. A number larger than 1.0 is a speedup. Table 1 compares the number of unsolved queries within the given time limit.

We can observe that both of the two strategies in Trident contribute to its performance. The data dependence-based strategy has better effects than that of interval-based strategy. It would be hard to infer precise interval information for some queries, rendering the results less effective in reducing the search space. In the QSYM group, data-dependence analysis is the most effective. We find that queries from QSYM tend to have many variables that have strong data-dependence relations. Overall, the speedups range from 3.4× to 6.3×.

We set the SAT solver of Z3 to use the VSIDS branching heuristic and the Luby restart strategy [55].
Additionally, using the two optimizing strategies, Trident is able to solve 38, 122, and 36 more queries than Z3 in the Angr, Qsym, and Pinpoint groups, respectively.

Trident leverages the interval and data-dependence information to reduce the solving time of Z3 by 3.4x to 6.3x, as well as increase the number of solved queries.

5.3 RQ2: Comparison to Other SMT Solvers

In addition to comparing with Z3, on which Trident is built, we also examine the practicality of Trident by comparing it against two state-of-the-art SMT solvers, namely, CVC4 v1.7 and Boolector v2.4.1. In particular, Boolector won the first place in the QF_BV track of SMT-COMP 2019, and CVC4 also won many champions in other tracks.

Figure 5 plots the cumulative runtime of the solvers. Table 2 shows the detailed comparison results. For each program, we report the total SMT queries, the number of unsolved queries, and the time cost of the solvers. The last column of Table 2 denotes the speedup achieved by Trident over the fastest baseline in CVC4 and Boolector.

We can notice that, for most of the programs, Trident obtains 2.0x to 3.1x increases in performance against the baseline. For the Angr, Qsym, and Pinpoint groups, Trident is, on average 3.0x, 2.3x, and 3.1x faster than the baseline, respectively. The largest improvements are seen for ffmpeg and v8 in the Pinpoint group, with speedups of 4.2x.

There are four programs for which the speedups are smaller than 2.0x, including rm, tcpdump and jhead in the Qsym group, and mysql in the Pinpoint group. However, we have seen other solvers much slower when handling queries from several programs. When solving queries from who, size, tcpdump, and jhead, CVC4 is more than 11x slower than Trident. In the cases of gluster, ffmpeg, and v8, Boolector is 4x slower than Trident. To sum up, Trident is, on average 7.9x and 2.9x faster than CVC4 and Boolector, respectively.

There are a total of eleven programs for which the three SMT solvers finish all queries: six of them are in the Angr group, and five of them are in the Qsym group. In total, Trident solves 6, 2, and 40 more queries than the baseline for the Angr, Qsym, and Pinpoint groups, respectively. Overall, we conclude that Trident can solve as many queries as the other two solvers.

Trident improves the SMT solving speed by 1.6x to 4.2x, without lessening the number of solved queries within the time limit.

5.4 RQ3: Improving the Scalability of Symbolic Analysis Tools

Finally, we evaluate the usefulness of Trident for three program analysis clients. Specifically, we configure Angr for running control-flow recovery analysis [79], Qsym for generating test cases, and Pinpoint for detecting null pointer dereference bugs. For each client, we measure the speedups achieved by the three configurations of our solver, following the settings of § 5.2.

Results of Angr. Figure 6 shows the reduction of analysis time for control-flow recovery, which is a fundamental step for binary analysis [24, 75, 79]. On average, Trident-Int, Trident-Dep, and Trident demonstrate 1.5x, 1.6x, and 1.9x speedups, respectively. The overall analysis speedups are smaller than the pure SMT solving speedups, because, in addition to the symbolic execution engine, Angr consists of other components that can be time-consuming, such as backward slicing and value set analysis.

Results of Qsym. Figure 7 summarizes the speedup of input generation in 24 hours of testing. To sum up, on average, Trident-Int, Trident-Dep, and Trident increase the speed by 1.2x, 1.5x, and 1.6x speedups, respectively. As a case study, Figure 8 shows the cumulative branch coverage for objdump and readelf. The speedups are smaller than the pure SMT solving speedups because Qsym is used for hybrid fuzzing [83, 89], where a significant proportion of the time is spent on program execution and symbolic emulation.

Overall, the results show that Trident significantly improves the scalability of Qsym, a state-of-the-art symbolic execution engine for test case generation.

Results of Pinpoint. In Table 3, we report speedups on the four largest programs, which are representative of speedups on the remaining programs. On average, Trident-Int, Trident-Dep, and Trident demonstrate about 1.5x, 1.7x, and 2.4x speedups, respectively.

We remark that the time reduction is non-trivial for a static bug finder, which is enough to make an originally impractical analysis usable in practice. For example, originally, Pinpoint cannot finish analyzing v8 within 11.4 hours. In contrast, with the optimizations offered by Trident, Pinpoint completes the analysis within 5 hours, meaning that it can run in nightly mode, i.e., perform the full analysis of a large codebase from scratch, run by the continuous integration system over night [13].

On average, Trident increases the end-to-end analysis speed of three clients in Angr, Qsym, and Pinpoint by 1.9x, 1.6x, and 2.4x, respectively.

5.5 Threats to Validity

The internal validity mainly depends on the correctness of our implementation. To reduce this threat, at least four developers review the source code of Trident. Furthermore, we have performed extensive testing of Trident on thousands of applications, during which it has solved billions of SMT queries. For these queries, we compare the solving results given by Trident and several existing SMT solvers for validating the correctness of our implementation.

The threats to external validity lie in our test suits. To reduce the threat resulting from benchmarks, we validate our approach over three different symbolic analysis platforms and on thirty real-world subjects varying in scale and functionality. However, the queries from these platforms are not necessarily representative of other tools. Another threat to validity is whether our strategies can be generalized to other eager SMT solvers. In the future, we...
Figure 5: Results of CVC4, Boolector, and Trident on all solved instances.

Table 2: Results of the solvers over the test suites. For each solver, we record the number of unsolved queries and the total time taken. For Trident, the column “Speedup” denotes the speedup over the fastest solver between CVC4 and Boolector.

<table>
<thead>
<tr>
<th>Group</th>
<th>Program</th>
<th>Queries</th>
<th>CVC4</th>
<th>Boolector</th>
<th>Trident</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>TO</td>
<td>Time/m</td>
<td>TO</td>
<td>Time/m</td>
</tr>
<tr>
<td>ANGR</td>
<td>fmt</td>
<td>363,552</td>
<td>8</td>
<td>2598</td>
<td>3</td>
<td>862</td>
</tr>
<tr>
<td></td>
<td>logname</td>
<td>189,243</td>
<td>0</td>
<td>1167</td>
<td>0</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>mkfifo</td>
<td>146,998</td>
<td>0</td>
<td>1120</td>
<td>0</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>nice</td>
<td>307,243</td>
<td>62</td>
<td>2214</td>
<td>8</td>
<td>736</td>
</tr>
<tr>
<td></td>
<td>nohup</td>
<td>140,296</td>
<td>0</td>
<td>859</td>
<td>0</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>env</td>
<td>253,595</td>
<td>21</td>
<td>1708</td>
<td>5</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>head</td>
<td>97,438</td>
<td>0</td>
<td>642</td>
<td>0</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>mv</td>
<td>173,122</td>
<td>20</td>
<td>1060</td>
<td>13</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>nl</td>
<td>145,582</td>
<td>0</td>
<td>779</td>
<td>0</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>nproc</td>
<td>306,142</td>
<td>0</td>
<td>1850</td>
<td>0</td>
<td>586</td>
</tr>
<tr>
<td>QSYM</td>
<td>uniq</td>
<td>133,587</td>
<td>0</td>
<td>1211</td>
<td>0</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>md5sum</td>
<td>92,692</td>
<td>0</td>
<td>188</td>
<td>0</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>who</td>
<td>121,647</td>
<td>0</td>
<td>1001</td>
<td>9</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>readdir</td>
<td>113,812</td>
<td>11</td>
<td>726</td>
<td>0</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>nm</td>
<td>80,496</td>
<td>0</td>
<td>327</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>objdump</td>
<td>178,555</td>
<td>0</td>
<td>1053</td>
<td>0</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>size</td>
<td>129,580</td>
<td>19</td>
<td>919</td>
<td>1</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>tcpdump</td>
<td>236,256</td>
<td>0</td>
<td>3336</td>
<td>2</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>djpeg</td>
<td>235,357</td>
<td>0</td>
<td>970</td>
<td>1</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>jhead</td>
<td>180,976</td>
<td>0</td>
<td>1383</td>
<td>0</td>
<td>118</td>
</tr>
<tr>
<td>PINPOINT</td>
<td>gluster</td>
<td>465,054</td>
<td>1</td>
<td>211</td>
<td>28</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>libicu</td>
<td>226,418</td>
<td>2</td>
<td>226</td>
<td>0</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>imgmagick</td>
<td>111,122</td>
<td>4</td>
<td>89</td>
<td>2</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>openssl</td>
<td>356,173</td>
<td>28</td>
<td>219</td>
<td>6</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>python</td>
<td>124,685</td>
<td>3</td>
<td>72</td>
<td>0</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>gcc</td>
<td>132,550</td>
<td>13</td>
<td>108</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>ffmpeg</td>
<td>419,306</td>
<td>91</td>
<td>416</td>
<td>2</td>
<td>402</td>
</tr>
<tr>
<td></td>
<td>v8</td>
<td>645,970</td>
<td>100</td>
<td>674</td>
<td>7</td>
<td>616</td>
</tr>
<tr>
<td></td>
<td>mysql</td>
<td>468,879</td>
<td>28</td>
<td>198</td>
<td>6</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>wine</td>
<td>856,832</td>
<td>150</td>
<td>677</td>
<td>10</td>
<td>719</td>
</tr>
</tbody>
</table>

Total TO 561 103 55
will further apply our approach to other solvers and more symbolic analysis frameworks.

6 RELATED WORK

We discuss related work in three groups: symbolic execution (§ 6.1), bit-vector constraint solving (§ 6.2) and branching heuristics (§ 6.3).

6.1 Optimizing SMT Solving in Symbolic Execution

There is a large body of work on accelerating constraint solving for symbolic execution. Different forms of caches such as satisfying model [20] and unsatisfiable core [60] help avoid calling the solver when possible. Klee employs a method called “constraint independence” to eliminate sub-formulas that are irrelevant to the current branch expression. Our approach can guide the SAT solver to better handle variables that are not independent, by leveraging their data-dependence relations. Symbolic executors can perform different algebraic simplifications of expressions to make the constraints more solver-friendly [21, 67, 77]. Semantics-preserving program transformations [19, 31, 85] also help to generate simpler and fewer SMT queries. These simplifications and transformations operate at the level of the symbolic execution engines, and, thus, are orthogonal to our work that operates at the level of SMT solvers. The idea of employing a portfolio of SMT solvers for parallel solving has been explored [66], whereby each solver runs independently, and the result of the fastest solver is taken. Our solver can be combined with existing solvers in a portfolio.

6.2 Decision Procedures for Bit-Vectors

The majority of state-of-the-art SMT solvers [2, 25, 29, 33, 63] solve bit-vector constraints via reduction to SAT, some employing specialized procedures for equality reasoning [17] and linear modulo arithmetic [36]. A number of methods alternative to bit-blasting have been developed, such as Canonizer-based approaches [4, 28], reduction to Effectively Propositional Logic (EPR) [49], model-constructing satisfiability calculus (mcSAT) [90], stochastic local search (SLS) [35, 64, 65], and abstraction-based method [18]. Most of these works operate over restricted subsets of bit-vector theory. We tried the SLS-based solvers in Boolector and Z3, but found that they are not competitive with the solvers examined in our evaluation.

Most existing works on enhancing the eager approach focus on improving the word-level preprocessing and bit-blasting phases [34, 45, 48, 57, 71, 82]. Unconstrained term propagation [16, 17] identifies variables and terms that are irrelevant for determining satisfiability, thereby reducing the problem size. Nadel [61] proposes an algorithm that generates word-level rewriting rules at runtime for a given problem. Singh and Solar-Lezama [82] generates word-level simplifiers using program synthesis. Inala et al. [45] generate domain-specific encoding schema for bit-blasting with synthesis and machine learning techniques. These optimizations for word-level preprocessing and bit-blasting are orthogonal to our approach.

Interval Constraint Propagation (ICP) is a sound but incomplete numerical method for constraint solving [7, 8, 14, 23, 32, 38]. Most existing ICP techniques work only for real or integer formulas. Janota and Wintersteiger [46] propose a method for inferring interval information of bit-vectors from a system of simple inequalities. In each of the inequality, only one variable is permitted and there are no multiplications. Dustmann et al. [32] present a semi-decision procedure for bit-vectors, which tracks the possible values for each symbolic variable, so as to quickly solve certain types of queries before bit-blasting. Compared with previous works, our analysis is not restricted to certain classes of queries. Besides, it attempts to reduce the search space of SAT solving after bit-blasting, instead of directly deciding the satisfiability.
6.3 Branching Heuristics

There is a huge literature on SAT branching heuristics, such as MOM [69], Jeroslow-Wang [47], VSIDS [59], Conflict History-Based (CHB) [54], and so on. Different variants of VSIDS have also been proposed, such as BerkMin’s strategy [41], exponential VSIDS (EVSIDS) [19], variable move-to-front (VMTF) [73], clause-move-to-front (CMTF) [39], and average conflict index decision score (ACIDS) [12]. However, these branching heuristics are designed for general SAT problems.

The dependence information has been used to restrict the set of decision variables for SAT solving [26, 27, 52, 58]. Given a Boolean formula with a set N of variables, they restrict the branching heuristic to focus on a subset S that is sufficient to determine the truth values of all variables. In contrast, we leverage the data-dependence relations to initialize the scores, without restricting the branching only to the subset. Besides, we combine the data- and control-dependence information to further schedule the order of variables within the subset S.

Previous works show that structure information can be utilized to improve the branching heuristic for solving SAT queries from bounded model checking (BMC). Shtrichman [80] predetermines the variable ordering by traversing the variable dependency graph. Wang et al. [86] identify important variables from previous unsatisfiable BMC instances and apply them to solve the current instance. Yin et al. [88] give a higher priority to the transition variables from the transition system. These approaches target pure Boolean formulas and leverage the domain-specific knowledge of circuits, instead of word-level structure and information.

The theory-aware approaches [9, 22, 42, 76] for DPLL(T) lazy SMT solving attempt to make the SAT branching heuristic aware of the T-semantic of the literals. Z3Str3 [9] biases the search towards branches that contain easier string constraints. Goldwasser et al. [42] guide the branching by leveraging the T-implications between linear arithmetic constraints. Being aware of the implication relations, they can choose unassigned atomic predicates that are consistent with the current partial assignment. A recent work [22] takes advantage of the control-flow information to reduce the redundant search space. These methods differ from our method across two key technical dimensions. First, they work under the context of lazy SMT solving, while our approach attempts to accelerate eager SMT solving. Given a first-order formula, our reasoning centers around the bit-blasted and equisatisfiable Boolean formula, but not around the approximated Boolean skeleton. Second, they exploit correlations between atomic predicates locally, while we analyze globally word-level information such as the variable interval.

7 CONCLUSION

This paper presents an approach to accelerating eager bit-vector solvers, which infers the interval and data-dependence information of the bit-vector formula to guide the SAT solver after bit-blasting. We have evaluated the proposed techniques over queries from three realistic symbolic analysis platforms, demonstrating the advantages of our approach.

ACKNOWLEDGMENTS

We thank Yushan Zhang, Yikun Hu, as well as the anonymous reviewers for their insightful comments. This work is partially funded by an MSRA grant, the Hong Kong GRF16230716, GRF16206517, ITS/215/16FP, ITS/440/18FP grants, and the NSFC Project No. 61902329. Qingkai Shi is the corresponding author.

REFERENCES