
FRIES: Fuzzing Rust Library Interactions via Efficient
Ecosystem-Guided Target Generation

Xizhe Yin
xizheyin@smail.nju.edu.cn

State Key Laboratory for Novel
Software Technology
Nanjing University

Nanjing 210023, China

Yang Feng∗
fengyang@nju.edu.cn

State Key Laboratory for Novel
Software Technology
Nanjing University

Nanjing 210023, China

Qingkai Shi
qingkaishi@nju.edu.cn

State Key Laboratory for Novel
Software Technology
Nanjing University

Nanjing 210023, China

Zixi Liu
zxliu@smail.nju.edu.cn

State Key Laboratory for Novel
Software Technology
Nanjing University

Nanjing 210023, China

Hongwang Liu
hongwangliu@smail.nju.edu.cn
State Key Laboratory for Novel

Software Technology
Nanjing University

Nanjing 210023, China

Baowen Xu
bwxu@nju.edu.cn

State Key Laboratory for Novel
Software Technology
Nanjing University

Nanjing 210023, China

Abstract
Rust has been extensively used in software development in the past
decades due to its memory safety mechanisms and gradually ma-
tured ecosystems. Enhancing the quality of Rust libraries is critical
to Rust ecosystems as the libraries are often the core component
of software systems. Nevertheless, we observe that existing ap-
proaches fall short in testing Rust API interactions — they either
lack a Rust ownership-compliant API testing method, fail to handle
the large search space of function dependencies, or are limited by
pre-selected codebases, resulting in inefficiencies in finding errors.

To address these issues, we propose a fuzzing technique, namely
FRIES, that efficiently synthesizes and tests complex API interac-
tions to identify defects in Rust libraries, and therefore promises
to significantly improve the quality of Rust libraries. Behind our
approach, a key technique is to traverse a weighted API dependency
graph, which encodes not only syntactic dependency between func-
tions but also the common usage patterns mined from the Rust
ecosystem that reflect the programmer’s thinking. Combined with
our efficient generation algorithm, such a graph structure signifi-
cantly reduces the search space and lets us focus on finding hidden
bugs in common application scenarios. Meanwhile, an ownership
assurance algorithm is specially designed to ensure the validity
of the generated Rust programs, notably improving the success
rate of compiling fuzz targets. Experimental results demonstrate
that this technique can indeed generate high-quality fuzz targets
with minimal computational resources, while more efficiently dis-
covering errors that have a greater impact on actual development,

∗Yang Feng is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680348

thereby mitigating the impact on the robustness of programs in the
Rust ecosystem. So far, FRIES has identified 130 bugs, including 84
previously unknown bugs, in 20 well-known latest versions of Rust
libraries, of which 54 have been confirmed.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging.

Keywords
Rust; Library Testing; Fuzz Target Generation

ACM Reference Format:
Xizhe Yin, Yang Feng, Qingkai Shi, Zixi Liu, Hongwang Liu, and Baowen
Xu. 2024. FRIES: Fuzzing Rust Library Interactions via Efficient Ecosystem-
Guided Target Generation. In Proceedings of the 33rd ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA ’24), Sep-
tember 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3650212.3680348

1 Introduction
In recent years, the Rust programming language has gained pop-
ularity due to its potential in safety [13, 20, 26, 34, 36] and has
been widely applied in various domains such as system program-
ming [3], network and concurrent programming [5], and secure
programming [2], leading to the creation of many well-known
projects. Despite the safety features provided by Rust, programs
written in Rust still contain risks of memory safety issues or logical
errors, which may crash the software and affect the stability of
Rust programs [12, 23, 27, 30]. Interestingly, most of the crashes in
Rust programs originate from Rust libraries [35]. As reported, Rust-
Sec [7], the Rust Security Advisory Database, received an average
of over 150 severe bugs in Rust libraries per year from 2020 to 2022.
Therefore, ensuring the quality of Rust libraries and uncovering
hidden errors within them is a critical task.

However, testing Rust libraries presents the following three chal-
lenges, which existing approaches fail to handle well.

1137

https://orcid.org/0009-0006-4401-9346
https://orcid.org/0000-0002-7477-3642
https://orcid.org/0000-0002-8297-8998
https://orcid.org/0000-0002-3271-7255
https://orcid.org/0009-0006-4247-4177
https://orcid.org/0000-0001-7743-1296
https://doi.org/10.1145/3650212.3680348
https://doi.org/10.1145/3650212.3680348

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xizhe Yin, Yang Feng, Qingkai Shi, Zixi Liu, Hongwang Liu, and Baowen Xu

C1 Narrowing down the search space with low overhead while
maintaining flexibility, from the huge number of potential
API invocation sequences to reflect errors in the real develop-
ment environment, thus saving computational resources.

C2 Producing long, diverse, and complex Rust API interactions,
which, in comparison to simple and short ones, are more
likely to trigger potential errors.

C3 Conforming to Rust ownership constraints even when gen-
erating complex programs, i.e., the targets. Violating the
constraints will invalidate the generated targets.

First, classical fuzzing tools, e.g., AFL [6], specialize in generating
and mutating inputs of primitive types like integers. However, to
effectively test functions in a library, which often require composite
types, e.g., structure, as their inputs, a new technique must be able
to recognize other related functions to construct these inputs. To
this end, researchers have proposed a few unit testing techniques,
e.g., RustyUnit [33], SyRust [31], and many others not for Rust [9,
19, 29, 32]. These techniques can synthesize valid programs, but
are unable to mutate inputs, making it difficult to trigger bugs.
They often focus on testing a small number of functions in the
same module and ignore API interactions across different modules
throughout the library. Thus, they generate simple interactions for
only a few functions. Moreover, the synthesis of effective targets
often relies on a lot of manual configuration. Thus, the challenges,
C1 and C2, are not well handled.

To test Rust API interactions effectively, some fuzzing techniques,
e.g. RULF[23], create coarse-grained relationships among Rust API
functions and blow up an API dependency graph. Despite the ef-
fectiveness in some application scenarios, due to the large search
space of the dependency graph, it has to limit the length of each API
invocation sequence (path obtained from the dependency graph)
to a constant three. In other words, it’s so hard for them to detect
bugs that have to be triggered by involving more than three func-
tions, which, however, are very common as demonstrated in our
evaluation. Thus, C1 and C2 are not sufficiently handled, either.

In addition to techniques specially designed for Rust, some
techniques, such as FUDGE [11], FuzzGen [21], APICraft [37],
UTopia [22] and Winnie [24], can synthesize API interactions to
test programs that are written in common languages like C/C++.
However, on the one hand, many of them only test API interac-
tions that occur in a set of pre-selected code repositories and, thus,
may miss bugs that are out of the scope of the codebases. On the
other hand, they do not take the ownership mechanism of Rust into
consideration and, thus, will generate a number of invalid testing
targets when directly used for Rust programs. To summarize, all
the challenges, C1, C2, and C3, are not well handled.

Rust’s open, community-driven development approach and ad-
vanced dependency management system form the backbone of its
library ecosystem. Rust uses Cargo, the official package manager, to
simplify dependency management andmake dependencies between
programs clear and accessible. Inspired by the above work and facts,
in this paper, we propose FRIES to alleviate the three challenges,
expecting to improve the testing effectiveness and efficiency of
Rust libraries. Specifically, we build a weighted API dependency
graph that encodes syntactic constraints and the API usage pat-
terns in the Rust ecosystem to reduce the search space. Combined

with the graph, our proposed efficient generation algorithm with
type checking lets us focus on finding hidden bugs in common
application scenarios, significantly improving the quality of fuzz
targets. To avoid violating Rust’s ownership constraint, we arm the
target generation approach with an ownership assurance algorithm,
which covers concurrent references and borrowings of data to en-
sure the validity of the generated more complex API invocation
sequences. Finally, the generated API invocation sequences are con-
verted into executable programs parameterized by primitive-type
inputs. As such, we feed inputs generated by conventional fuzzers
like AFL++ [16] for testing.

We implement FRIES as a fuzzing tool and detect a total of
84 previously unknown bugs on 20 open-sourced popular Rust
libraries from different domains in total. To evaluate FRIES, we
compare it with several state-of-the-art techniques for testing li-
braries, including two current testing techniques for Rust libraries.
The experimental results demonstrate that FRIES can effectively
generate long API invocation sequences and cover a large number
of function dependency edges and API functions with very low
overhead. Besides, FRIES can generate API invocation sequences
containing many more functions in almost linear time, which can
increase the richness of function calls and trigger deep API bugs.
Moreover, our bug case analysis further confirms that the long
API invocation sequences generated by FRIES containing usage
patterns mined from the ecosystem can detect potential defects in
API functions. In summary, the main contributions of our work are
as follows.

• We propose an API invocation sequence generation algo-
rithm with type checking that generates high-quality Rust
interactions with low overhead based on a weighted API
dependency graph.
• We use Rust’s Middle-level Intermediate Representation i.e.
MIR to analyze the usage patterns of API in the corpus to
synthesize API invocation sequences that influence the Rust
ecosystem, narrowing down the huge search space.
• We present a Rust ownership assurance technique that sig-
nificantly improves the validity of more complex Rust inter-
actions, thus enhancing the testing performance.
• We implement FRIES as a prototype tool and conduct exper-
iments on 20 popular Rust libraries to show its capability of
detecting bugs and merits over existing methods.

2 Motivating example
In this section, we illustrate the limitations of previous works with
an example of an API sequence generated by FRIES, which triggers
a real bug in a Rust library.
An Example of a FRIES-generated API Sequence. The function
test(...) in Listing 1 shows a testing target generated by FRIES.
By feeding inputs into the target by fuzzing tools like AFL++ [16],
it triggers an unknown bug (confirmed by the developers) in the
library, xi-core-lib, a core library of an editor written in Rust.

The target contains two key data structures, SelRegion and
Selection. The former is a region we select in an editor and the
latter is a set of selected regions. Line 6 initializes a Selection, v2,
using the region created at Line 5. Line 7 and Line 8 create two
regions, which are respectively added to v2 at Line 9 and Line 10

1138

FRIES: Fuzzing Rust Library Interactions via Efficient Ecosystem-Guided Target Generation ISSTA ’24, September 16–20, 2024, Vienna, Austria

via two different functions. The bug can be triggered only when
we consecutively add two identical regions to the Selection and
the second region needs to be added distinctly, just like Line 9 and
Line 10 in the target with pos1=pos2, meaning v3=v4.

1. use xi_core_lib::selection::SelRegion;
2. use xi_core_lib::selection::Selection;
3. // an input to trigger the bug, test(6, 24, 68, 68);
4. fn test(start:usize, end:usize, pos1:usize, pos2:usize) {
5. let v1: SelRegion = SelRegion::new(start, end);
6. let mut v2: Selection = Selection::new_simple(v1);
7. let v3: SelRegion = SelRegion::caret(pos1);
8. let v4: SelRegion = SelRegion::caret(pos2);
9. Selection::add_region(&mut v2, v3);

10. Selection::add_range_distinct(&mut v2, v4);
11. }

Listing 1: A target generated by FRIES, which triggers a bug.

Limitations of Techniques Not Designed for Rust. Many tech-
niques not designed for Rust often utilize existing codebases, such
as FUDGE[11], APICraft [37], Winnie [24], etc. They usually ex-
tract code snippets directly from codebases for testing or combine
them into new targets. Thus, they hardly generate targets with
API interactions beyond the codebases, which limits testing effec-
tiveness. Regarding the example, existing code usually employs a
validity check before using add_range_distinct(...), as shown
in Line 2 of Listing 2, which narrows program state space that can
be explored. Since existing works will directly use the real clip
in Listing 2 as a fuzz target, it cannot generate a target that calls
add_region(...) and add_range_distinct(...)with two same
regions, i.e., 𝑣3 and 𝑣4. Thus, the generated target misses the bug.

1. Selection::add_region(&mut v2, v3);
2. if v3 != v4 { Selection::add_range_distinct(&mut v2, v4); }

Listing 2: Real-world code with restricted program space.

And, since this kind of method is not specially designed for Rust,
it may generate a number of invalid testing targets when used to test
Rust libraries, thus degrading the testing performance. For example,
given the first two code snippets in Listing 3, both of which obey
Rust’s ownership constraint, existing works may crossover or join
them to generate a new testing target.

// snippet 1
1. let v3: SelRegion = SelRegion::caret(...);
2. Selection::add_region(..., v3);

// snippet 2
3. let v3: SelRegion = SelRegion::caret(...);
4. Selection::add_range_distinct(..., v3);

// The generated program by joining snippet 1 and 2
5. let v3: SelRegion = SelRegion::caret(...);
6. Selection::add_region(..., v3);
7. Selection::add_range_distinct(..., v3);

Listing 3: Existing methods may violate Rust ownership.

The generated code in Lines 5-7 of Listing 3 does not follow
Rust’s ownership constraint. This is because the ownership of 𝑣3 has
been transferred to the function add_region(...) and its lifecycle
ends after the function returns. Hence, the variable 𝑣3 becomes
invalid when we call add_range_distinct(...), and the target
even cannot be compiled. So, C1, C2, and C3 are not handled well.
Limitations of Techniques for Rust API Testing. The current
state-of-the-art technique for Rust fuzz testing encodes the relation-
ships among API functions in a library at a coarse-grained level [23].
Thus, given that there are often many functions in a library, the

Figure 1: Dependencies between functions.

search space of the graph is too large such that one cannot afford
an exhaustive exploration of the graph to generate testing targets.

For example, the library xi-core-lib contains 212 public func-
tions and the corresponding API dependency graph may contain
212𝑚 paths to explore, where 𝑚 is the length of API invocation
sequences. To reduce the search space, they are armed with a key
observation that “most bugs can be reproduced by calling library
APIs within three times” [23], which, however, may let us miss a
lot of bugs like the one shown in Listing 1. However, as explained
before to trigger the bug in Listing 1, we need to call APIs five times.
Thus, due to the relatively high graph traversal complexity, they
cannot generate such a long and complex API sequence for testing
and fail to find the bug.

Another work [31] synthesizes effective targets by encoding the
semantic rules of Rust as constraints and solving the constraints. It
encodes the function signatures and their potential inputs into SAT
formulas and solves them. And it gets the models and translates
them into testing targets. However, due to scalability, it can test
only a few functions (up to 15) of the total library. For example, it
can cover only 7% functions of library xi-core-lib, and a large
number of inter-module interactions are left out. Additionally, the
algorithm encodes labor-intensive constructed input templates into
constraints, which disables input mutation and thus limits the ex-
ploration of state space. For example, the bug shown in 1 requires
specific inputs to be triggered. Thus, current techniques designed
for Rust API testing cannot handle C1 and C2.

FRIES addresses these limitations by mining programming pat-
terns from the Rust ecosystem, constructing weighted API depen-
dency graphs, and synthesizing API sequences using an efficient
search algorithm with an ownership assurance algorithm, whose
key insight is introduced in the next section.

3 FRIES in a Nutshell
Our approach addresses all three challenges via three main tech-
niques as discussed below.
Mining API Patterns to Embrace Scalability. The first step
of FRIES is to create a graph for all functions in the target Rust
library. Traversing the graph allows us to find different paths, i.e.,
API invocation sequences, to generate the testing targets. Figure 1
shows a part of the graph containing the functions used in our
motivating example, i.e., Listing 1. In the graph, a rectangle node
represents a function and an ellipse node is a data type. A solid
arrow from a function to a data type, e.g., ①, means the function
returns a value of that type. A solid arrow from a data type to a
function, e.g., ③, means the function accepts a value of the type as
its input and transfers its ownership, and further usage isn’t allowed.
A one-way double-line arrow, e.g., ⑨, also input a value of a type to
a function, but it means an immutable reference. This means that
the function temporarily borrows the variable, and cannot change
the value of the variable. And a two-way double-line arrow, e.g., ⑧,
means a mutable reference.

1139

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xizhe Yin, Yang Feng, Qingkai Shi, Zixi Liu, Hongwang Liu, and Baowen Xu

ACDG

Rust
MIR

Dependency Info

Order InfoCorpus
Crates

Target
Library

Control & Data

Weight
Insertion

Dependency
Construction Weighted API

Dependency Graph

Flow Analysis

API Pattern Mining

Weighted ADG Construction
Operation
Checker

Ownership
Checker

API Invocation Sequence

API Function Selection

Weighted Selection

Target Generation with Ownership Checker

Fuzz Target

Bug
Report

Fuzzing
Driver

API functions Initialization

Pre-selection
Weight

Calculation

Input

Input

Updating available function
Insert

Figure 2: The workflow of FRIES.
Due to the large number of functions in a library, such a graph

could be too large to be exhaustively explored for testing target
generation. To reduce the search space, unlike RULF that limits the
path length of graph traversal, we mine the API usage patterns, e.g.
data or control flow information, from existing software written
in Rust and, according to the pattern, assign weights to the edges,
forming a weighted API dependency graph. Such weights allow
us to focus on finding hidden bugs in common API interactions,
thereby significantly reducing the search space, which handles C1.
Using Efficient SelectionAlgorithm to EnsureDiversity. Based
on the weighted API dependency graph described above, we apply a
semi-randomized sequence generation algorithm that generates API
invocation sequences that have a higher probability of occurring
in data and control flow of the real program mined, but not always.

For instance, the information we mined suggests that the depen-
dencies, ①→⑨ and ②→⑨ are less frequently used. As such, we
can focus on using other API dependencies to generate the test-
ing target and, thus, have more chances to generate the target in
Listing 1. More detailed design can be found in Section 4.

It is noteworthy that, unlike FUDGE or APICraft, we don’t only
use the pre-selected codebases to find more important API inter-
actions to test, and do not lose the chance of generating testing
targets beyond the pre-selected codebases. Combined with efficient
sequence generation algorithms, we can synthesize diverse and
complex sequences, thus handling C2.
Ownership Assurance for Target Generation. When gener-
ating API invocation sequences as per the paths of the weighted
API dependency graph, we also advocate a list of ownership assur-
ance rules to improve the validity of the generated targets. These
rules include avoiding using moved variables, avoiding concur-
rent use cases of borrowings, etc., which will be detailed in the
next section. For instance, since the edge ③ in Figure 1 stands
for transferring the ownership of the variable, FRIES will not use
the variable of the type SelRegion after passing it to the function
add_region(...). In comparison, since the edge ⑦ denotes a mu-
table reference, as shown in Listing 1, after passing the variable 𝑣2
into the API add_region(...), we can still use it at Line 10 and
pass it into the function add_range_distinct(...) as fuzz target.
FRIES solved C3 by applying ownership assurance.

4 Approach
Figure 2 shows the overall workflow of FRIES. To capture the prac-
tical API usages, FRIES first collects corpus crates from the Rust
ecosystem and then performs static analysis on Rust MIR to mine
their usage patterns, which is described in Section 4.1. Next, in
Section 4.2, we introduce how to analyze the target library and

Parameters or
Return Value

Dependency Edge

Call Edge

Order Edge

Callee

Function in Target Library

Function in Corpus

f1

f2

f3

g1

callsite2

params

callsite3

callsite1

g2

callsite4

params

return

return

Figure 3: An example of API Control & Dependency Graph.

further combine the mined patterns to construct a weighted API
dependency graph, which is the core of our approach to narrow the
search space for C1. Then, we propose an efficient generation algo-
rithm with type and ownership checking for Rust that generates
high-quality API invocation sequences, which solves the challenges
C2 and C3. We introduce the detailed implementation of FRIES
generating sequences in Section 4.3, and our ownership assurance
in Section 4.4. Finally, FRIES converts the sequences into executable
programs and tests the target library with fuzzing tools.

4.1 Mining on MIR to Narrow Search Space
To generate fuzz targets with practical API usages, we first analyze
the Rust MIR of corpus collected from the ecosystem to mine their
usage patterns as guidance. Specifically, we gather Rust programs,
potentially depending on the target library, to serve as corpus crates
and construct an API Control & Dependency Graph to effectively
mine practical API usages.

We define the API Control & Dependency Graph (ACDG) as an
abstract representation of function order relationships and data
dependencies in the corpus, which implies information about how
the functions in the target library are used by programmers in
real projects. Formally, ACDG is regarded as a directed graph 𝐺 =

(𝐹𝑛𝑐𝑜𝑟𝑝𝑢𝑠 , 𝐹𝑛𝑙𝑖𝑏 ,𝐶𝐸, 𝐷𝐸,𝑂𝐸). Below is an explanation of the graph:

• 𝐹𝑛𝑐𝑜𝑟𝑝𝑢𝑠 = (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,𝐶𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠) represents functions defined
in the corpus crate, including variables in it, representing data
flow. 𝐶𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠 represents call points that imply control flow.
• 𝐹𝑛𝑙𝑖𝑏 represents the functions in the target library. Our goal is
to find the dependency pairs and order pairs in 𝐹𝑛𝑙𝑖𝑏 .
• 𝐶𝐸 = {(𝑠1, 𝑡1), (𝑠2, 𝑡2), · · · } is the set of Call Edges, where the
source 𝑠𝑖 ∈ 𝐹𝑛𝑐𝑜𝑟𝑝𝑢𝑠 , and the target 𝑡𝑖 ∈ (𝐹𝑛𝑐𝑜𝑟𝑝𝑢𝑠 ∪ 𝐹𝑛𝑙𝑖𝑏).
• 𝐷𝐸 = {(𝑠1, 𝑡1), (𝑠2, 𝑡2), · · · } represents the set of Dependency
Edges, where the source 𝑠𝑖 and target 𝑡𝑖 represents a parameter
or the return value of the functions in 𝐹𝑛𝑐𝑜𝑟𝑝𝑢𝑠 ∪ 𝐹𝑛𝑙𝑖𝑏 .

1140

FRIES: Fuzzing Rust Library Interactions via Efficient Ecosystem-Guided Target Generation ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: Transformation patterns of recursive match
Operation Transformation pattern Statement

Direct X→ X I = O

Ref X→ &X I = &O
X→ &mut X I = &mut O

Pointer X→ *const X I = &O as *const
X→ *mut X I = &O as *mut

Deref &X | &mut X | *const X | *mut X→ X I = *O

Wrap X→ Option<X> I = Some(O)
X→ Result<X, E> I = Ok(O)

Unwrap Option<X>→ X I = if let Some(i) = O {i} else {exit}
Result<X, E>→ X I = if let Ok(i) = O {i} else{exit}

• 𝑂𝐸 = {(𝑠1, 𝑡1), (𝑠2, 𝑡2), · · · } represents the set of Order Edges,
where the source and target function 𝑠𝑖 , 𝑡𝑖 ∈ 𝐹𝑛𝑙𝑖𝑏 .
An example of ACDG is depicted in Figure 3, with𝑔1 and𝑔2 repre-

senting functions from the corpus, while the target library includes
functions 𝑓1, 𝑓2, and 𝑓3. There are 3 call sites in 𝑔1 and 1 in 𝑔2.The
𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒3 may be called after 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒1 in the control flow. The data
flows with dependency edges. Therefore, there are four call edges:
𝐶𝐸 ={ (𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒1, 𝑓1), (𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒2, 𝑔2), (𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒3, 𝑓3), (𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒4, 𝑓2) }.
There are four dependency edges in 𝑔1: 𝐷𝐸 = { (𝑝𝑎𝑟𝑎𝑚𝑠 , 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒1),
(𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒1, 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒2), (𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒1, 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒3), (𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒3, 𝑟𝑒𝑡𝑢𝑟𝑛) }. And
there is one order edge: 𝑂𝐸 = { (𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒1, 𝑐𝑎𝑙𝑙𝑠𝑖𝑡𝑒3) }.

We perform inter-procedural data flow analysis based on the
MIR, which is the intermediate code representation from the Rust
compilation process. To construct the ACDG, we traverse the as-
signment statements in MIR to find direct data dependencies. In the
assignment statement, the variables on the left-hand side (LValue)
depend on the variables on the right-hand side (RValue), which can
be a binary operator (binaryOp), a reference (Ref), etc. It means
the data flows from the right to the left. For the case where RValue
is a function call, there may be extra data dependencies on the
arguments in the function call , so we go inside the called function
to explore the inter-procedural dependencies. Therefore, we itera-
tively propagate the parsed dependency relationships because the
dependency relationship has transitivity, thus constructing ACDG.

Based on ACDG, we further mine the frequency of dependencies
and call orders of functions of the target library. Regarding functions
of the target library in Figure 3, the function 𝑓1 is called before
another function 𝑓3 is called, without other functions called along
the path from 𝑓1 to 𝑓3, so the function pair (𝑓1, 𝑓3) represents an order
relation in the control flow. Similarly, it can be parsed out that two
function pairs (𝑓1, 𝑓2), and (𝑓1, 𝑓3) have a dependency relationship.
By parsing a large number of corpus crates, the dependency and
order pairs of the target library may be repeated, thus, we record
their frequencies as the mined API usage patterns. If a specific
dependency or order of a function pair is frequent, it implies that
such usage is common in practical development, and such a pattern
should be given higher weight to generate fuzz targets.

4.2 Weighted ADG Construction for Searching
To obtain the syntactic constraints between all functions of the
target library, we transform the source code using rustc [8] into a
simplified HIR [4], a high-level representation of Rust code, from
which we extract function signatures. Based on the parameters and
return value types of two functions, we determine whether they

f1

f2

f4

f3

f5

f6

w1

w2

w3

w4

w5

w6

Func�on

Dependency Edge

Order Edge

Figure 4: Weighted API Dependency Graph.

can construct syntactically compliant dependencies. Formally, we
derive the abstraction dependency between functions in the target
library, which is defined as follows:

Definition 4.1 (Function Abstraction Dependency). Given two func-
tions 𝑓 and 𝑔 defined in a library, if the return value of 𝑓 can be
transformed as one of the parameters of 𝑔, then 𝑔 depends on 𝑓 ,
and (𝑔, 𝑓) belongs to the API abstraction dependency.

Referring to the existing work [23], we summarize the patterns
of data type transformations in Rust syntax, as shown in Table 1.
For a given function’s return value 𝑂 and another function’s pa-
rameter 𝐼 , we recursively perform pattern matching to generate the
corresponding transformation statement. If 𝑂 can be converted to
𝐼 through a series of conversion statements, then these two func-
tions have an API abstraction dependency. For example, suppose
we want to convert type 𝑇1 into type 𝑇2. If 𝑇1 and 𝑇2 are identical
types, the operation is direct, allowing the direct passing of 𝑇1 to
𝑇2. When 𝑇2 satisfies the pattern &𝑋 , a call statement 𝑇2 = &𝑇 ′2 is
generated, and then𝑇 ′2 replaces𝑇2, recursively pattern matching𝑇1
and 𝑇 ′2 until encountering direct operation. If no pattern satisfies,
then there is no dependency between them.

Based on the function abstraction dependency, we further em-
ploy the usage patterns mined, i.e. frequencies, as weights and con-
struct weighted API dependency graphs. Specifically, the weighted
API dependency graph (WADG) is denoted as𝑊𝐴𝐷𝐺 = (𝑁, 𝐸𝐷 , 𝐸𝑂),
where 𝑁 represents the set of all public functions in the target li-
brary, and 𝐸𝐷 and 𝐸𝑂 are the frequencies of dependency and order
pairs between the two functions, respectively, which we mine from
the ecosystem in Section 4.1. In𝑊𝐴𝐷𝐺 , the greater weight of the
order edge (𝑓 , 𝑔) implies that calls such as 𝑓 followed by 𝑔 occur
more frequently in the control flow of real programs, and similarly,
the dependency edge (𝑓 , 𝑔) implies that the return value of 𝑓 tends
to be readily used by 𝑔 in real programs.

In Figure 4, we present an example illustrating the parsed public
functions from the target library, resulting in a set of functions,
denoted as 𝑁 = {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6}. The graph depicts four depen-
dency edges denoted as 𝐸𝐷 = { (𝑓1, 𝑓4,𝑤1), (𝑓2, 𝑓3,𝑤3), (𝑓2, 𝑓5,𝑤4), (𝑓3,
𝑓6,𝑤6) } and two ordering edges represented as 𝐸𝑂 = { (𝑓1, 𝑓3,𝑤2),
(𝑓3, 𝑓6,𝑤5) }. Among them, all the functions’ dependency pairs are
obtained through the target library analysis, while the order pairs
are constructed through the corpus analysis, and all the weights on
the edges are collected from the mined patterns. Some functions’
dependency pairs may not exist in the corpus, then the weight of the
corresponding edge is set to 0. The weighted API dependency graph
can be applied as guidance for selecting functions when generating
API invocation sequences, which is introduced in Section4.3.

1141

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xizhe Yin, Yang Feng, Qingkai Shi, Zixi Liu, Hongwang Liu, and Baowen Xu

4.3 Target Generation with Type Check
Algorithm 1 describes the process of generating API invocation
sequences. It takes a weighted API dependency graph𝑊𝐴𝐷𝐺 , the
maximum number of functions𝑚𝑎𝑥𝑙𝑒𝑛 in each sequence, and the
maximum number of sequences𝑚𝑎𝑥𝑠𝑖𝑧𝑒 as inputs, which of both
can be set manually. FRIES constructs a new API invocation se-
quence in each iteration and adds it to the output sequence set 𝑆𝑜𝑢𝑡
(Line 2-18). For each API invocation sequence generated, FRIES
first selects a function whose parameters are of the basic type as
the start function (Line 3). Then, FRIES iteratively adds functions
to the sequence until the sequence reaches 𝑚𝑎𝑥𝑙𝑒𝑛 (Lines 5-17).
When selecting a function each time, we calculate the probability
𝑝 = 1/(𝑙𝑒𝑛(𝑠𝑒𝑞) +𝐶), where 𝐶 is a constant, to determine whether
to select a start function, ensuring a higher probability of select-
ing a start function at the beginning of 𝑆𝑒𝑞 and prepare available
variables for subsequent functions (Lines 6-8).

Algorithm 1: Selecting functions to generate sequences
Input: the graph WADG, Seuqence length threshold𝑚𝑎𝑥𝑙𝑒𝑛,

function number threshold𝑚𝑎𝑥𝑠𝑖𝑧𝑒

Output: Final API invocation sequence 𝑆𝑜𝑢𝑡
1 𝑆𝑜𝑢𝑡 ← ∅;
2 while len(𝑆𝑜𝑢𝑡) < maxsize do
3 𝑓𝑠𝑡𝑎𝑟𝑡 ← PollingSelectStart();
4 𝑆𝑒𝑞, 𝐹𝑎𝑣𝑎𝑖 ← [𝑓𝑠𝑡𝑎𝑟𝑡], {𝑓𝑠𝑡𝑎𝑟𝑡 };
5 while len(Seq)<maxlen do
6 if StartFuncOrNot(len(Seq)) then
7 𝑆𝑒𝑞.add(SelectStart());
8 continue

9 𝑓 ← GetAvailableFunc (𝐹𝑎𝑣𝑎𝑖);
10 for each node 𝑓𝑖 in 𝑁adj (𝑓) do
11 𝑤 (𝑓𝑖) ← CalWeight(𝑊𝐴𝐷𝐺 , 𝑓 ,𝑓𝑙𝑎𝑠𝑡 ,𝑓𝑖);

12 ®𝑤𝑓 (𝑁adj (𝑓)) ← NormWeights(®𝑤 (𝑁adj (𝑓)));
13 𝑓𝑠 ← WeightedSelect (𝑁adj (𝑓) , ®𝑤𝑓 (𝑁adj (𝑓)));
14 if OperationCheck(𝑆𝑒𝑞, 𝑓𝑠) fails then
15 Retry API selection once;

16 𝑆𝑒𝑞.add(𝑓𝑠);
17 𝐹𝑎𝑣𝑎𝑖 ← OwnershipAssurance(𝑆𝑒𝑞);

18 𝑆𝑜𝑢𝑡 .add(𝑆𝑒𝑞);

19 return 𝑆𝑜𝑢𝑡

To enable the potential use of the return values by other func-
tions, we maintain a set of functions 𝐹𝑎𝑣𝑎𝑖 in 𝑆𝑒𝑞 that have a return
value and then choose a random function 𝑓 from it (Line 9). To use
the return value of 𝑓 , we obtain a set of functions 𝐹adj (𝑓) in the
WADG graph that depend on 𝑓 . Then, we calculate the dependency
weight of each function in 𝐹adj (𝑓) with 𝑓 and select a function 𝑓𝑠
based on weights (Lines 10-13). The construction and computation
of the weight matrix are described in detail inWeight Normalization.
After selecting 𝑓𝑠 , we apply a composite type checking to deter-
mine whether to add 𝑓𝑠 to 𝑆𝑒𝑞 (Lines 14-15), which is illustrated
in Section Composite Type Check in detail. Finally, FRIES inserts
the selected 𝑓𝑠 into 𝑆𝑒𝑞, and to ensure that the generated sequence
can be compiled, we perform ownership assurance and update the
functions available 𝐹𝑎𝑣𝑎𝑖 in 𝑆𝑒𝑞 (Lines 17), which is introduced

in Section 4.4. After reaching the𝑚𝑎𝑥𝑙𝑒𝑛 threshold, FRIES finally
returns the output set of API invocation sequences 𝑆𝑜𝑢𝑡 (Line 19).
Weight Normalization.When selecting a function to add to the
sequence, we first randomly select an available function 𝑓𝑥 with a
return value from the generated sequence 𝑆𝑒𝑞 and obtain the set of
functions 𝐹adj (𝑓𝑥) in the WADG that depend on 𝑓𝑥 . Each function
𝑓𝑖 ∈ 𝐹adj (𝑓𝑥) has a dependency with 𝑓𝑥 , thus which function is
chosen depends on the dependence frequency between 𝑓𝑥 and 𝑓𝑖 ,
and the order frequency of the last function 𝑓𝑙𝑎𝑠𝑡 in 𝑆𝑒𝑞 with 𝑓𝑖 .
Formally, the weight of 𝐹adj (𝑓𝑥) is expressed as follows:

𝑤𝑖 = 𝑤 (𝑓𝑥 , 𝑓𝑖) = 𝐸𝐷 (𝑓𝑥 , 𝑓𝑖) + 𝐸𝑂 (𝑓𝑙𝑎𝑠𝑡 , 𝑓𝑖) (1a)
𝑾 = [𝑤1,𝑤2, . . . ,𝑤𝑛] (1b)

To mitigate potential data imbalances caused by varying oc-
currence frequencies of different paired data in the corpus, we
calculate the adjusted weight vector𝑾 ′ by applying a natural loga-
rithm adjustment to each𝑤 . This is computed as𝑤 ′

𝑖
= ln(𝑤𝑖 + 𝑒).

Furthermore, we scale the weights, as presented in the equation 2.

𝑤 ′′𝑖 = 𝐶 +
𝑤 ′
𝑖
−min(𝑾 ′)

1.0 +max(𝑾 ′) −min(𝑾 ′) (2)

where 𝐶 ∈ (0, 1) is a constant, and max(𝑾 ′) and min(𝑾 ′) are the
maximum and minimum values of𝑾 ′, respectively. The probability
of each function being selected is the proportion of their weight to
the total weight of the vector. Nodes with higher weights are more
likely to be selected.
Composite Type Check. In Section 2, we explained that functions
distinguish between mutable and immutable parameters. The value
of an API-specific data structure may be modified after the exe-
cution of a function mutably borrows it. These mutable functions
could provide more possible values for other functions by alter-
ing the value of internal data structures. To expand more program
space, we set up a type-checking rule where mutable functions
have a higher probability of being selected when they appear closer
to the beginning of the sequence. Therefore, the probability of 𝑓𝑠
being selected and added to the 𝑆𝑒𝑞 is calculated as follows:

𝑃 (𝑓𝑠) =
{
1 − 1

3
𝑙𝑒𝑛

𝑚𝑎𝑥𝑙𝑒𝑛
, 𝑓𝑠 is a mutable function

2
3 +

1
3

𝑙𝑒𝑛
𝑚𝑎𝑥𝑙𝑒𝑛

, Others

We control the probability of mutable functions passing the
check, which monotonically decreases with the sequence length.
Practice has shown that the probability is appropriate and beneficial
in finding bugs without sacrificing performance or flexibility.
Target Generation. FRIES uses the analyzed function signatures
to transform the generated API invocation sequence into fuzz tar-
gets that can be compiled. When a parameter of a function in the
sequence is a primitive type, we generate conversion functions
to convert byte arrays into different primitive types as function
parameters. When the parameter depends on the return value of
another function, we assign the return value to a variable and use
the transformation statements in Table 1 to actualize the process of
converting the return value into the parameter. At the same time,
we include the target library as a dependency and write it into the
"dependencies" section of the manifest, so that functions can be
called. After generating the fuzzing targets, we compile them and
use fuzzers like AFL++ to perform fuzz testing.

1142

FRIES: Fuzzing Rust Library Interactions via Efficient Ecosystem-Guided Target Generation ISSTA ’24, September 16–20, 2024, Vienna, Austria

4.4 Rust Ownership Assurance
To enforce memory and concurrency safety features in Rust pro-
gramming language, we design a series of ownership assurance
rules to guarantee the validity of the generated sequences. Since
ownership-related errors may be triggered in complex targets,
FRIES conducts thorough ownership assurance to eliminate com-
pilation errors regarding ownership. When function 𝑓𝑠 is selected,
FRIES checks if adding this function may violate any ownership
rules of Rust. If the return value of a function is used by 𝑓𝑠 and may
violate ownership rules, it is removed from 𝐹𝑎𝑣𝑎𝑖 , thus avoiding trig-
gering potential compiler errors related to ownership. Specifically,
we design four ownership assurance rules as follows.
(1) Avoid using moved variables. If function f moves the return
value of function new in the sequence, then FRIES removes function
new from 𝐹𝑎𝑣𝑎𝑖 to avoid using variables returned by the function
new in subsequent functions.
(2) Avoid concurrent use cases of borrowing. For the current
𝑆𝑒𝑞, suppose a function new returns an API-specific data structure
as an intermediate variable 𝑣𝑎𝑟 , the function f ∈ 𝑆𝑒𝑞 has already
mutably borrowed 𝑣𝑎𝑟 and returns its reference.

(2.1) Avoid concurrent mutable borrows of the same vari-
able. If the selected function 𝑓𝑠 requires the same mutable reference
as 𝑣𝑎𝑟 , then FRIES removes 𝑓 from 𝐹𝑎𝑣𝑎𝑖 . This is because another
function may take the return value of 𝑓 as input, which could cause
concurrent mutable borrows of the same variable.

(2.2) Avoid concurrent mutable and immutable borrows of
the same variable. If the selected function 𝑓𝑠 requires the same
reference as 𝑣𝑎𝑟 and borrows it immutably, then FRIES removes 𝑓
from 𝐹𝑎𝑣𝑎𝑖 . This is because having amutable and another immutable
borrow of the same variable concurrently is not allowed. Similarly, if
function 𝑓 immutably borrows 𝑣𝑎𝑟 and 𝑓𝑠 needs to mutably borrow
it, 𝑓 should also be removed from 𝐹𝑎𝑣𝑎𝑖 .

(2.3) Avoidmoving borrowed variables.Regardless of whether
𝑣𝑎𝑟 is borrowed mutably or immutably by 𝑓 , if 𝑓𝑠 requires to take
the ownership of 𝑣𝑎𝑟 , then FRIES remove 𝑓 from 𝐹𝑎𝑣𝑎𝑖 . In the case
of synthesizing linearly aligned sequences, this check is compre-
hensive and does not trigger the corresponding compilation error.

1. struct S;
2. fn new() -> S {...}
3. fn f(s: &mut S) -> &mut S {...}
4. fn g(s: &mut S) {...}
5. fn t(s: &mut S) {...}
6. fn test_multi_mut() {
7. let mut s:S = new(); //create s
8. let mut_ref:&mut S = f(&mut s);//create mutable borrow of s
9. g(&mut s); // double mutable borrow

10. t(mut_ref); // Compilation Error
11. }

Listing 4: An example of triggering ownership errors.

The code snippet in Listing 4 shows an example that triggers an
ownership error. The function new creates a struct 𝑆 , and functions
f(...), g(...), and t(...) take a mutable reference of S as a
parameter, while f returns that mutable reference. After calling f,
there exists a mutable borrow of 𝑠 . When calling g with "&mut s"
as a parameter, there are two mutable borrows simultaneously. If
function t is called with the variable𝑚𝑢𝑡_𝑟𝑒 𝑓 , it triggers a com-
pilation error. To avoid generating such invalid sequences, FRIES
records that𝑚𝑢𝑡_𝑟𝑒 𝑓 points to the memory location where 𝑠 lies,

and when calling function g, it detects the existence of two mutable
references, and thus removes function f from 𝐹𝑎𝑣𝑎𝑖 , ensuring that
the variable𝑚𝑢𝑡_𝑟𝑒 𝑓 is not used in later functions.

5 Evaluation
Implementation. FRIES is implemented as a Rust program and
relies on the rust compiler rustc [8] for static analysis. In the cor-
pus crate analysis, to ensure sufficient information is obtained, we
analyzed up to 200 corpus crates for each target library. To ob-
tain corpus crates, leveraging Rust’s open-source ecosystem, we
retrieve potential reverse dependencies of the target library from
the Dependents section on crates.io [1], or from GitHub.

In the target generation phase, we set the number of sequences
generated by FRIES for each library to 50, and practical evalua-
tion has shown that a high API coverage can be achieved with 50
sequences. To ensure that the generated sequences have complex
interactions, we set the maximum threshold for sequence length to
15. In the fuzzing phase, for each library, we employ AFL++ [16] as
the fuzzing tool and fuzz for up to 4 hours to explore FRIES’ bug
finding capability. AFL++ continuously feeds byte arrays into the
fuzz targets, and our generated function templates convert them
into primitive types.
Testing Subjects. Our experimental dataset consists of 20 well-
known high-quality open-source Rust libraries from crates.io [1].
The vast majority of the code in each library is written by Rust,
which means that the functions in it have ownership restrictions
and allow us to analyze MIR and HIR. The download counts of
these libraries range from tens of thousands to billions, covering
various domains. The functionality of these Rust libraries includes
networking, data processing, text processing, graphics and user
interfaces, scientific computing, application development, and more.
We classify these Rust libraries into three categories based on the
number of public functions: Small (0-80 functions), Medium (81-200
functions), and Large (greater than 200 functions).
Baseline Approaches. To evaluate the effectiveness of FRIES,
we compare it with existing fuzz target generation approaches
and random strategy. RusyUnit and SyRust are designed for unit
testing. SyRust also does program synthesis for Rust libraries, so
we chose SyRust, as one of the baselines. We don’t compare FRIES
with APICraft, UTopia, and Winnie because they are not designed
for Rust. However, from the approaches not designed for Rust,
we have chosen the more representative FUDGE, which also uses
ecosystems to synthesize programs.We implemented a Rust version
of the FUDGE tool as a baseline. We also conducted an adequate
comparison with RULF, the state-of-the-art fuzz target generation
technique for Rust.

(1) SyRust. SyRust employs a semantic-aware approach to syn-
thesize test cases. Due to scalability issues, SyRust can only test
15 APIs per library [31]. We crafted configuration files following
the provided guidelines. We select the APIs in the most prominent
submodule based on the recommended method, which also tends
to be the most frequently used in the ecosystem.

(2) FUDGE. FUDGE extracts code snippets from the Google Code-
base for generating fuzzing targets for C/C++. We reproduced
Google’s algorithm and extracted function sequences from the de-
pendents of Rust libraries to generate sequences. We applied FRIES’

1143

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xizhe Yin, Yang Feng, Qingkai Shi, Zixi Liu, Hongwang Liu, and Baowen Xu

0 20 40 60 80 100 120
Num of Fuzzing Targets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AP
I C

ov
er

ag
e

FRIES
RULF
Random
FRIES-3
Random-3

(a) The increasing trend of API coverage rate

Small Medium Large All
Category of Library

0

200

400

600

800

1000

N
um

 o
f F

uz
z

Ta
rg

et
s

298 292

397

987

224
176 197

597

FRIES-Valid
FRIES-InValid
FRIES-without-checker-Valid
FRIES-without-checker-InValid

(b) Compilation Results for different tools

2 4 6 8 10 12 14
Threshold of Sequence Length

100

101

102

103

104

105

106

G
en

er
at

io
n

Ti
m

e(
m

s) RULF running timeout
due to path explosion

FRIES-S
FRIES-M
FRIES-L
RULF-S
RULF-M
RULF-L

(c) The increasing trend of generation time.

Figure 5: Effectiveness and Efficiency of FRIES, compared with other tools.

Table 2: Experiment results for the coverage and validity of generated fuzz targets.

Scale Num of Covered Dependencies API Coverage Valid Ratio of Targets
FUDGE RULF Random FRIES FUDGE SyRust RULF Random FRIES SyRust RULF Random FRIES

Small (6) 39 108 108 181 0.35 0.38 0.77 0.75 0.77 1.0 0.99 0.74 1.0
Medium (6) 125 341 228 821 0.22 0.11 0.54 0.37 0.58 0.99 0.95 0.56 0.98
Large (8) 99 1,456 536 2,349 0.08 0.04 0.52 0.29 0.52 0.99 0.96 0.45 0.99

Average/Total 258 1,905 872 3,351 0.20 0.08 0.60 0.45 0.62 0.99 0.96 0.58 0.99

ownership checking algorithm to the Rust version of it to ensure
that its compilability ratio is consistent with that of FRIES.

(3) RULF. RULF is a fuzz target generator for Rust libraries that
uses BFS traversal and backtracking algorithms on the API depen-
dency graph. According to the paper and their open-sourced code,
the length of each sequence is set to 3 as default to ensure it per-
forms at its best, and the number of sequences generated by each
library is automatically terminated by RULF based on API coverage.

(4) Random. We also employ a random generation strategy with-
out guidance and ownership checking as a baseline. Specifically, it
randomly selects functions from public functions and then checks
whether they can be added to the sequence. Other parameters are
consistent with FRIES, for example, the length of each sequence is
set to 15, and each library generates 50 invocation sequences.

Environment.Our experiment is conducted in a computer equipped
with an Intel(R) Core(TM) i7-12700K processor and 32GB RAM, run-
ning Ubuntu 20.04 LTS.

5.1 Coverage and Validity
Table 2 presents a summary of evaluation results on the number of
covered dependencies and API, and the validity of fuzz targets.

The number of covered dependencies indicates the complexity
and flexibility of generated sequences, thus implying the possibil-
ity of triggering more bugs, which will prove to be more efficient
in finding bugs in Section 5.3. As shown in Table 2, the covered
dependency edges of FRIES are much more than other baselines.
This is mainly because FRIES applies an ecosystem-guided semi-
randomized algorithm for function selection, allowing for a higher
possibility of selecting different function dependencies due to dy-
namically calculated weights, which facilitates improved coverage
of dependency edges. On average, each library is parsed to obtain
1326 dependency pairs and 874 order pairs, and after de-duplication
and counting, 109 and 249 different pairs are obtained, in which
most functions are included, providing rich weighting information
for constructing the WADG. We don’t tabulate the dependencies

covered by SyRust because it can synthesize so few functions (up
to 15) that it only covers a few dependencies.

API coverage is the proportion of functions in the fuzz targets to
all functions in the target library. FRIES achieved an API average
coverage of 62% across the 20 libraries, surpassing other tools,
including RULF which uses API-coverage-oriented algorithms. In
practice, FRIES has covered almost all supported functions, while a
few functions are not covered mainly due to advanced features.

FRIES focuses on covering more APIs with very few fuzz tar-
gets, which means consuming less computational resources during
fuzzing. As shown in Figure 5(a), by generating only a small num-
ber of fuzz targets, FRIES achieves maximum coverage, whereas
RULF needs to generate many more sequences to achieve similar
coverage. However, due to the limitation of sequence length caused
by the excessive spatiotemporal complexity of RULF, it covers func-
tions much less efficiently than FRIES, thus more sequences are
required for RULF to achieve high coverage. The random strategy
performs worse, because it is not guided and checked, and selects
many duplicate functions or generates invalid sequences. FUDGE
has the lowest API coverage due to the coarse parsing granularity
of the sequence parsing module. However, FRIES’s analysis of data
flow and control flow can extract all possible information at a finer
granularity, making it more effective and flexible.

Table 3: Line coverage by FRIES, RULF, SyRust

Scale FRIES RULF SyRust

Total Per-target Total Per-target Total Per-target
Small (5) 60.2 36.6 58.3 19.1 10.4 5.8

Medium (5) 41.6 16.7 36.7 8.06 10.9 6.2
Large (6) 28.9 9.6 28.6 6.5 8.8 4.1
Average 41.9 19.0 40.1 10.9 9.9 5.1

Table 3 shows the average code coverage of each fuzz target and
the overall coverage after running for one hour, due to the fact
that the coverage grows minimally after one hour. We counted 16
libraries because certain ones could not be tested due to reasons
such as incompatibility with instrumentation tools. Total is the
total coverage of the library, while Per-target is the coverage

1144

FRIES: Fuzzing Rust Library Interactions via Efficient Ecosystem-Guided Target Generation ISSTA ’24, September 16–20, 2024, Vienna, Austria

of the library by a single target. In terms of code coverage per
target, FRIES is almost several times higher than RULF and SyRust,
indicating that more program space can be explored per target. For
overall library coverage, FRIES performs slightly better than RULF.
This is because FRIES’s overall API coverage is close to that of RULF,
but due to its ability to generate complex interactions that produce
sequences that RULF cannot, more search space may be explored.
FRIES, on the other hand, performs significantly better than SyRust,
both in each test case and overall, which may be because SyRust is
unable to mutate inputs, and fails to explore more state space. Since
FRIES can efficiently generate complex interaction, a single fuzz
target FRIES generates can cover more functions, thus achieving
higher code coverage, and thus detecting bugs more efficiently with
fewer computational resources. For small libraries, compared to
the other two tools, Per-target in FRIES is a large percentage of
Total, probably because each target can contain more functions.
We found that calling certain important functions may cover a large
portion of the library, e.g., url::Url::parse, so the coverage may
not grow linearly as more functions are included in each target.

As for the compilability, the fuzz targets generated by FRIES
achieved a compilability of 99%, which benefits from our proposed
ownership assurance. Through manual inspection, we found that
compilation failures are often caused by function absence due to
version incompatibility. Figure 5(b) demonstrates the compilability
of fuzz targets generated by FRIES with and without ownership
assurances. By comparing FRIES and FRIES-without-check, we can
conclude that the ownership assurance rules are effective, increas-
ing the compilability ratio from 58.0% to 98.6%. As library size
increases, the percentage of sequences with complicated ownership
mechanisms that can be compiled decreases, but the effectiveness
of fuzz targets generated by FRIES remains constant. In practice,
with a sequence length of 15, FRIES can improve RULF’s synthesis
effectiveness from less than 87% to 99%, which is because more
complex sequences trigger more compiler errors about references.
Because RULF generates sequences with a length of less than 3, in
contrast, the sequences generated by FRIES have a length of 15,
better reflecting the design of checks we designed for Rust. Simi-
larly, our validity can be equated with SyRust, which is focused on
synthesizing compilable programs.

5.2 Efficiency
Table 4 shows the time cost of analyzing corpus and generating se-
quences using FRIES and other baseline approaches. During corpus
analysis, the average processing time cost is 4.59 seconds for each
crate. Since corpus analysis is a one-time process and the analysis
results can be used multiple times for generation algorithms, the
time consumed in corpus analysis is acceptable.

Table 4: Experimental results for efficiency.

Scale Analysis Time(s) Generation Time(ms)

Total Per-crate FUDGE RULF-50 Random FRIES
Small (6) 5577 4.69 148 163155 289 90

Medium (6) 5398 4.50 1483 277338 1038 126
Large (8) 3883 4.55 2914 2335807 8796 3462

Average/Total 14859 4.59 4545 2776300 10123 3678

The termination condition of RULF to generate sequences is to
reach the maximum API coverage, while FRIES and other baselines

Table 5: Bugs detected by FRIES.
Library Func Crashes OF OB EN UC OT Bugs
hifitime 279 1,372 6 18 4 1 1 30
url 75 3 0 0 0 0 1 1
ratatui 227 245 14 0 0 0 0 14
regex-automata 270 9,870 0 1 0 0 0 1
time 212 1,278 10 0 0 0 0 10
regex 145 9,036 1 5 0 0 0 6
uni-seg 11 314 4 2 1 0 2 9
csv 114 201 2 0 0 0 0 2
tui 231 578 13 2 0 0 0 15
console 121 714 3 0 0 0 0 3
hyper 161 721 0 0 0 0 1 1
chrono 337 3,782 7 0 0 0 0 7
bytes 88 225 1 0 0 0 0 1
byteorder 12 286 0 8 0 0 0 8
regex-syntax 238 2,379 0 1 0 1 0 2
xi-core-lib 214 386 18 2 0 0 0 20
Total 2,735 31,390 79 39 5 2 5 130
1 FRIES discovered bugs in 16 out of 20 libraries, with a total of
130 bugs, including 84 that were previously unknown.

2 These bugs have been submitted to the corresponding library’s
issue in GitHub, and 54 of them have been confirmed or fixed.

3 uni-seg is the library unicode-segmentation.

are fixed to generate 50 sequences in total. To ensure fairness, we
modify RULF to the same termination condition. Nevertheless, the
generation time of RULF is the longest due to the fact that it needs
to iterate through all the public functions and check if they can
be added to the sequence, which leads to a large time overhead.
Similarly, the random strategy, which does not employ WADG
as guidance to narrow the search space, also results in multiple
function selection to satisfy the dependencies, leading to worse effi-
ciency. FUDGE generates sequences directly based on the extracted
corpus crates without additional function selection or checking,
and is therefore more efficient than RULF and random. Among all
baselines, FRIES has the most efficient generation efficiency and
can guarantee sequence length and comparability.

To verify the relationship between sequence length and time com-
plexity, we compare the time-consuming generation of sequences
of different lengths by FRIES and RULF, which is shown in 5(c). For
any size of libraries, FRIES takes less than 1.2 seconds to generate se-
quences with lengths from 1 to 15, which grows almost linearly and
can be neglected for practical applications. In comparison, RULF
has much higher time and space consumption. Due to the path
explosion problem of RULF, the generation time exceeds one hour
even with small sequence lengths. For larger Rust libraries, RULF
usually takes several tens of minutes to generate fuzz targets with
lengths of 3, and generating sequences with lengths more than 4
may take several hours or even days, which is unacceptable in terms
of resource consumption. During our experiments with RULF, we
even encountered crashes due to insufficient memory.

Overall, the experimental results show that FRIES can not only
synthesize fuzz targets with higher dependency, API coverage and
valid ratio, but also significantly reduces resource consumption in
fuzz testing, improving the complexity and length of the generated
sequences, outperforming current state-of-the-art techniques.

5.3 Bug Detection Effectiveness
We conduct fuzz testing for 20 Rust libraries to assess FRIES’s bug-
finding capability, shown in Table 5. In total, FRIES discovered
a total of 130 bugs, including 84 previously unknown bugs. We

1145

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xizhe Yin, Yang Feng, Qingkai Shi, Zixi Liu, Hongwang Liu, and Baowen Xu

Table 6: Bugs Found by FRIES, RULF and SyRust

Tool OF OB EN UC OT Total Unknown Confirmed
FRIES 73 21 1 1 4 100 54 24
RULF 59 13 1 0 2 75 35 17
SyRust 0 0 0 0 0 0 0 0

have submitted the corresponding issues in Github, of which 54
bugs have been identified or fixed. The majority of the targets, 99%,
passed compiler checks and they caused a total of 31,390 crashes.
Among the 16 libraries where crashes occurred, 59.8% of the tar-
gets were able to trigger a crash. For all generated targets, the
average number of crashes that can be triggered per target is 31.4,
while the RULF is 6.1. And since a large number of these crashes
appeared in duplicate stack traces in the source code, FRIES auto-
matically removed the redundancy, resulting in 174 bug warnings
being reported. After manual inspection, 74.7% of the warnings
were recognized as real bugs. Excluding library hifitime, which
cannot be measured by RULF, FRIES’s accuracy is 77.5% compared
to RULF’s 72.1%.

Table 5 presents the classification and quantity of the bugs we
discovered. The types of bugs detected include arithmetic over-
flow(OF), out-of-bounds(OB), encoding(EN), execution of unimple-
mented code(UC), and unwrap errors or others(OT). Most of the
bugs FRIES found were due to integer overflow issues, accounting
for 60.8% of the total. This is often a result of inadequate parameter
validation and error handling by library developers. Notably, these
errors can lead to critical software vulnerabilities and failures[15].
30% of the identified bugs relate to array out-of-bounds issues, im-
pacting program stability. The remaining 3 error types contribute
to approximately 10% of the bugs. These include crashes due to en-
coding format discrepancies during encoding/decoding, encounters
with unimplemented code leading to PANIC, and failures during
the unwrap process. For the libraries with no bugs found, namely
http, textwrap, serde-json, semver, they are mainly due to bet-
ter robustness or the libraries are so small that they rarely have
bugs, e.g., of the four, all but http are in the Small category.

Table 6 shows the bugs detected by FRIES, RULF and SyRust with
the same total running time of the synthesis and testing. RULF’s
spatiotemporal complexity limitations prevented fuzz target syn-
thesis for hifitime due to insufficient memory, hence the evaluation
was based on 19 other libraries. FRIES was able to find 33% more
bugs than RULF, which proves our approach is more effective in bug
findings. As a technique that focuses on program synthesis rather
than finding bugs, due to SyRust’s scalability, it can test at almost
15 functions, and its inability to mutate inputs makes it difficult to
trigger a bug. So no bugs were found by SyRust, which is almost
consistent with the conclusion of the paper [31]. Since we have a
generation algorithm with type checking and ecosystem guidance,
we are able to more efficiently detect vulnerabilities that may have
a greater impact on downstream programs in the ecosystem.

In following parts, we further discuss a few bug cases detected
by our approach to show the effectiveness of FRIES.
Bug Case 1: The code in Listing 5 shows a minimized code snippet
that triggers a bug in xi-core-lib library. It is worth noting that
this code snippet, along with the code example listed in Section 2,
originates from the same fuzz target generated by FRIES, with an
invocation length of 15 in total, which demonstrates the role of
long sequences generated by FRIES.

The purpose of this code is to add a selected region SelRegion
to the selection state Selection and then retrieve the input within
the specified range. The function regions_in_range(...) is used
to provide a list of regions &[SelRegion] within a given range
[𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑). When encountering invalid input, such as start=17
and end=16 (where start>end), the function returns an empty
array. However, an error "slice index starts at 2 but ends at 1" is
triggered when end=15, resulting in a bug inside the library. In real
programs, it is common to perform the action of adding a selected
region add_range_distinct(...) before querying the selection
state regions_in_range(...). Adding a range is a mutable oper-
ation, while querying is an immutable operation. Based on patterns
mined, the efficient algorithm with type checking allows FRIES to
succeed in generating such an effective long bug-triggering target.
1. use xi_core_lib::selection::SelRegion;
2. use xi_core_lib::selection::Selection;
3. fn main() {
4. let v1:SelRegion = SelRegion::caret(0);
5. let mut selection:Selection = Selection::new_simple(v1);
6. let v2:SelRegion = SelRegion::caret(16);
7. Selection::add_range_distinct(&mut selection, v2);
8. Selection::regions_in_range(&selection, 17, 15);
9. }

Listing 5: (Bug Case1) A fuzz target generated by FRIES.
Bug Case 2: The fuzz target generated by FRIES shown in Listing 6
triggered an unsatisfied constraint issue in Library url, which has
been fixed after we reported it. The main purpose of this code
snippet is to parse and process a URL. First, the function parse(...)
is used to attempt parsing a string as a URL. Next, the function
join(...) is used to concatenate variable 𝑣1 with a string. The
error occurred within the join(...) function, where the private
function parse_path(...) within the library is called incorrectly,
resulting in an assertion and program crash.

Although this code snippet is relatively short, analysis based on
the corpus crates reveals that the dependency relationship between
parse(...) and join(...) appears frequently in the corpus pro-
grams, indicating a high real-world usage frequency and significant
impact on the ecosystem. Therefore, FRIES could generate more
of these dependency relationships in the fuzz targets, allowing the
fuzzer to quickly identify corresponding bugs.
1. use url::Url;
2. let v1 = if let Ok(x) = Url::parse(r"fIlE:f\p:?../") {x}
3. else { use std::process; process::exit(0); };
4. Url::join(&(v1), r"../r\\\\\m");

Listing 6: (Bug Case2) A fuzz target generated by FRIES.
This particular dependency occurred seven times among the 50

fuzz targets FRIES generated. Although RULF may also generate
a similar fuzz target, it produces only one sequence containing
this dependency at most guided by API coverage. In contrast, our
approach enables more efficient identification of bugs that have a
greater impact on the program ecosystem.
Bug Case 3: FRIES discovered an array out-of-bounds bug in the
regex-automata library using the code snippet shown in Listing 7.
This code utilizes the functions of the regex-automata library to
perform regular expression automaton searches. It creates a DFA
and a cache , as well as matches and their respective patterns. The
find_leftmost_rev_at(...) function takes the previously cre-
ated DFA, cache, and pattern as parameters to perform thematching.
During the execution of the matching function, which involves a

1146

FRIES: Fuzzing Rust Library Interactions via Efficient Ecosystem-Guided Target Generation ISSTA ’24, September 16–20, 2024, Vienna, Austria

6-level function invocation chain, an array out-of-bounds error is
triggered in the code self.cache.starts[index] within the pri-
vate function get_cached_start_id(...) defined in the library.

In this case, a complex sequence is essential, as the target function
find_leftmost_rev_at(...) receives 3 different API-specific data
structures, all of which need to be generated by other function calls.
With such an effective function selection strategy and powerful
flexibility, we successfully generated 𝑣1, 𝑣3, and 𝑣4. Then, based
on the mined API usage patterns, FRIES successfully selected the
find_leftmost_rev_at function and referenced these produced
variables with API-specific data structures. The efficient algorithm
enables the generation of such complex and lengthy sequences in
almost linear time complexity, an achievement that is practically
unimaginable for RULF to generate sequences longer than three.
And It can produce cross-module interactions that Syrust cannot.
1. use regex_automata::hybrid::dfa::Cache;
2. use regex_automata::hybrid::dfa::DFA;
3. use regex_automata::HalfMatch;
4. let v1 = if let Ok(x) = DFA::always_match() { x }
5. else { use std::process; process::exit(0); };
6. let v2 = HalfMatch::must(0, 0);
7. let mut v3 = Cache::new(&v1);
8. let v4 = regex_automata::HalfMatch::pattern(&v2);
9. DFA::find_leftmost_rev_at(&v1, &mut v3, Some(v4),

10. &[124, 124, 123, 133, 144], 0, 0);

Listing 7: (Bug Case3) A fuzz target generated by FRIES.

5.4 Limitations
The experimental results show that FRIES performs well on diverse
crates from different domains; however, there are some limitations
of the current implementation of FRIES. Rust language has some
complex language features, such as generics, macros, and traits
that are not yet supported in FRIES, which naturally limits the API
coverage to around 60%. Incorporating these features could make
FRIES to cover more APIs and thus improve the bug detection effi-
ciency. Our experiments demonstrate the effectiveness of FRIES’s
ownership assurance and complex interactions. The extensibility
of its algorithms facilitates the addition of functionality and future
integration with other technologies, thus expanding its use. The
ownership mechanism including borrowing is the most important
feature of rust, which we support, and whether or not it is satisfied
determines whether or not it can be compiled. For corpus analysis,
there may be room for further increases in algorithm complexity,
but even so, our mining algorithms are fast enough to be tolerable
in a production environment.

5.5 Threats to Validity
The effectiveness of FRIES relies on the representativeness of the
corpus, thus the choice of corpus may introduce bias in the experi-
ment result. To minimize the potential bias, in the experiment, we
identified up to 200 programs per library to analyze, which forms
a relatively large corpus. The experimental results show, on aver-
age, each library yielded over a hundred pairs of entirely distinct
dependency and order pairs. The performance of FRIES and its bug
detection effectiveness relies on the libraries’ characteristics and
usage scenarios, which may introduce a threat to validity. To alle-
viate this threat, we chose libraries of different domains and sizes
from crates.io, and thus evaluated the performance of FRIES on

diverse crates. The instability of the measurement tools introduces
potential threats to validity. To address this, we manually filtered
out extremely unreasonable data points based on predefined quality
thresholds.

6 RELATEDWORK
Testing or Static Analysis for Rust. There are also some efforts
designed for testing Rust libraries. RustyUnit [33] is a search-based
unit test generation tool for Rust. SyRust [31] is another tool for
unit testing. It uses semantics-aware program synthesis algorithms
to generate compilable test cases for Rust libraries. RULF [23] con-
structs graphs based on function signatures and generates API in-
vocation sequences by traversing the graphs. Different from these
approaches, our proposed approach incorporates API usage min-
ing to generate valid sequences of complex and long interactions
with low overhead. There are also static analyses for rust program
vulnerability detection, such as MirChecker which detects poten-
tial runtime crashes and memory safety errors, etc., and SafeDrop
which detects invalid memory allocations using path-sensitive data
flow analysis.
API Interactions Testing for Other Languages. In earlier years,
unit testing for Java was a hot topic of research, such as Korat [14],
DiffGen [32], etc. And there has been several work [9, 18, 19] to
improve on EVOSUITE [17] to guarantee the robustness of the java
program. In addition, Pynguin [29] is a unit test generation tech-
nique for dynamically typed languages, i.e., Python. In recent years,
there have been several works related to API fuzzing, which needs
fuzzing targets. A survey [25] introduces a method for automati-
cally generating fuzz targets and testing each API separately, which
can only test functions with basic type parameters. RESTler [10]
and Morest [28] are methods designed for RESTful API that use
graph algorithms to generate appropriate sequences of API calls.
Fudge [11] and FuzzGen [21] are fuzz target auto-generation tools
proposed by Google. It utilizes client code from Google’s vast code
repository to generate candidate fuzz targets for libraries by inter-
cepting code snippets. APICraft [37] mutates existing programs to
generate fuzz targets for closed-source SDK libraries. UTopia [22]
builds upon existing unit tests to generate new fuzzing targets
through mutation. WINNIE bypasses irrelevant GUI code to test
logic deep within the application to fuzz Windows applications.
However, these methods are limited in scope and are unable to deal
with Rust’s ownership mechanism.

7 Conclusion
This paper proposes a fuzzing technique to test Rust libraries. It
combines the syntax constraints and patterns mined in Rust ecosys-
tems to generate the fuzz targets. The experimental results show
that FRIES can efficiently generate high-quality fuzz targets, out-
performing previous techniques. To date, FRIES has detected 84
significant and unknown bugs in Rust libraries.

Acknowledgments
We would like to thank anonymous reviewers for their construc-
tive comments. This project was partially funded by the National
Natural Science Foundation of China under Grant No. 62372225
and No. 62172209.

1147

ISSTA ’24, September 16–20, 2024, Vienna, Austria Xizhe Yin, Yang Feng, Qingkai Shi, Zixi Liu, Hongwang Liu, and Baowen Xu

References
[1] [n. d.]. crates.io. https://crates.io/.
[2] [n. d.]. Firecracker MicroVMs. https://firecracker-microvm.github.io/. Accessed:

2023-07-24.
[3] [n. d.]. Redox OS. https://redox-os.org/. Accessed: 2023-07-24.
[4] [n. d.]. Rustc HIR on GitHub. https://github.com/rust-lang/rust/tree/master/

compiler/rustc_hir. Accessed: Place the access date here.
[5] [n. d.]. Tokio. https://tokio.rs/. Accessed: 2023-07-24.
[6] 2023. American fuzzy lop. https://lcamtuf.coredump.cx/afl/.
[7] 2023. A vulnerability database for the Rust ecosystem. https://rustsec.org/.
[8] Ongoing development. The Rust Programming Language. https://github.com/

rust-lang/rust. Accessed on 2022-06-14.
[9] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2014. Automated unit

test generation for classes with environment dependencies. In Proceedings of
the 29th ACM/IEEE international conference on Automated software engineering.
79–90.

[10] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. Restler: State-
ful rest api fuzzing. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 748–758.

[11] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo Ivančić, Tim King, Markus
Kusano, Caroline Lemieux, László Szekeres, and Wei Wang. 2019. Fudge: fuzz
driver generation at scale. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 975–985.

[12] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo Kim. 2021.
Rudra: finding memory safety bugs in rust at the ecosystem scale. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles. 84–99.

[13] Thomas Ball and Sriram K Rajamani. 2017. A Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World.
https://www.microsoft.com/en-us/research/publication/few-billion-lines-
code-later-using-static-analysis-find-bugs-real-world/.

[14] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat:
Automated testing based on Java predicates. ACM SIGSOFT Software Engineering
Notes 27, 4 (2002), 123–133.

[15] Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2015. Understanding Integer
Overflow in C/C++. ACM Trans. Softw. Eng. Methodol. 25, 1, Article 2 (dec 2015),
29 pages. https://doi.org/10.1145/2743019

[16] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ :
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association. https://www.usenix.
org/conference/woot20/presentation/fioraldi

[17] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[18] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291. https://doi.org/10.
1109/TSE.2012.14

[19] Gordon Fraser and Andrea Arcuri. 2014. A Large-Scale Evaluation of Automated
Unit Test Generation Using EvoSuite. ACM Trans. Softw. Eng. Methodol. 24, 2,
Article 8 (dec 2014), 42 pages. https://doi.org/10.1145/2685612

[20] Shuang Hu, Baojian Hua, and YangWang. 2022. Comprehensiveness, Automation
and Lifecycle: A New Perspective for Rust Security. In 2022 IEEE 22nd Interna-
tional Conference on Software Quality, Reliability and Security (QRS). 982–991.
https://doi.org/10.1109/QRS57517.2022.00102

[21] Kyriakos K Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020.
Fuzzgen: Automatic fuzzer generation. In Proceedings of the 29th USENIX Confer-
ence on Security Symposium. 2271–2287.

[22] Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon, Junsik Kim, Intae Jeon,
Taesoo Kim, WooChul Shim, and Yong Ho Hwang. 2023. UTopia: Automatic

Generation of Fuzz Driver using Unit Tests. In 2023 IEEE Symposium on Security
and Privacy (SP). 2676–2692. https://doi.org/10.1109/SP46215.2023.10179394

[23] Jianfeng Jiang, Hui Xu, and Yangfan Zhou. 2021. RULF: Rust library fuzzing via
API dependency graph traversal. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 581–592.

[24] Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and Taesoo
Kim. 2021. Winnie: Fuzzing windows applications with harness synthesis and
fast cloning. In Proceedings of the 2021 Network and Distributed System Security
Symposium (NDSS 2021).

[25] Matthew Kelly, Christoph Treude, and Alex Murray. 2019. A case study on auto-
mated fuzz target generation for large codebases. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE,
1–6.

[26] Steve Klabnik and Carol Nichols. 2019. The Rust Programming Language (2nd
ed.). No Starch Press. https://doc.rust-lang.org/book/ch00-00-introduction.html

[27] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John CS Lui. 2021. MirChecker:
detecting bugs in Rust programs via static analysis. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security. 2183–2196.

[28] Yi Liu, Yuekang Li, Gelei Deng, Yang Liu, Ruiyuan Wan, Runchao Wu, Dan-
dan Ji, Shiheng Xu, and Minli Bao. 2022. Morest: Model-Based RESTful API
Testing with Execution Feedback. In Proceedings of the 44th International Con-
ference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 1406–1417. https:
//doi.org/10.1145/3510003.3510133

[29] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2020. Automated unit test
generation for python. In Search-Based Software Engineering: 12th International
Symposium, SSBSE 2020, Bari, Italy, October 7–8, 2020, Proceedings 12. Springer,
9–24.

[30] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020. Un-
derstanding Memory and Thread Safety Practices and Issues in Real-World
Rust Programs. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (London, UK) (PLDI 2020). As-
sociation for Computing Machinery, New York, NY, USA, 763–779. https:
//doi.org/10.1145/3385412.3386036

[31] Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S Păsăreanu. 2021.
Syrust: automatic testing of rust libraries with semantic-aware program syn-
thesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 899–913.

[32] Kunal Taneja and Tao Xie. 2008. DiffGen: Automated Regression Unit-Test Gen-
eration. In 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering. 407–410. https://doi.org/10.1109/ASE.2008.60

[33] Vsevolod Tymofyeyev and Gordon Fraser. 2022. Search-Based Test Suite Genera-
tion for Rust. In International Symposium on Search Based Software Engineering.
Springer, 3–18.

[34] Shi Wang, Vivien Bono, Ana Maria Valdivia, and Miryung Kim. 2021. The Rust
programming language: An empirical study on its use and adoption in the indus-
try. IEEE Transactions on Software Engineering 47, 5 (2021), 1040–1064.

[35] Hui Xu, Zhuangbin Chen, Mingshen Sun, and Yangfan Zhou. 2020. Memory-
Safety Challenge Considered Solved? An Empirical Study with All Rust CVEs.

[36] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael R. Lyu.
2021. Memory-Safety Challenge Considered Solved? An In-Depth Study with All
Rust CVEs. ACM Trans. Softw. Eng. Methodol. 31, 1, Article 3 (sep 2021), 25 pages.
https://doi.org/10.1145/3466642

[37] Cen Zhang, Xingwei Lin, Yuekang Li, Yinxing Xue, Jundong Xie, Hongxu Chen,
Xinlei Ying, Jiashui Wang, and Yang Liu. 2021. APICraft: Fuzz Driver Generation
for Closed-source SDK Libraries. In 30th USENIX Security Symposium (USENIX Se-
curity 21). USENIX Association, 2811–2828. https://www.usenix.org/conference/
usenixsecurity21/presentation/zhang-cen

1148

https://crates.io/
https://firecracker-microvm.github.io/
https://redox-os.org/
https://github.com/rust-lang/rust/tree/master/compiler/rustc_hir
https://github.com/rust-lang/rust/tree/master/compiler/rustc_hir
https://tokio.rs/
https://lcamtuf.coredump.cx/afl/
https://rustsec.org/
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://www.microsoft.com/en-us/research/publication/few-billion-lines-code-later-using-static-analysis-find-bugs-real-world/
https://www.microsoft.com/en-us/research/publication/few-billion-lines-code-later-using-static-analysis-find-bugs-real-world/
https://doi.org/10.1145/2743019
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1145/2685612
https://doi.org/10.1109/QRS57517.2022.00102
https://doi.org/10.1109/SP46215.2023.10179394
https://doc.rust-lang.org/book/ch00-00-introduction.html
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1145/3385412.3386036
https://doi.org/10.1145/3385412.3386036
https://doi.org/10.1109/ASE.2008.60
https://doi.org/10.1145/3466642
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen

	Abstract
	1 Introduction
	2 Motivating example
	3 FRIES in a Nutshell
	4 Approach
	4.1 Mining on MIR to Narrow Search Space
	4.2 Weighted ADG Construction for Searching
	4.3 Target Generation with Type Check
	4.4 Rust Ownership Assurance

	5 Evaluation
	5.1 Coverage and Validity
	5.2 Efficiency
	5.3 Bug Detection Effectiveness
	5.4 Limitations
	5.5 Threats to Validity

	6 RELATED WORK
	7 Conclusion
	Acknowledgments
	References

