
118

Program Analysis via Eicient Symbolic Abstraction

PEISEN YAO
∗
, The Hong Kong University of Science and Technology, China

QINGKAI SHI, Ant Group, China

HEQING HUANG, The Hong Kong University of Science and Technology, China

CHARLES ZHANG, The Hong Kong University of Science and Technology, China

This paper concerns the scalability challenges of symbolic abstraction: given a formula φ in a logic L and an

abstract domainA, nd amost precise element in the abstract domain that over-approximates the meaning ofφ.
Symbolic abstraction is an important point in the space of abstract interpretation, as it allows for automatically

synthesizing the best abstract transformers. However, current techniques for symbolic abstraction can have

diculty delivering on its practical strengths, due to performance issues.

In this work, we introduce two algorithms for the symbolic abstraction of quantier-free bit-vector formulas,

which apply to the bit-vector interval domain and a certain kind of polyhedral domain, respectively. We

implement and evaluate the proposed techniques on two machine code analysis clients, namely static memory

corruption analysis and constrained random fuzzing. Using a suite of 57,933 queries from the clients, we

compare our approach against a diverse group of state-of-the-art algorithms. The experiments show that

our algorithms achieve a substantial speedup over existing techniques and illustrate signicant precision

advantages for the clients. Our work presents strong evidence that symbolic abstraction of numeric domains

can be ecient and practical for large and realistic programs.
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1 INTRODUCTION

Abstract interpretation is a general theory for constructing sound static analysis by approxima-

tion [Cousot and Cousot 1979]. At its heart stands the concept of abstract domain, a mathematical

representation of the program semantics. For instance, numerical domains such as octagon [Miné

2006] and polyhedron [Cousot and Halbwachs 1978] capture the numerical properties of program

variables. Such information is useful for proving the absence of buer overow, division by zero,

and many other properties [Blanchet et al. 2003; Singh et al. 2017a, 2015].
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1.1 Symbolic Abstraction

Given an abstract domain, the program analysis designers must provide abstract transformers that

over-approximate the concrete semantics of various program statements, such as assignments and

conditionals. A fundamental problem in abstract interpretation is to construct the best, i.e., the
most precise abstract transformer [Cousot and Cousot 1979]. In their seminal work, Reps et al.

[2004] introduce the problem of symbolic abstraction, which uses decision procedures for automatic

construction of best transformers. Specically, given a formula φ ∈ L encoding the concrete

semantics, and an abstract domain A, symbolic abstraction computes a most precise element in A

that over-approximates themeaning ofφ. To date, symbolic abstraction has foundmany applications,

such as shape analysis [Reps et al. 2004; Yorsh et al. 2004], program verication [Jiang et al. 2017; Li

et al. 2014], control ow recovery [Barrett and King 2010], and compiler optimization [Ritter 2015].

Conventionally, the abstract transformer for a block of code is obtained by composing the

block’s individual statements’ abstract transformers. In comparison, the salient merit of symbolic

abstraction is allowing for encoding the block as a formula φ, and analyzing the block as a whole

to obtain the (best) abstract transformer.

Our target application is program analysis for low-level instructions such as assembly and

x86, where the operators are built out of successions of small elementary instructions. On the

one hand, analyzing low-level code allows reasoning about the actual behaviors of an executable

program more faithfully, because the semantics of elementary low-level instructions are usually

fairly well-dened [Dasgupta et al. 2019]. In contrast, the compiling processes of higher-level

languages may leave signicant leeway (known as the “What You See Is Not What You eXecute”

phenomenon [Gopan and Reps 2007]). On the other hand, however, analyzing the low-level in-

structions is challenging and tedious, due to the reduced size of the code window used for transfer

functions [Logozzo and Fähndrich 2008]. Therefore, it is important to be able to analyze program

blocks as a whole, not as the composition of a succession of independent instructions [Barrett and

King 2010; Brauer and King 2010]. Symbolic abstraction presents a way to tame the complexity by

oering two key benets:

• Precision. It is well known that abstract interpretation is not compositional, meaning that

the composition of the best abstract transformers of individual statements in a sequence may

not result in the best abstract transformer for the whole sequence [Cousot and Cousot 1979].

To see how symbolic abstraction can yield better results than creating abstract transformers

by composition, consider performing interval analysis on the code snippet: x ∈ [0, 1];y =
x ; z = x − y. The interval of z, obtained from those for x and y by applying the rules of

conventional interval arithmetics
1
, is z ∈ [−1, 1]. However, the optimal interval, i.e., best

abstraction is z ∈ [0, 0], which can be computed via symbolic abstraction.

• Automation. Conventionally, the static analysis developers need to design, implement, and

tune abstract transformers for various program instructions, which can be tedious and error-

pone. For example, a standard implementation of the polyhedral domain contains more than

40 operators [Singh et al. 2017b]. In contrast, symbolic abstraction allows for synthesizing

a (correct and precise) abstract transformer for a block of code, instead of independently

designing and composing abstract transformers for dierent instructions.

Despite the promise, however, there is a performance gap for current symbolic abstraction

technology to be practical for real-world and large-scale programs. In theory, symbolic abstraction is

computationally expensive. For instance, the best transformers for assignments in weakly relational

domains such as octagon have the same worst-case exponential complexity as the polyhedral

1
For instance, the statement z = x + y is abstracted as zmax = xmax + ymax and zmin = xmin + ymin.
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domain [Singh et al. 2017c]. In practice, symbolic abstraction faces the scalability issue that limits

its adoption. For example, it was reported that a state-of-the-art algorithm that symbolically

computes best transformers for the ane-relation domain (ARA) can be more than 50× slower than

a conventional method for computing sound, but not necessarily the best ARA transformers [Thakur

and Reps 2012].

Recent advances in Optimization Modulo Theory (OMT) solving [Bjørner et al. 2015; Li et al.

2014; Nadel and Ryvchin 2016; Sebastiani and Trentin 2015a] provide new insights into the symbolic

abstraction of template linear domains [Jiang et al. 2017; Li et al. 2014]. However, OMT is a young

technology with large margins for improvement [Sebastiani and Trentin 2015a], and we observe that

many real-world symbolic abstraction problems pose challenges to state-of-the-art OMT solvers.

Besides, existing OMT-based solutions for symbolic abstraction are not directly applicable to the

polyhedral domain (conjunctions of linear inequalities), because both the number of inequalities

and the coecients in each inequality are unknown prior.

1.2 Our Work

This paper aims to speed up the symbolic interval and polyhedral abstractions of quantier-free

bit-vector formulas. Our key technical insight is two-fold. First, the variables in programs are

often correlated. Second, the interval and polyhedral domains in the bit-vector arithmetic are

bounded. Taken together, they allow us to reduce the search space of symbolic abstraction. The

main challenge, however, is how to eectively leverage the correlations and boundedness for

reducing redundant computations.

We rst present an analysis for computing the best interval abstraction. Our approach rst

conducts a static analysis to infer a sound abstraction, followed by an SMT-based renement

that iteratively nds the optimal intervals. Crucially, the second step renes all the variables

synergistically, reusing information between them to speed up the analysis. Using our interval

analysis, we then introduce a symbolic polyhedral analysis that interleaves the computations of

intervals and polyhedrons. Our analysis builds on a novel integral polyhedral domain for bit-vector

arithmetic (detailed in § 2.3). The key idea of the analysis is to utilize the interval abstractions to

approach more “extremal” points near to the enclosing convex shape, which is a bounded integral

polyhedron. Our algorithm opens up a new connection between OMT and symbolic abstraction,

which allows for bringing OMT solving techniques to symbolic polyhedral abstraction.

We have implemented the proposed techniques as a tool called Taichi, and applied it in two

applications of machine code analysis, namely static memory corruption analysis and constrained

random fuzzing. Using 57,933 symbolic abstraction queries from the clients, we compare our

techniques against two classes of algorithms from OMT solving and symbolic abstraction literature,

respectively. The rst class computes the best interval abstraction via OMT solving. We evaluate

three OMT solvers that are based on MaxSAT solving [Nadel and Ryvchin 2016; Narodytska

and Bacchus 2014] and that reduce to quantied formulas (e.g., [Kong et al. 2018]). The second

class computes the best polyhedral abstraction, including algorithms due to Reps et al. [2004]

(RSY), Thakur and Reps [2012] (TR), and Thakur et al. [2012] (TER).

This paper makes the following contributions to the symbolic abstraction of numeric domains:

• We present an ecient algorithm for symbolic interval abstraction. Our algorithm is on

average 2.1× to 17.6× faster than several state-of-the-art OMT solvers.

• We present an ecient algorithm for the problem of symbolic polyhedral abstraction (as

dened in § 2.3). When evaluated on non-overowing formulas, our analysis is on average

3.6×, 2.6×, and 2.4× faster than RSY, TR, TER, respectively, and it solves more queries than

the other three algorithms.
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• We implement the proposed algorithms and demonstrate their usability for static memory

corruption analysis and constrained random fuzzing.

2 BACKGROUND AND PROBLEM FORMULATION

This section introduces the background knowledge (symbolic abstraction and optimization modulo

theories) and denes the problems we address in the paper.

2.1 Symbolic Abstraction

Abstract Interpretation. Let (C, ≤C ) and (A, ≤A) be two complete lattices, a paired abstraction

function α : C → A and concretization function γ : A→ C forms a Galois connection between C
and A if for any c ∈ C and a ∈ A, we have α (c ) ≤A a ⇔ c ≤C γ (a). We call A = 〈A, ≤A,t,α ,γ 〉
an abstract domain with the join operator t and the partial order relation ≤A. Given a concrete

transfer function f : C → C , we say an abstract function f # : A→ A is a sound abstraction of f if

α ( f (c )) ≤A f # (α (c )) for any c ∈ C . We say an abstract function f α is the best abstraction of f in

A i f α = α ◦ f ◦ γ : A→ A, because for any sound abstraction f # it holds that f α (a) ≤A f # (a)
for any a ∈ A.

Symbolic Abstraction. The above equation f α = α ◦ f ◦ γ denes the limit of precision

obtainable using the abstract domainA. However, the denition is non-constructive, in that it does

not provide an algorithm for deriving the best transfer function.

In their seminal work, Reps et al. [2004] introduce a framework for computing f α , which applies

to a formula φ in a logic L and an abstract domain A = 〈A, ≤,t,α ,γ 〉. The formula φ encodes the

concrete semantics, such as the concrete transformer for an instruction, basic block, or loop-free

program fragment. The goal of symbolic abstraction is to nd the strongest consequence of φ that

is expressible in A. More precisely,

Denition 2.1. (Symbolic Abstraction) Given a formula φ ∈ L and an abstract domainA = 〈A, ≤
,t,α ,γ 〉, and let ~φ� be the set of concrete states satisfying φ. The symbolic abstraction of φ in the

domainA, is an element a ∈ A such that (1) a over-approximates the meaning of φ, i.e., ~φ� ⊆ γ (a),
and (2) for any a′ ∈ A for which ~φ� ⊆ γ (a′), we have a ≤ a′.

Example 2.2. Consider the integer formula φ (x ,y) ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 10 where x and y
represent unbounded integers. The interval x ∈ [0,+∞] ∧ y ∈ [0,+∞] is a sound approximation of

φ in the interval domain, while x ∈ [0, 10] ∧ y ∈ [0, 10] is the best approximation.

2.2 Optimization Modulo Theories

In this paper, we consider rst-order logic formulas of the satisability modulo theories (SMT).

Given a formula φ, we denote its free variables by vars (φ). A model M of φ (denoted M |= φ) is
a function that maps all free variables x1, . . . ,xn ∈ vars (φ) to values in their respective domains

such that φ evaluates to true. We denoteM (x ) by the value of the variable x under the modelM .

The problem of Optimization Modulo Theories (OMT) extends SMT by searching models that

optimize some objective functions. Recall that a general mathematical optimization problem can be

written as {
maximize f (x̄ )
subject to x̄ ∈ S ,

where f (x̄ ) is the objective, and S the search space. In the context of OMT, S is characterized by a

rst-order formula φ in a background theory and f (x̄ ) is a term of the theory.

Denition 2.3. (Boxed OMT Problem) Given an SMT formula φ and a set of objectives {д1, . . . ,дn },
the goal of the multiple-independent-objective OMT problem [Sebastiani and Trentin 2015b], a.k.a.
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boxed OMT is to nd a set of models {M1, . . . ,Mn } of φ such that eachMi maximizes the objective

дi respectively.

Previous work [Jiang et al. 2017; Li et al. 2014] has shown that the symbolic abstraction of template

linear domains such as interval [Cousot and Cousot 1977], zone [Miné 2001], and octagon [Miné

2006] can be reduced to solving boxed OMT problems. Specically, let ei (1 ≤ i ≤ n, where n is the

number of templates) be a template, we get ci by solving the OMT problem “max ei s .t . φ”, and thus
obtain ei ≤ ci as a constraint in the template abstract domain representation. Overall,

∧n
i=1 ei ≤ ci

gives the resulting constraint representation in the template abstract domain. For example, by

setting the template e as vars (φ) and their negation, we can obtain the symbolic abstraction of φ in

the interval domain.

Example 2.4. Consider the integer formula φ (x ,y) ≡ x ≥ 0∧y ≥ 0∧x +y ≤ 10 in Example 2.2. By

setting the template as {x ,y,−x ,−y} and solving the boxed OMT problem “max {x ,y,−x ,−y} s .t . φ”,
we can obtain the maximal/minimal values of x and y. Clearly, the symbolic abstraction of φ in the

interval domain is x ∈ [0, 10] ∧ y ∈ [0, 10].

2.3 Problem Formulation

While OMT-based formalization oers an elegant solution for the symbolic abstraction of template

linear domains, it faces several limitations in practice. First, it depends heavily on the performance

of the underlying OMT solvers, and we observe that many real-world symbolic abstraction instances

pose challenges to state-of-the-art solvers. Second, the formalization is not directly applicable to the

convex polyhedral domain [Cousot and Halbwachs 1978], i.e., conjunctions of linear inequalities

a1x1 + · · · + anxn ≤ c , because neither is the number of templates known before the analysis, nor

are the coecients in each template.

This paper concerns the connections between Optimization Modulo Theories and symbolic

abstraction. We focus on the theory of quantier-free bit-vector (QF_BV), because it allows for

modeling machine instructions faithfully and precisely, such as non-linear arithmetic computations

and “bit-twiddling” operations (left-shift, right-shift; bitwise-and, bitwise-or, and bitwise-xor;

etc.) [Alizadeh and Fujita 2009; Ganesh and Dill 2007; Lim and Reps 2013].

Problem Scope. Table 1 presents three abstract domains for bit-vector arithmetic, where v
denotes variables and ci denotes constants. Our work focuses on the rst and third domains. The

bit-vector interval domain is similar to the conventional interval domain, except that ci and v are

bit-vectors. However, it is important to understand the distinction between the two dierent but

related polyhedral domains. Specically, we introduce a new domain for bit-vector arithmetic,

namely the integral polyhedral domain, which involves both integer and bit-vector reasoning. To

illustrate, let us rst consider the following example.

Example 2.5. Consider a bit-vector formulaφ ≡ x ≥ 0∧y ≥ 0∧x+y ≤ 3 where x andy encode two
4-bit unsigned integers. Whenφ (x ,y) is interpreted in bit-vector arithmetic, it has 64 models, shown

as red points in Figure 1a. Note that φ (x ,y) is already a conjunction of three linear inequalities, and

thus is its own symbolic abstraction as a bit-vector polyhedron: i.e., φ ′ ≡ x ≥ 0∧y ≥ 0∧x +y ≤ 10

(equivalent to φ).
Now consider Figure 1b, which shows the same 64 models in red. These points can also be

considered as 64 integer models, where each integral model corresponds to a bit-vector model of φ,
and xZ and yZ are the integer variables corresponding to x and y, respectively. To over-approximate

these 64 points using linear inequalities over integers, we need a conjunction of seven inequalities,

as shown in Figure 1b, and listed explicitly in the caption of Figure 1b.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 118. Publication date: October 2021.
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(a) bit-vector polyhedral abstraction

φ ′ ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 3.
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(b) Integral polyhedral abstraction

φ ′ ≡ 0 ≤ xZ ≤ 15 ∧ 0 ≤ yZ ≤
15 ∧ yZ ≤ 12 ∗ xZ + 3 ∧ xZ ≤ 12 ∗

yZ + 3 ∧ xZ + yZ ≤ 19.

Fig. 1. Symbolic abstractions of the bit-vector formula φ ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 3 from Example 2.5.

In summary, the orange regions of Figure 1a and Figure 1b show the abstractions of φ in the

bit-vector polyhedral domain and integral polyhedral domain, respectively. Observe that the orange

region in Figure 1a (i.e., φ ′ ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 3) is non-convex.

The above example illustrates a key dierence between the two polyhedral domains. Any

element in the integral polyhedral domain must be a convex polyhedron (e.g., as the orange

region in Figure 1b). However, this is not the case for the bit-vector polyhedral domain, because a

conjunctive of bit-vector inequalities may describe a non-convex region (e.g., due to the presence

of overows [Sharma et al. 2013], as demonstrated in Figure 1a).

Now, to compare and contrast the two domains formally, we dene a lifting operation for models

of a bit-vector formula. Let ~φ�bv be the set of all models of a (satisable) bit-vector formula φ.
Essentially, a bit-vector value is an integer modulo 2

w
, i.e., an integer in Z2w for some bit widthw .

Thus, we can maintain and leverage a dual interpretation of bit-vector values.

Denition 2.6. (Integral Lifting of Bit-Vector Models) LetMbv ∈ ~φ�bv be a model of a bit-vector

formula φ, we say that

Mint = lift(Mbv)

is the integral model lifted from a bit-vector model Mbv , by mapping each bit-vector variable

v ∈ vars(φ) to a unique integer variable vZ and tracking the relations of their values.
2
We say that

~φ�int is the the set of all integral models that are lifted from ~φ�bv, i.e.,

~φ�int = {lift(Mbv) | ∀Mbv ∈ ~φ�bv}

Based on the denition above, we distinguish the corresponding two versions of symbolic

polyhedral abstraction problem for a bit-vector formula φ:

• Version 1: A sound bit-vector polyhedral abstraction of φ is a conjunction of linear bit-vector

formulas that cover all the models in ~φ�bv. The best abstraction is a conjunction of linear

bit-vector formulas ϕ for which (i) ~ϕ�bv ⊇ ~φ�bv, and (ii) there does not exist a conjunction

of linear bit-vector formulaψ such that ~ϕ�bv ) ~ψ �bv ⊇ ~φ�bv.

2
For example, let v be a n-bits unsigned bit-vector variable and vZ its corresponding integer variable. Suppose that

in a bit-vector model, bn−1, . . . , b0 are the values of the n bits in v . Then, the integer value of vZ can computed as

bn−1 × 2n−1 + bn−2 × 2n−2 + · · · + b0 × 20.
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Table 1. Three abstract domains for a bit-vector formula φ ∈ QF_BV. Each domain can be regarded as an

impoverished logic fragment L′ (compare with the full QF_BV logic or linear integer arithmetic). An element

a ∈ A can be represented as a formula φ ′ ∈ L′.

Domain A Logic L ′ Interpretation

Bit-vector interval inequalities of the form c1 ≤ v and v ≤ c2 ~φ ′� ⊇ ~φ�(φ ′ ∈ L ′)
Bit-vector polyhedron linear inequalities over bit-vectors ~φ ′� ⊇ ~φ�(φ ′ ∈ L ′)
Integral polyhedron linear inequalities over integers Detailed below

• Version 2: A sound integral polyhedral abstraction of φ is a conjunction of linear integer

formulas that cover all the models in ~φ�int. The best abstraction is a conjunction of linear

integer formulas ϕ for which (i) ~ϕ�int ⊇ ~φ�int, and (ii) there does not exist a conjunction of

linear integer formulasψ such that ~ϕ�int ) ~ψ �int ⊇ ~φ�int.

In this paper, we address Version 2 of the problem. Recall that any sound solution to Version

2, including the optimal solution, must be a convex polyhedron (discussed in Example 2.5). The

key benet of this property is that it allows us to pass the computed polyhedron to existing

algorithms for integer/real arithmetic, such as counting the number of models [Assarf et al. 2017],

sampling solutions [Chen et al. 2018], computing the volume [Dyer and Frieze 1988], and computing

the Hausdor distance of two polyhedrons [Sankaranarayanan et al. 2006]. Such information is

benecial for many program analysis clients such as WCET analysis [Lisper 2003] and quantitative

information ow [Biondi et al. 2018]. We will demonstrate one client in § 6.2.

Problem Statement. Based on the above discussion, our work aims to address the following

challenges in symbolic abstraction: Given a (satisable) quantier-free bit-vector formula φ,

Challenge 1: Improve the performance of the OMT-based solution for computing the symbolic

abstraction of φ in the bit-vector interval domain.

Challenge 2: Lift OMT solving techniques to the polyhedral domain, and yield (more) ecient

algorithms for the symbolic abstraction of φ in the integral polyhedral domain.

The key idea behind our work is that the variables in programs are often correlated, and the

interval and polyhedral domains in the bit-vector arithmetic are bounded. The correlations and

boundedness can be utilized to reduce redundant computations in symbolic abstraction. Specically,

the analysis method presented in the paper addresses these challenges by the following means:

• Challenge 1 is addressed via an SMT-based symbolic interval analysis that iteratively nds the

optimal intervals for dierent variables synergistically, whereby the intermediate information

computed for dierent variables is shared.

• Challenge 2 is addressed via a symbolic polyhedral analysis that interleaves the computations

of interval and polyhedron. The key idea is to utilize the optimal interval abstractions to

approach more “extremal” points near to the nal integral polyhedron, which is bounded.

3 SYMBOLIC INTERVAL ABSTRACTION

In this section, we introduce our approach to symbolic interval abstraction. Without loss of gener-

ality, we formalize the problem as a boxed multi-objective optimization instance: given a rst-order

formula φ and a set of objectives {д1, . . . ,дn }, compute the objectives’ maximal values.
3
For ease of

presentation, we use unsigned bit-vectors to demonstrate our approach.

3
Minimization problems can be reduced to maximization problems.
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Algorithm 1: SMT-based binary search for optimizing a single objective.

Input: A QF_BV formula φ and an objective д
Output: The maximum value of д s .t . φ

1 Function optimize_one_obj(φ,д)
2 ret, low, high← . . .;
3 while low ≤ high do
4 mid← (low + high)/2;
5 ψ ← φ ∧ (mid ≤ д ≤ high);
6 if ψ is unsatisable then
7 high← mid − 1;

8 else
9 M ← a model ofψ ; /* use M to update ret and low */

10 ret← M (д), low← ret + 1;

11 return ret ;

At a high level, our procedure consists of two steps. First, we leverage a sound and lightweight

interval analysis [Gange et al. 2015] to compute the initial abstractions of the variables. Second, we

perform a synergistic SMT-based renement until nding all the maximum values of the variables.

In the following, we focus on illustrating the second step, which is the key to improving performance

while ensuring optimality.

3.1 Basic Binary Search

Our approach builds on the standard binary search schema. Algorithm 1 shows the basic procedure

for maximizing a single objective, which takes as input an initial lower bound and upper bound

(denoted “low” and “high” respectively). Since we target xed-sized bit-vector formulas, any vari-

able is guaranteed to be bounded. The algorithm iteratively updates “low” and “high” using the

satisability results of φ ∧mid ≤ д ≤ hiдh (Lines 6-10), until the value of low is larger than high.4

Assume that the variable д encodes anm-bits unsigned integer. In the worst case, Algorithm 1

needs to call an SMT solverm times.

Example 3.1. Consider a bit-vector formula φ (x ) where x encodes a 3-bits unsigned integer. On

the rst round of a binary search, we have low = 0,hiдh = 7, andmid = 4. Thus, Algorithm 1 needs

to solve the formula φ ∧ 4 ≤ x ≤ 7.

We remark that Algorithm 1 is similar to many other existing algorithms [Henry et al. 2014;

Köksal et al. 2012; Nadel and Ryvchin 2016; Sebastiani and Tomasi 2015a] that maximize/minimize

one objective subject to a formula. The focus of our symbolic interval analysis is to accelerate the

computation of multiple variables. Suppose we need to maximize n variables of a formula, where

each variable encodes anm-bits unsigned integer. A naive solution to the problem is Algorithm 2,

which invokes Algorithm 1 for n times. However, if the value of n is large, such a strategy can suer

from performance issues, where little information is shared among dierent variables.

4
Note that in Algorithm 1, we should replace mid = (low + high)/2 by mid = low + (high − low)/2 to avoid computing

incorrect mid-points due to overow. We show the previous one for simplicity.
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Algorithm 2: Naive SMT-based binary search for optimizing multiple objectives.

Input: A QF_BV formula φ and a set of objectives G = {д1, . . . ,дn }
Output: The maximum values of д1, . . . ,дn s .t . φ

1 Function optimize_multi_obj(φ,G)
2 ret1, . . . , retn ← . . .;

3 foreach дi ∈ G do
4 reti ← optimize_one_obj(φ,дi ); /* invoke Algorithm 1 */

5 return ret1, . . . , retn ;

Algorithm 3: Solving the conjunctive predicate abstraction problem.

Input: A formula φ and a set of predicates S = {ϕ1, . . . ,ϕn }
Output: Decide the satisability of each φ ∧ ϕi (1 ≤ i ≤ n)

1 Function decide_cpa(φ, S)
2 while S , ∅ do
3 Ψ ←

∨
ϕi ∈S ϕi ; /* merge the predicates */

4 if φ ∧ Ψ is unsatisable then
5 foreach ϕi ∈ S do
6 mark φ ∧ ϕi as unsatisable;

7 return;

8 else
9 M ← a model of φ ∧ Ψ; /* use M to filter ϕi */

10 foreach ϕi ∈ S do
11 if M |= ϕi then
12 mark φ ∧ ϕi as satisable;

13 remove ϕi from S ;

3.2 Factorizing the Search

Our idea for improving the performance of multi-objective optimization is to handle the variables

simultaneously, during which we reuse information computed for dierent variables. Recall that

when dealing with a set of objectives, Algorithm 2 needs to solve a number of SMT queries

{φ ∧ t1, . . . ,φ ∧ tn }, where ti is of the formmidi ≤ дi ≤ hiдhi . Essentially, we are dealing with the

following question, which we term as the problem of “conjunctive predicate abstraction”:

Given a formula φ and a set of predicates S = {ϕ1, . . . ,ϕn }, decide for each ϕi ∈ S , if φ ∧ ϕi is
satisable or not.

The problem is actually prevalent in program analysis and verication tasks. Simply feeding

each φ ∧ ϕi to the solver can be inecient, if the size of S is large and there are many instances of

such queries. To potentially reduce the number of SMT solver calls, we utilize Algorithm 3 to solve

such problems. The algorithm repeats the following steps until all predicates in S are decided.

(1) First, we construct a formula Ψ (Line 3) as the disjunction of all undecided predicates in S .
Clearly, φ ∧ Ψ is an over-approximation of each φ ∧ ϕi .
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(2) If φ ∧ Ψ is unsatisable, then for all ϕi ∈ S , we have that φ ∧ ϕi is unsatisable (Line 6).
Algorithm 3 can terminate here.

(3) Else, we extract a modelM of φ ∧ Ψ, and test ifM |= ϕi for each ϕi . If this is the case, we can
mark φ ∧ ϕi as satisable and remove ϕi from S for further consideration (Lines 9-13).

Note that, we do not have to start the solver from scratch in each iteration, by utilizing the

incremental solving techniques (such as phase saving and clause learning) in modern SMT solvers.

Example 3.2. Consider a bit-vector formula φ ≡ x ≤ 2 ∧ · · · ∧ y ≤ 3 where x and y encode two

3-bits unsigned integers. At the rst round of the binary search, we need to decide the satisability

of φ ∧ 4 ≤ x ≤ 7 and φ ∧ 4 ≤ y ≤ 7, respectively. Using Algorithm 3, we construct a formula

φ ∧ (4 ≤ x ≤ 7 ∨ 4 ≤ y ≤ 7), which is unsatisable. Thus, we have that both φ ∧ 4 ≤ x ≤ 7 and

φ ∧ 4 ≤ y ≤ 7 are unsatisable.

Proposition 1. Assuming k out of the n formulas in S can be satised in conjunction with φ, then
Algorithm 3 needs at mostmin(k + 1,n) times of SMT calls.

Proof. (1) Assuming k + 1 ≤ n. First, deciding the n − k unsatisable formulas needs only the

last SMT call. Second, at each round before the last iteration, at least one formula can be decided.

Thus, the worst-case number of SMT calls is k/1 + 1 = k + 1. (2) Assuming k + 1 > n (i.e., k = n).
Since at least one formula can be decided after every SMT call, the worst-case number of SMT calls

is n/1 = n. Taken (1) and (2) together, we conclude that Algorithm 3 needs at mostmin(k + 1,n)
times of SMT calls. �

3.3 Puing It All Together

Algorithm 4 shows the overall procedure to optimizing multiple objectives. Given a quantier-free

bit-vector formula φ and a set of objectives G to maximize, it rst extracts an initial abstraction

with a sound interval analysis [Gange et al. 2015] (Line 2), and then performs the SMT-based binary

search to obtain the optimal values (Lines 3-13).

The key idea behind Algorithm 4 is to reuse information computed for one variable in order to

speed up the optimization of other variables. This feature allows us to reduce the search space and

avoid repeating expensive SMT calls. For instance, if a modelM1 indicates a maximal value for x ,
then a modelM2 for a maximal value of y must also satisfyM2 (y) ≥ M1 (y). Thus, we can possibly

update both highx and highy within one SMT solver call.

Specically, Algorithm 4 utilizes the sub-procedure decide_cpa_ext to enable sharing informa-

tion among the variables (Lines 14-27). The sub-procedure is essentially an extension of Algorithm 3.

Observe that decide_cpa_ext diers from Algorithm 3, in that it can update elements of S within

the iteration (Lines 24-27). This is because in the binary-search-based algorithm, we can update

lowi immediately, once knowing that φ ∧midi ≤ дi ≤ highi is satisable.

Proposition 2. Given a formula φ and n variables, each of which represents anm-bits unsigned

integer. The worst-case number of SMT calls required by Algorithm 4 is n ∗m.

Although the number of SMT calls can still be huge, we summarize a few properties of Algorithm 4.

First, the sound interval analysis in the rst step can possibly reduce the value of m for some

variables. Second, during the second step, Algorithm 4 can update the information of 1 to n
variables with every SMT call. Third, when running out of a time budget, the algorithm may still

retrieve the optimal values for a subset of the variables. Specically, during the binary search, it

can check if lowi > highi to decide if дi has been optimized.

Example 3.3. Consider a bit-vector formula φ ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 3 where x and y encode

two 4-bit unsigned integers. Note that the bit-vector addition x + y may overow. Figure 2a and
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Algorithm 4: Optimized boxed multi-objective optimization.

Input: A QF_BV formula φ and a set of objectives G = {д1, . . . ,дn }
Output: The maximal values of д1, . . . ,дn s .t . φ

1 Function optimize_multi_obj(φ,G)
2 initialize lowi , highi , reti with an interval analysis [Gange et al. 2015];

3 while true do
4 S ← ∅;

5 foreach дi ∈ G do
6 if lowi ≤ highi then
7 midi ← (lowi + highi )/2;
8 S ← S ∪ {midi ≤ дi ≤ highi };

9 if S == ∅ then
10 break; /* all variables optimized */

11 else
12 decide_cpa_ext(φ, S); /* an extension of Algorithm 3 */

13 return ret1, . . . , retn ;

14 Function decide_cpa_ext(φ, S):
15 while true do
16 Ψ ←

∨
ϕi ∈S ϕi ; /* merge the predicates */

17 if φ ∧ Ψ is unsatisable then
18 foreach ϕi ∈ S do
19 highi ← midi − 1;

20 return;

21 else
22 M ← a model of φ ∧ Ψ; /* use M to update lowi and midi */

23 foreach ϕi ∈ S do
24 if M |= ϕi then
25 reti ← M (дi ), lowi ← reti + 1;
26 midi ← (lowi + highi )/2;
27 ϕi ← midi ≤ дi ≤ highi ;

Figure 2b demonstrate the eects of overows on our algorithm. The red points depict the models

of the formula. The orange regions show the results of symbolic interval abstractions. Specically,

if considering overows, φ can have some “additional models” such as (15, 1) and (1, 15), as shown
in Figure 2b. Consequently, the symbolic interval abstraction of φ is x ∈ [0, 15] ∧ y ∈ [0, 15].

By default, we consider the overow semantics. Thus, our algorithm can compute the abstraction

as x ∈ [0, 15] ∧ y ∈ [0, 15] (Figure 2b). We will discuss more about the handling of overow in § 5.

4 SYMBOLIC POLYHEDRAL ABSTRACTION

In this section, we introduce our approach to symbolic polyhedral abstraction, which builds on the

RSY algorithm [Reps et al. 2004] and uses the interval abstraction algorithm presented in § 3 as a
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(b) In the presence of overflow.

Fig. 2. Symbolic interval abstraction of the bit-vector formula φ ≡ x ≥ 0 ∧ y ≥ 0 ∧ x + y ≤ 3. The red points

are the models. The orange regions are the symbolic interval abstractions.

Algorithm 5: RSY algorithm for symbolic abstraction [Reps et al. 2004].

Input: A formula φ and an abstract domain A

Output: The symbolic abstraction a of φ in A

1 Function rsy(φ,A)
2 ψ ← φ,a ← ⊥;

3 whileψ is satisable do
4 M ← a model ofψ ;

5 a ← a t α (M ); /* use the model M to update the current abstraction */

6 ψ ← ψ ∧ ¬γ (a); /* bock the models covered by the updated abstraction */

7 return a;

sub-procedure. We rst illustrate the RSY algorithm and use an example to motivate our algorithm.

We then introduce our algorithms that interleave the computations of intervals and polyhedrons.

Notice. In this section, we assume dealing with bit-vectors with a signed interpretation. The

symbolic interval analysis algorithm (§ 3) can easily be extended to support signed bit-vectors.

4.1 The RSY Algorithm

Algorithm 5 presents the Reps, Sagiv, and Yorsh (RSY) [Reps et al. 2004]’s parametric approach to

symbolic abstraction. It takes as input a formula φ and an abstract domain A, and yields the most

precise element a ∈ A that over-approximates the concrete states described by φ. The algorithm
keeps a lower bound ret of the correct result, and iteratively renes ret until it is no longer an

under-approximation of the result. More specically, each iteration of the algorithm has two steps:

• Sampling: this step invokes the decision procedure to generate a model of φ (Line 4).

• Generalization: this step generalizes the current abstraction of φ with the sampled model

(Line 5), and adds the blocking formula to bock the models that can be covered by the updated

abstraction (Line 6).

Essentially, Algorithm 5 starts from the lattice ⊥ to the lattice >. The algorithm iteratively

enumerates and generalizes the models of a formula φ, until the abstraction “encompasses” all

models of φ. In the worst case, Algorithm 5 requires h calls to a decision procedure, where h is the

chain-length of the respective abstract domain A.
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Example 4.1. Consider a bit-vector formula φ (x ) where x encodes an 8-bit signed integer. Suppose

that φ has the following set of 32 models:

{(~x� = −1), (~x� = 0), (~x� = 1), . . . , (~x� = 30)} .

The symbolic interval abstraction of formula is x ∈ [−1, 30]. To motivate our approach, let us run

Algorithm 5 on the formula for the interval domain. At the rst iteration, assume that the SMT

solver yields a model M1 = (~x� = −1), which induces −1 ≤ x ≤ −1. At the next iteration, the
formula φ ∧ ¬(−1 ≤ x ≤ −1) is passed to the solver, possibly yielding a model M2 = (~x� = 0)
that denes a constraint −1 ≤ x ≤ 0. Proceeding as before, the algorithm requires 32 solver calls to

converge onto the nal abstraction −1 ≤ x ≤ 30.

However, Algorithm 5 could have computed the abstraction −1 ≤ x ≤ 30 in three iterations.

assuming that the SMT solver returned models M1 = (~x� = −1) and M2 = (~x� = 30) that
dene x = −1 and x = 30, respectively. At the last iteration, the SMT solver is used to prove that

φ ∧ ¬(−1 ≤ x ≤ 30) is unsatisable, i.e., φ |= −1 ≤ x ≤ 30.

As illustrated in the example above, Algorithm 5 needs to iteratively sample the models of the

formula φ. The specic models yielded by the decision procedure aect the eciency of Algorithm 5

largely, as they determine the search direction of the algorithm.

4.2 Our Approach

On Mixing Integer and Bit-vector Reasoning. Recall that we aim to compute the integral

polyhedral abstraction of a bit-vector formula φ (§ 2.3), and our approach builds on the RSY

algorithm. A diculty is that the problem would involve the mixing of bit-vector and integer

reasoning. On the one hand, we need to iteratively sample models of the bit-vector formula. On the

other hand, we need to compute the convex hull of a set of integer models, which can be represented

as a conjunction of linear integer formulas. The bit-vector and integer constraints would “interfere

with each other” in a RSY-style algorithm. Thus, solving the problem necessitates a mechanism for

(1) (model-theoretically) communicating the information between ~φ�bv and their integral lifting

~φ�int, and (2) (proof-theoretically) mixing the reasoning of formulas in the bit-vector and linear

integer theories.

As sketched in § 2.3, the idea underlying our solution is to maintain a dual interpretation of

bit-vector values. Conceptually, we can create an integer variable vZ for each bit-vector variable

v , which allows us to convert models between ~φ�bv and ~φ�int, and express both bit-vector and

integer constraints. The relation between v and vZ can be tracked in many dierent ways. In our

implementation, we use the bv2int function supported by the Z3 SMT solver, by explicitly creating

an extra constraint vZ = bv2int (v ).
5
By doing so, we can encode polyhedral constraints using vZ,

and use the solver to sample models in ~φ�bv and ~φ�int simultaneously.

Abstraction from Intervals. Algorithm 6 outlines our rst attempt, which takes as input a

formula φ and initializes the polyhedral abstraction to ⊥. The key idea behind the algorithm is

to nd “extremal” models that represent vertex closer to the nal convex polyhedron. Compared

with the temporal polyhedrons generalized with an arbitrary model, the polyhedrons induced

by the extremal models can possibly cover more models of the formula, thereby speeding up the

convergence of symbolic abstraction.

However, obtaining such models is non-trivial because the forms of the inequalities in the

polyhedral abstraction are not known prior. The solution of Algorithm 6 is to utilize symbolic

interval abstractions to sample the “extremal” models. More specically, we compute the interval

5
In the SMT-LIB2 standard, the function is called “bv2nat”. For interested readers, we refer to http://smtlib.cs.uiowa.edu/

theories-FixedSizeBitVectors.shtml.
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Algorithm 6: Polyhedral abstraction with symbolic intervals.

Input: A QF_BV formula φ with n variables

Output: The symbolic polyhedral abstraction of φ
1 Function polyhedral_abs_from_interval(φ, S)
2 foreach v ∈ vars (φ) do
3 φ ← φ ∧vZ = bv2int (v ); /* maintain a dual interpretation of φ’s models */

4 p ← ⊥;

5 while φ ∧ ¬p is satisable do
6 c ← ∅;

7 foreach v ∈ vars (φ) do
8 [l ,u]← symbolic interval abstraction of v s .t . φ ∧ ¬p;

9 Ml ← the model that maximizes v ;

10 Mu ← the model that minimizes v ;

11 c ← c ∪ {(Ml (v1Z ), . . . ,Ml (vnZ )), (Mu (v1Z ), . . . ,Mu (vnZ ))};

12 p ← p t α (c ); /* update the current abstraction via polyhedral join */

13 return p;
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(c) p3 aer the third iteration.

Fig. 3. Major steps for computing the integral polyhedral abstraction of a bit-vector formula φ that has 9

models {(4, 4), (3, 2), (2, 2), (1, 0), (0, 0), (−1, 0), (−2,−2), (−3,−2), (−4,−4)}.

abstractions ofvars (φ) subject to φ∧¬p, and utilize the models under whichvars (φ) are minimal or

maximal (Lines 8-10). Then, the extremal models are collected in a set c , which is used to update the

abstraction p via polyhedral join (Line 12). In summary, Algorithm 6 utilizes interval abstractions

to control the distribution of the sampled models, instead of enumerating arbitrary points (as in

Algorithm 5 [Reps et al. 2004]).

However, Algorithm 6 has a major obstacle to scalability, namely the interval abstractions

(Lines 8). To speed up the computations, we leverage the interval abstraction algorithm introduced

in § 3, which optimizes the variables simultaneously (the inner loops in Lines 7-11).

Example 4.2. Consider a bit-vector formula φ where x and y encode signed integers. Suppose

that the set of models ~φ�int are depicted as the red points in Figure 3, which include

{(4, 4), (3, 2), (2, 2), (1, 0), (0, 0), (−1, 0), (−2,−2), (−3,−2), (−4,−4)}

Next, we run Algorithm 6 to compute the integral polyhedral abstraction of φ.
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Fig. 4. A bit-vector formula φ ≡ −5 ≤ x ≤ 5 ∧ −5 ≤ y ≤ 5 ∧ x2 + y2 = 25 that has 12 models, and the major

steps to computing its integral polyhedral abstraction.

At the rst iteration, we compute the symbolic interval abstractions of x and y subject to φ
and obtain two integral models, M1 = (~xZ� = 4, ~yZ� = 4) and M2 = (~xZ� = −4, ~yZ� = −4),
because x and y have maximum/minimum values under their corresponding bit-vector models.

6

The polyhedral abstraction fromM1 andM2 are dened as below (see Figure 3a):

p1 = α (M1 (xZ),M1 (yZ),M2 (xZ),M2 (yZ)) =




yZ ≥ −4 ∧

yZ ≤ 4 ∧

yZ = xZ

(1)

At the second iteration, we start with φ ∧¬p1 and obtain two modelsM3 = (~xZ� = 3, ~yZ� = 2)
andM4 = (~xZ� = −3, ~yZ� = −2). The convex hull of the models is joined with p1, yielding the
following polyhedron (see Figure 3b):

p2 =

{
yZ ≤ 2 ∗ xZ + 4 ∧ yZ ≥ 2 ∗ xZ − 4 ∧

7 ∗ yZ ≤ 6 ∗ xZ + 6 ∧ 7 ∗ yZ ≥ 6 ∗ xZ − 4
(2)

At the third iteration, we start with φ ∧ ¬p2, obtaining two modelsM5 = (~xZ� = 1, ~yZ� = 0) and
M6 = (~xZ� = −1, ~yZ� = 0). Similarly, we abstractM5 andM6 as a convex polyhedron and then

join the polyhedron with p2, yielding the following polyhedron (see Figure 3c)

p3 =




yZ ≤ 2 ∗ xZ + 4 ∧ yZ ≥ 2 ∗ xZ − 4 ∧

yZ ≤ xZ + 1 ∧ 5 ∗ yZ ≥ 4 ∗ xZ − 4 ∧

5 ∗ yZ ≤ 4 ∗ xZ + 4 ∧ yZ ≥ xZ − 1

(3)

Finally, we nd that φ ∧ ¬p3 is unsatisable (i.e., φ |= p3) and, thus, Algorithm 6 terminates with

a sound abstraction. As shown in Figure 3c, all models in ~φ�int (i.e., the integral lifting of ~φ�bv)
have been encompassed by the nal abstraction p3.

Interleaving Algorithm 6 and RSY. Algorithm 6 utilizes symbolic interval abstractions to

sample “extremal” models, aiming to converge within fewer iterations. However, obtaining an

optimal polyhedral abstraction via Algorithm 6 may still be prohibitively expensive. For example,

6
Note that in theory, the inner loops in Lines 7-11 (Algorithm 6) need to compute four models of φ , if it optimizes each

variable one by one. In practice, we only compute two as we can optimize dierent variables simultaneously. For example,

the bit-vector model corresponding to M1 = (~xZ� = 4, ~yZ� = 4) can both maximize x and y .
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Algorithm 7: Polyhedral abstraction by interlving RSY and Algorithm 6.

Input: A QF_BV formula φ
Output: The symbolic polyhedral abstraction of φ

1 Function polyhedral_abs(φ)
2 foreach v ∈ vars (φ) do
3 φ ← φ ∧vZ = bv2int (v );

4 p ← ⊥;

5 while φ ∧ ¬p is satisable do
6 c ← ∅;

7 if round_robin() then
8 ; /* same as Algorithm 6 */

9 for v ∈ vars(φ) do
10 [l ,u]← symbolic interval abstraction of v s .t . φ ∧ ¬p;

11 Ml ← the model that maximizes v ;

12 Mu ← the model that minimizes v ;

13 c ← c ∪ {(Ml (v1Z ), . . . ,Ml (vnZ )), (Mu (v1Z ), . . . ,Mu (vnZ ))};

14 p ← p t α (c );

15 else
16 ; /* the RSY mode (Algorithm 5) */

17 M ← a model of φ ∧ ¬p;

18 c ← c ∪ {(M (v1Z ), . . . ,M (vnZ ))};

19 p ← p t α (c );

20 return p;

consider a bit-vector formula φ ≡ −5 ≤ x ≤ 5∧ x2 +y2 = 25. Figure 4 shows ~φ�int that consists of
12 models:

{(5, 0), (4, 3), (3, 4), (0, 5), (−3, 4), (−4, 3), (−5, 0), (−4,−3), (−3,−4), (0,−5), (3,−4), (4,−3)}

As shown in the gure, the models characterize a Dodecagon. Algorithm 6 can nish computing

the best polyhedral abstraction in four iterations (Figures 4a-4c depict the results after the rst,

second, and third iterations). As can be seen, if running Algorithm 6 on the instance, we end up

enumerating all the points in the Dodecagon using the (expensive) interval abstraction algorithm.

Such a strategy can be very costly, if the number of models/points in the nal polyhedron is huge.

Before presenting our nal algorithm, let us consider running the RSY algorithm (Algorithm 5)

on the formula in Figure 4c. Any model given by the SMT solver yields a vertex of the nal convex

polyhedron, because all models are vertices of the Dodecagon. As such, the intermediate models

computed by the RSY algorithm have similar eects to the ones in Algorithm 6. However, for other

formulas with many non-extremal models, RSY can end up sampling non-extremal points, and

require many rounds before converging to the desired answer.

To summarize, the RSY algorithm samples one model with each SMT call, but the model may not

generalize well. Algorithm 6 uses symbolic interval abstractions to sample “extremal” models, which

generalize well but can be hard to compute. Therefore, our nal solution, Algorithm 7, interleaves

the original RSY algorithm (Algorithm 5) with the interval-abstraction-based one (Algorithm 6),

which aims to balance the cost of sampling the models and the “quality” of the sampled models. In
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our client, we have empirically experienced the best performance with one interval-abstraction

step after every k RSY iterations, always starting the search in the RSY mode.
7

Proposition 3. There exists a best integral polyhedral abstraction for any bit-vector formula φ,
which can be computed by Algorithms 5–7 (in the absence of timeouts).

8

Remarks. To compute the best abstraction of φ, a naive strategy is to rst enumerate all models

in ~φ�int, and then compute their convex hull. Essentially, Algorithms 5-7 optimize the naive

strategy by avoiding explicitly enumerating all the models, and by controlling the distributions of

the sampled models.

5 ON OVERFLOW AND UNDERFLOW

An important and long-standing challenge in designing numeric domains is to to soundly track the

eects of arithmetic operations in machine integers, such as the wrap-around eects of operations

that overow [Blanchet et al. 2003; Bygde et al. 2012; Cousot and Halbwachs 1978; Gange et al.

2015; Sharma et al. 2013; Sharma and Reps 2017; Simon and King 2007]. To tame the complexity, the

quantier-free bit-vector theory (QF_BV) allows for faithfully modeling machine integer semantics,

such as bit-wise operations, overow, underow, and others.

Our work aims to compute the symbolic abstraction of QF_BV formulas and can account for the

machine integer semantics such as overow and underow. Take the handling of overow as an

example. First, the presence of overow does not break the assumption that the value range of a

bit vector is always nite, which is a key to our algorithms. Second, our algorithms leverage the

SMT solver to sample the models of a formula, which can return models caused by overow. The

algorithms do not attempt to prune those models.

An Encoding Schema for Preventing Overflow/Underflow. However, as illustrated in Exam-

ple 3.3 (§ 3.3), the presence of overow or underow can aect the results of symbolic abstraction

greatly. Previous work [Ritter 2015] shows that for many applications such as compiler optimization,

it is practical to assume the absence of certain undened behavior like signed integer overow.

Thus, given a bit-vector formula φ to abstract, it is desirable to allow for controlling the overow

and/or underow in the arithmetic computations in φ. In what follows, we present an encoding

schema for such application scenarios, using the handling of overow as an example.

Consider the formula φ ≡ y = 2 + x ∧ y > 10, where x and y encode signed 32-bits integers.

In practice, there are many ways to implement the assumption that a bit-vector operation such

as 2 + x does not overow. In our implementation, we have used a series of Z3 APIs, such as

bvadd_no_overflow and bvadd_no_overflow,9 to ensure that an SMT solver does not produce

models caused by overow. Specically, we can rewrite φ as:

φ ′ ≡ y = 2 + x ∧ b = bvadd_no_overflow(2 + x ) ∧ y > 10

where the function bvadd_no_overflow(2 + x ) returns a Boolean-typed value indicating whether

the bit-vector addition leads to an overow. That is, the variable b is true if and only if 2 + x does

not overow. Now, if we need to enforce the absence of overow, we can add a further conjunction

with b, which yields:

φ ′′ ≡ y = 2 + x ∧ b = bvadd_no_overflow(2 + x ) ∧ y > 10 ∧ b

7
In our experiments, we set k as 10 for the polyhedral abstraction queries.

8
The proof is given in the extended version of the paper at https://tinyurl.com/w6ck5uub.

9
The APIs are essentially wrappers of the standard bit-vector operations. For example, to track overows in a bit-vector

addition, we can just zero-extend bit-vector arguments by one. Then, we check whether the most signicant bit in the

output is 0. See https://github.com/Z3Prover/z3/blob/master/src/api/api_bv.cpp for more implementation details.
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Note that the above schema can also be used to enforce dierent modes (regular, underow,

overow) for dierent instructions. For example, we can prevent overows for the subset of

instructions that involve signed integers, but not for unsigned ones.

6 IMPLEMENTATION AND APPLICATIONS

We have implemented our approach as a tool called Taichi, using Z3 [De Moura and Bjørner

2008] as the SMT solver. Taichi treats the underlying SMT solver as a black box. This makes it

easy to implement and allows it to benet from future advances in SMT solving. We term the

analyses computing interval and polyhedral abstractions as TaichiInt and TaichiPoly, respectively.

We have applied TaichiInt and TaichiPoly in two machine code analysis clients, namely static

vulnerabilities detection and dynamic program testing, respectively.

6.1 Memory Corruption Analysis with TaichiInt

The rst application is to enhance an abstract interpreter, which implements a memory corruption

analysis on top of the Angr binary analysis platform [Shoshitaishvili et al. 2016]. The implemented

analysis uses Angr to translate the binary code to VEX, the intermediate representation used by

Valgrind [Nethercote and Seward 2007]. We then perform both the conventional interval analysis

and the symbolic interval abstraction on top of the VEX intermediate representation.

At the core of the memory corruption analysis is a conventional statement-by-statement interval

analysis. The analysis has a high false-positive rate due to a lack of accuracy in the interval analysis.

For example, aliases of two memory accesses are determined by checking if their intervals share

common address values. This is similar to the value set analysis [Reps and Balakrishnan 2008]. The

imprecision of the interval information can result in many spurious aliasing relations.

As a remedy, we apply symbolic abstraction in a demand-driven style. If the conventional interval

analysis fails to verify some functions’ memory safety, we use TaichiInt to obtain a possibly more

precise interval. At a high level, we partition a program into several “SMT-expressible” and loop-free

blocks (as in “large block encoding” [Beyer et al. 2009]), and compute the xed point based on

the “iteration+widening” strategy block by block. During the analysis, we translate the interval

representation of the pre-state to an SMT formula at the entry of the block, and translate the

post-state in SMT formula back to interval representation.

6.2 Constrained Random Fuzzing with TaichiPoly

Constrained random verication [Kitchen and Kuehlmann 2007; Naveh and Metodi [n. d.]; Wu and

Huang 2013] is widely used for validating hardware designs. The verication engineers specify

the constraint required by the hardware and then generate multiple random inputs satisfying the

constraint using a stimulus generator. These inputs are used to drive the design under test, in an

attempt to cover the design space and trigger faults.

Recently, the idea has been lifted to dynamic program analysis, yielding the notion of constrained
random fuzzing [Dutra et al. 2018; Huang et al. 2020]. The basic observation is that many feasible

program paths share the same path prex. Constrained random fuzzing attempts to generate

multiple models for the path constraint of a selected path prex. These models/inputs can then

examine multiple program paths that share the same prex, without additional invocations of an

expensive constraint solver for each path.

We have adapted a previous approach that utilizes polyhedral abstraction in constrained random

fuzzing [Huang et al. 2020]. First, we compute the symbolic polyhedral abstraction of a satisable

path constraint. By this means, we can convert the problem of generating models of the constraint

into the problem of sampling integral points in the polyhedron [Chen et al. 2018; Kannan and

Narayanan 2009, 2012].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 118. Publication date: October 2021.



Program Analysis via Eicient Symbolic Abstraction 118:19

x

y

0 1 2 3

0

1

2

3

(a) The template polyhedron com-

puted by [Huang et al. 2020].

x

y

0 1 2 3

0

1

2

3

(b) The polyhedron computed by

TaichiPoly.

Fig. 5. A formula φ ≡ (x = 0 ∧ y = 0) ∨ (x = 2 ∧ y = 3) ∨ (x = 3 ∧ (y = 1 ∨ y = 2)).

Example 6.1. Consider the formula φ in Figure 5, and let it be the path condition of a selected

path prex. The red dots represent all feasible values satisfying φ, whereas the black crosses

represent the infeasible ones. The abstractions of φ are the orange regions bounded by the lines

representing multiple linear inequalities. Figure 5a depicts the template polyhedral abstraction

computed by Huang et al. [2020]’s approach, where the templates consist of (1) all variables in

vars (φ) and (2) linear expressions over vars (φ) that occur in the formula. In comparison, Figure 5b

shows the polyhedron computed by TaichiPoly.

As introduced above, constrained random fuzzing aims to generate models of the original formula

φ. Here, if we perform a uniform sampling of integral points in the two polyhedrons, the success

rate (the sampled points satisfy φ) would be 4/16 = 25% and 4/7 = 57%, respectively. Clearly,

this examples shows that the precision advantage of TaichiPoly (Figure 5b) has the potential for

scalability benets.

We implement the client on top of Qsym [Yun et al. 2018], a hybrid fuzzing framework that

combines symbolic execution and a mutational fuzzer (AFL [a 2014]). The system uses AFL to test

most easy-to-cover branches quickly. For a hard-to-cover branch, we collect the path constraint

using Qsym’s symbolic execution engine, compute its polyhedral abstraction via TaichiPoly, and

apply a Markov Chain Monte Carlo sampling algorithm [Kannan and Narayanan 2009] to uniformly

sample points over the polyhedron. Note that, for this client, we enforce the absence of overows

in the formulas to be abstracted, using encoding schema presented in § 5. Thus, we end up with an

under-approximation that excludes some possible behaviors of the program from consideration.

7 EVALUATION

This section evaluates the performance of TaichiInt and TaichiPoly, and their eectiveness when

used in the two clients, memory corruption analysis and constrained random fuzzing.

Benchmarks. For the memory corruption analysis, we use the DARPA’s Cyber Grand Challenge

(CGC) dataset [Song and Alves-Foss 2016], which consists of 131 dierent binaries. The sizes of

those binaries range from 83 KB to 18 MB. These programs contain 28 heap overow bugs, 24 stack

overow bugs, 16 null pointer dereference bugs, 13 integer overow bugs, and 8 use-after-free

bugs. The dataset is designed to exhibit diversied and common code patterns, and has been widely

used as a test suite for automated vulnerability detection and exploitation systems [Bao et al. 2017;

Poeplau and Francillon 2020; Stephens et al. 2016]. We congure our tool to detect stack overow

and use-after-free bugs. We impose a 60 second time limit for analyzing any individual function. If
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Table 2. Real-world benchmark programs for constrained-random fuzzing.

Project KLoC Binary Version Input format

libjpeg 289 libjpg commit-ec5adb JPG

jhead 5.4 jhead 3.03 JPG

bento4 180.0 MP42aac commit-cbebcc MP4

tcpdump 97.2 tcpdump commit-b5046f PCAP

libti 119.3 Tiops 4.0.10 TIFF

binutils 764.7 nm-new 2.33 ELF

binutils 764.7 readelf 2.33 ELF

binutils 764.7 objdump 2.33 ELF

openssl 436.4 asn1parse commit-e8d01 ASN

coreutils 230.7 uniq LAVA-M TXT

the analysis of a function times out, it is regarded as a function that returns a nondeterministic

value and has non-deterministic side-eects on variables passed by reference.

For the constrained-random-fuzzing client, we have evaluated on ten binaries from eight projects,

including libjpg, jhead, MP42aac, tcpdump, Tiffops, nm-new, readelf, objdump, asn1parse, and
uniq. Table 2 shows the size, version, and input format of the projects and binaries. These binaries

have diverse functionalities and complexity, most of which have been widely evaluated by existing

fuzz testing tools [Chen and Chen 2018; Dolan-Gavitt et al. 2016; Yun et al. 2018]. We set a twenty-

four-hour time budget for testing each binary, and export the path constraints used for computing

the polyhedral abstractions.

In total, we collect 50,299 interval abstraction queries and 7,634 polyhedral abstraction queries,

respectively. The queries are exposed in SMT-LIB2 format, allowing us to compare with other

o-the-shelf tools. Note that the SMT formulas generated by Angr and Qsym are translated from

VEX IR and x86 assembly, respectively.

Platform. We conduct the experiments on an 80-core 2.20 GHz CPU with 256 GB of memory

running Ubuntu 16.04. Though the processor is multi-core, the executables themselves are single-

threaded. We repeat each experiment ten times and report the average results.

7.1 Interval Abstraction

Beer Performance than Existing Approaches to Symbolic Interval Abstraction. The state-
of-the-art approach to symbolic interval abstraction is to reduce it to OMT solving problems. In this

experiment, we compareTaichiIntwith three groups of techniques for solvingOMT instances in bit-

vector theory. In what follows, we briey illustrate the baseline approaches using the optimization

problem “max x s .t . φ”, where φ is a quantier-free bit-vector formula, and x encodes an n-bit bit
vector. We assume x is an unsigned integer to ease the explanation of the baseline approaches.

(1) Existing OMT solvers. Most state-of-the-art solvers reduce “max x s .t . φ” to a weighted

MaxSAT problem [Bjørner et al. 2015]. The above optimization problem is encoded as




Hard constraints translate φ to a SAT formula

Soft constraints




(t0 weight 1) ∧
(t1 weight 2) ∧

. . . ∧

(tn−1 weight 2
n−1)

within two steps. First, the formula φ is translated to a hard Boolean formula via bit-

blasting [Barrett and Tinelli 2018], where x is represented as a sequence of Boolean variables
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Algorithm Time(s) # Unsolved

Qbv 39,038 346

MaxSAT(maxres) 5,882 67

MaxSAT(nadel) 4,704 38

TaichiInt(NoOpt) 10,471 80

TaichiInt 2,212 26

(a) Total solving time and unsolved queries.
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(b) Cactus plot for all solved instances.

Fig. 6. Results of running each solver for the interval abstraction queries.

[tn−1, . . . , t0]. Second, for each ti , soft weighted unit clause (ti ) of the weight 2
i
is added. Then,

the objective is to maximize the value of t0 ∗1+t1 ∗2+ · · ·+tn−1 ∗2
n−1

via an MaxSAT solving

algorithm. In the experiment, we evaluated two MaxSAT solving algorithms implemented in

νZ [Bjørner et al. 2015]: core-guided maximal resolution (MaxSAT(maxres)) [Narodytska

and Bacchus 2014], and Nadel and Ryvchin [2016]’s algorithm (MaxSAT(nadel)). We use the

boxed multi-objective optimization mode of νZ.
(2) Quantied SMT solving. We can compute the optimal values of a variable via encoding

and solving quantied formulas [Kong et al. 2018]. For example, the optimization problem

“max x s .t . φ” can be encoded as

Ψ ≡ φ ∧ (∀x ′.φ[x ′/x]→ x ≥ x ′) ,

which states that for any other variable x ′ such thatφ[x ′/x] is satisable, we have x ≥ x ′. IfM
is a model of Ψ, thenM (x ) is the maximum value of x . To solve the translated formulas, we use

Z3’s decision procedure for quantied bit-vector constraints (denoted “Qbv”) [Wintersteiger

et al. 2013].

(3) TaichiInt(NoOpt). It uses an SMT-based binary search as TaichiInt, except that it does not

apply the sound interval analysis and nds solutions for multiple objectives independently,

without reusing models amongst the objectives.

Figure 6a and Figure 6b summarize the results of running the ve algorithms for interval

abstraction queries, with a timeout of 30 seconds per query. On average, TaichiInt obtains 2.1× to

17.6× speedups overMaxSAT(maxres),MaxSAT(nadel), and Qbv. Besides, TaichiInt can solve 12,

44, and 320 more interval queries than MaxSAT(maxres), MaxSAT(nadel), and Qbv, respectively.

Compared with TaichiInt(NoOpt), TaichiInt solves 114 more queries and is on average 4.7×

faster. The major reason is that optimizing multiple objectives simultaneously (as TaichiInt does)

ensures that all objectives benet from the sampled models and potentially avoids repeating

expensive SMT calls. Besides, we also notice that the sound interval analysis in TaichiInt can

often reduce the number of SMT queries by 8% to 21%. We anticipate that the search space could

be better narrowed down by a sound and more precise interval analysis for bit-vectors. However,

exploring this direction is non-trivial, as much of the literature on interval analysis uses unbounded

integers [Gange et al. 2015].

Beer Precision for Memory Corruption Analysis. We examine the precision of TaichiInt

by integrating it in a tool for detecting memory corruption bugs (§ 6.1). The tool uses a conventional

interval analysis that computes sound but not necessarily best intervals. We then extend the tool
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Table 3. Results of detecting vulnerabilities in the CGC dataset.

Tool # Reports # TP FP Rate

Angr(ConvInt) 124 25 79.8%

Angr(TaichiInt) 58 25 56.9%

(a) TaichiPoly vs. Rsy (b) TaichiPoly vs. Tr (c) TaichiPoly vs.Ter

Fig. 7. Performance comparison for symbolic polyhedral abstraction.

Table 4. Results of running each solver for polyhedral abstraction on 7,634 instances.

Algorithm Time(s) # Unsolved

Rsy 246,418 429

Tr 177,458 116

Ter 167,817 215

TaichiPoly 68,499 65

with TaichiInt to measure the number of false positives TaichiInt can reduce. Table 3 summarizes

the analysis results on the CGC dataset. We only report the results for programs that cannot be

proven safe by Angr(ConvInt). When using conventional interval analysis, Angr(ConvInt) is

able to identify 124 vulnerabilities while producing 99 false positives, resulting in a false-positive

rate of 79.8%. Armed with TaichiInt, the false-positive rate of Angr(TaichiInt) is reduced by

22.9%, with 66 false positives removed.
10

7.2 Polyhedra Abstraction

Beer Performance than Existing Approaches to Symbolic Polyhedral Abstraction. Recall
that we cannot reduce symbolic polyhedral abstraction to OMT solving, because the number and

coecients of linear inequalities are unknown. Thus, we compare TaichiPoly against the following

algorithms in the literature of symbolic abstraction.

(1) Reps et al. [2004]’s algorithm that starts from lattice ⊥ (denoted “Rsy”).

(2) Thakur and Reps [2012]’s algorithm that starts from lattice > (denoted “Tr”).

(3) Thakur et al. [2012]’s Bilateral algorithm that starts from both lattice ⊥ and lattice > (denoted

“Ter”).

Note that Tr and Terwere previously used for computing the polyhedral abstractions of QF_LRA

formulas. We have adapted the three baselines to handle QF_BV, and implemented them using Z3.

Note that, to improve the empirical eectiveness of the client, we enforce the absence of overows

in the formulas to be abstracted, by using the encoding schema discussed in § 5.

10
Note that, both Angr(ConvInt) and Angr(TaichiInt) miss some stack overow and use-after-free bugs, which is mainly

caused by some unmodeled instructions.
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Table 4 and Figure 7 show the results of running the algorithms with a timeout of 120 seconds

per query. Table 4 compares the total runtime and the number of unsolved queries. Figure 7 is the

scatter plot for the solved queries, where axes correspond to the CPU time (measured in seconds)

taken by TaichiPoly (y-axis) and a baseline technique (x-axis). Each point on the gure represents

a query. The points below the diagonal represent problems where TaichiPoly is faster.

The results show that TaichiPoly outperforms the baselines on our set of benchmarks in most

cases. The average speed up of TaichiPoly vs. Rsy, Tr, and Ter. are 3.6×, 2.6×, 2.4×, respectively.

Besides, TaichiPoly can solve 364, 51, and 150 more queries than Rsy, Tr, and Ter, respectively.

Besides, in our experiments, we also observe that over 83% of the polyhedral abstraction queries

can be solved by TaichiPoly within 15 seconds. Our ndings show that the overly pessimistic

view of symbolic abstraction could lead researchers to underestimate its potential applications.

Computing the best polyhedral abstractions, the conventionally most expressive domain, can be

ecient for queries from large and realistic programs.

Beer Precision for Constrained Random Fuzzing. In this study, we apply TaichiPoly to the

client of constrained-random fuzzing (§ 6.2). Given a path constraint, the goal is to generate a set

of models satisfying the constraint. In this experiment, we compared two algorithms:

(1) Pangolin(Templates) [Huang et al. 2020] computes the symbolic abstraction of the template

polyhedral domain. First, it extracts input variables and their linear expressions in the formula

as the templates, and uses an OMT solver to compute the lower and upper bounds of the

templates (as in § 2.2). Then, it generates candidate models of the formula by sampling

integral points in the polyhedron.

(2) Pangolin(TaichiPoly) uses the same sampling algorithm as Pangolin(Templates), but

computes the polyhedral abstraction via TaichiPoly.

We exclude Rsy, Tr, and Ter in this study, because they compute the same polyhedron as

TaichiPoly, and the dierence lies in the scalability. Besides, we tried our best to run Elina [Singh

et al. 2017a], the state-of-the-art, conventional polyhedral analysis. However, it is far from trivial to

oer an apples-to-apples comparison. First, TaichiPoly over-approximates formulas translated from

the assembly, but Elina does not have front ends supporting SMTLIB2 or assembly. Second, Elina

requires a third-party pointer analysis to reason about aliasing, which is a source of imprecision [Wei

et al. 2018]. While in the assembly-level symbolic execution, such information has been precisely

and implicitly encoded in the formulas.

We compare the runtime performance for all the benchmarks whose polyhedral abstraction can

be computed within 15 seconds. For each benchmark, we generate between 5,000 and 50,000 samples

(depending on the size of the benchmark) and compute the average time taken to generate a valid

(satisfying) and unique sample. Figure 8 shows the average results for queries from each project. We

observe that Pangolin(TaichiPoly) achieves a higher sampling speed than Pangolin(Templates)

on most cases. This is mainly because that, compared with Pangolin(Templates), the polyhedral

abstraction produced by TaichiPoly is often more precise. As a result, the sampling procedure can

be more eective, because it operators over a smaller polyhedral region.

7.3 Discussions

Summary of Experiments. The experiments compare our algorithmswith existing techniques in

the OMT solving and symbolic abstraction literature, which demonstrate the power of our approach.

We also evaluate two program analysis clients, including (1) the ow-sensitive, context-sensitive

interprocedural memory corruption analysis, where the abstract transformers of a selected set of

functions are created block-wise via symbolic interval abstraction; and (2) the interprocedurally

path-sensitive constrained random fuzzing, where we compute the symbolic polyhedral abstractions
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Fig. 8. Comparison of sampling speed. The y-aix shows the average time (in millisecond) of sampling one

valid model.

for the path conditions of selected path prexes. Specically, the sizes of the real-world projects

for constrained random fuzzing range from 5.4K to 764.7K lines of code. The results highlight the

eectiveness of our algorithms for realistic and large-scale programs.

Convergence in Lazy All-SMT. Many algorithms in automated reasoning work in the style of

the lazy All-SMT loop [John and Chakraborty 2011; Lahiri et al. 2006; Monniaux 2010; Sullivan

et al. 2019]. These algorithms iteratively enumerate the models of a formula φ, which are used to

“generalize” some abstraction; the iteration terminates until the abstraction has encompassed the

formula’s solution space. Three factors aect the scalability: the model returned by the decision

procedure, the method for the generalization, and the performance of the decision procedure. Many

of the past eorts target the latter two factors. For example, Thakur and Reps [2012] optimize the

generalization in symbolic abstraction by computing the “abstract consequences” of an atomic

formula. Lahiri et al. [2006]’s predicate abstraction algorithm speeds up SMT solving by guiding

the conict-driven back-jumping inside SMT solvers.

The tenet of our work is to better reuse models and nd “better” models for speeding up the

convergence. An interesting merit is the use of interval abstraction for accelerating polyhedral

abstraction, which opens up a new connection between OMT solving and symbolic abstraction.

Note that Algorithm 6 and Algorithm 7 do not attempt to rene the intervals (in the sense of

abstraction renement). Instead, they leverage the specic models under which the variables have

the extremal values.

Sampling and Optimization. Our work opens up a dual-use of solution sampling and con-

strained optimization. On the one hand, our algorithm attempts to sample “better” models of a

formula for accelerating symbolic abstraction (a form of optimization). On the other hand, we

demonstrate that a formula’s symbolic abstractions can be used to sample its solutions. We do not

claim that Pangolin(TaichiPoly) is superior than existing general-purpose uniform samplers such

as Unigen3 [Meel and Akshay 2020]. The benets of Pangolin(TaichiPoly) are correlated with the

size of the formula, the number of the formula’s variables, the model count of the formula, to name

a few. For example, MCMC methods can suer from the curse of dimensionality [Chernozhukov

and Hong 2003; Ermon et al. 2013], which means the possibility of sampling inside a certain space
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in the target object decreases very quickly while the dimension increases. However, we believe that

our work represents an interesting point in the connections between sampling and optimization.

Applicability of Symbolic Abstraction. Symbolic abstraction is an instance of a fundamental

approximation problem: given a formula φ in a logic L and a less expressive logic L ′, nd the

strongest consequence of φ that is expressible in L ′ [Reps and Thakur 2016]. For instance, for

the interval domain, the logic L ′ can be regarded as a logic fragment of conjunctions of single-

variable inequalities. In the context of abstract interpretation, beyond computing the best abstract

transformer, the symbolic abstraction also gives a way to automate other operations, such as

(1) performing semantic reduction [Cousot and Cousot 1979; Kincaid et al. 2017], (2) performing

reduced-product calculations [Thakur et al. 2015], and (3) converting an abstract value from one

abstract domain to another (e.g., when crossing analysis boundaries), etc. For example, letψ be a

constraint representation of the polyhedral domain. We can convertψ to an element in the octagon

domain, by convertingψ to a rst-order formula and performing symbolic abstraction toψ .

8 RELATEDWORK

We discuss closely-related work in two groups: symbolic abstraction and automated reasoning.

8.1 Symbolic Abstraction

Reps et al. [2004] introduce the problem of symbolic abstraction, which computes the best abstrac-

tion of a formula in a given abstract domain. The problem has been undertaken for nite-height

domains [Reps et al. 2004], template linear domains [Brauer and King 2010; Monniaux 2009], the

wedge domains [Kincaid et al. 2017], as well as the polyhedral domains [Thakur and Reps 2012].

Symbolic abstraction has found many applications, such as shape analysis [Reps et al. 2004; Yorsh

et al. 2004], program verication [Jiang et al. 2017; Li et al. 2014], control ow recovery [Barrett

and King 2010], and compiler optimization [Ritter 2015]. In what follows, we focus on algorithms

for symbolic abstraction.

Algorithmic Framework. The Rsy algorithm [Reps et al. 2004] is a parametric framework that

applies to dierent domains. To abstract a formula φ, it iteratively calls a decision procedure to

sample a model of φ, and generalizes the current abstraction using the model, until the abstraction

encompasses all models of φ. A limitation of Rsy is that it is not resilient to timeouts. If running out

of the time budget, it must return > to be sound as it starts from lattice ⊥. In comparison, Thakur

and Reps [2012]’s algorithm starts from lattice >. Thakur et al. [2012]’s Bilateral algorithm starts

from both lattice ⊥ and lattice > (denoted “Ter”). Both Tr and Ter could return a nontrivial (non

>) value in case of a timeout [Thakur et al. 2012; Thakur and Reps 2012]. TaichiPoly builds on the

Rsy framework, and centers around a critical but long-neglected design bottleneck in symbolic

abstraction, the way for sampling the models. Specically, our approach attempts to nd “better”

models to speed up the convergence.

Interval Domain. Regehr and Reid [2004] present a method that constructs the best abstract

transformers for machine instructions, for the interval and bitwise abstract domains. Their method

does not call a SAT or SMT solver but, instead, uses the physical processor as a black box. To

compute the abstract post-state for an abstract value a, the approach recursively divides a until an

abstract value, whose concretization is a singleton set, is obtained. Barrett and King [2010] develop

a method of generating interval and set abstractions for bit-vectors that are bit-blasted to Boolean

formulas. For interval analysis, they separately compute the minimum and maximum value of the

range for an n-bit bit-vector using 2n calls to an SAT solver, with each SAT query determining a

single bit of the output. Barrett and King [2010]’s algorithms only consider the abstraction of one

variable, whereas our interval abstraction algorithm targets multiple variables.
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Polyhedral Domain. While several eorts have been made for the symbolic abstractions of

template linear domains, little work has been done for polyhedral domains. Thakur et al. [2012]’s

algorithm and Thakur and Reps [2012]’s algorithm have only been applied to the symbolic poly-

hedral abstraction of QF_LRA formulas. Our work provides the rst empirical comparison of the

algorithms for QF_BV. When formulating this work, we noticed that Algorithm 6 is similar to an

unpublished algorithm by Jörg Brauer.
11
Our polyhedral analysis diers in two aspects. First, our

solution Algorithm 7 interleaves the RSY algorithm and Algorithm 6, aiming to balance the cost

and quality of the sampled models. Second, our algorithms simultaneously compute the symbolic

interval abstractions of dierent variables, while Brauer’s algorithm computes such information

variable by variable.

In the realm of conventional polyhedral analysis, Elina’s online decompositions improve the

performance of the polyhedral domain by a large margin [Singh et al. 2017a,c]. It is further optimized

with learning-based heuristics [He et al. 2020; Singh et al. 2018] that trade precision for scalability.

Elina has mainly been used for whole-program analysis, while we apply TaichiPoly to compute

the polyhedral abstraction for specic path constraints. We found that TaichiPoly can be extremely

expensive when used for an exhaustive analysis of large-scale programs.

Apart from the abstract interpretation community, there are alternatives for deriving sound poly-

hedral approximations of a formula. For example, Gröbner basis algorithms allow for deducing linear

inequalities from a non-linear formula over elds, such as rationals and complex numbers [Becker

et al. 1993]. Recently, a variant of Buchberger’s algorithm has been reported that is applicable to

modulo integers with respect to arbitrary moduli [Brickenstein et al. 2009]. Besides, one could apply

machine learning techniques such as SVM to learn linear over-approximations of a (non-linear)

formula, by utilizing both satisfying and falsifying assignments of the formula [Dathathri et al. 2017].

However, both the Gröbner basis-based approach [Brickenstein et al. 2009] and the learning-based

approach [Dathathri et al. 2017] have no guarantees on the precision of the derived abstractions.

8.2 Automated Reasoning

Symbolic abstraction is also closely related to several problems in automated reasoning, including

optimization modulo theories, quantied constraint satisfaction, and quantier elimination.

Optimization Modulo Theories. OMT is an extension of SMT that allows for nding models

optimizing given objectives [Fazekas et al. 2018; Li et al. 2014; Nieuwenhuis and Oliveras 2006;

Sebastiani and Tomasi 2015b; Sebastiani and Trentin 2015a,b]. Previous work [Jiang et al. 2017; Li

et al. 2014] shows that symbolic abstraction of template linear domains such as interval [Cousot and

Cousot 1977] and octagon [Miné 2006] can be reduced to solving boxed OMT problems. A closely

related work is Symba [Li et al. 2014], which also simultaneously optimizes multiple objectives and

reuses information between them to speed up the analysis. There are three main dierences. First,

Symba targets unbounded and linear arithmetic, while we focus on bit-vectors. Second, Symba

is a linear-search-style algorithm, while our procedure for interval abstraction is binary-search-

style. Third, Symba is only applicable to the template linear domains, while we further target the

polyhedral domain.

Most state-of-the-art OMT solvers such as νZ [Bjørner et al. 2015] and OpTiMathSAT [Se-

bastiani and Tomasi 2015a] reduce the problem of bit-vector optimization to weighted MaxSAT

solving [Bjørner et al. 2015; Sebastiani and Tomasi 2015a]. Nadel and Ryvchin [2016]’s approach rst

transforms a bit-vector formula to an SAT formula and then performs a binary search exploration

over the bits of the objective function, using a sequence of incremental calls to the underlying

11
Personal communication.
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SAT solver. Their approach is essentially a variant of Algorithm 1 but does not consider boxed

multi-objectives optimization problems.

Quantied Constraint Satisfaction. Many OMT problems can be addressed by solving quan-

tied constraint satisfaction problems. For instance, previous work has shown that a decision

procedure for solving quantied formulas can eectively solve the OMT problem specic for

non-linear real arithmetic [Kong et al. 2018]. This paper oers the rst empirical evidence on the

performance of quantied bit-vector solving for symbolic interval abstraction. To solve quantied

bit-vector formulas, Z3 combines model-based quantier instantiation [De Moura and Bjørner

2008] and a model nding procedure based on templates [Wintersteiger et al. 2013]. Q3B [Jonás

and Strejcek 2016] translates the formulas to the Binary Decision Diagram, and handles non-linear

operations by approximations. Recently, the Boolector and CVC4 developers introduced the CEGIS

(counter-example guided inductive synthesis) methodology to solve quantied formulas [Niemetz

et al. 2018, 2021; Preiner et al. 2017]. Despite the progress, we nd that state-of-the-art SMT solvers

still often run into diculties when solving quantied formulas translated from large OMT instances

in the bit-vector theory.

Quantier Elimination. Symbolic abstraction also has a connection to the problem quantier

elimination [Arnon 1988; Loos and Weispfenning 1993] or “forgetting” [Lin 2001; Lin and Reiter

1994], which can compute the strongest consequence of a formula that mentions only a subset of its

variables. Gulwani and Musuvathi [2008] dene the “cover problem” that essentially approximates

existential quantier elimination for the combined theory of uninterpreted functions and linear

arithmetic. Monniaux [2009] introduced a quantier-elimination-based approach to computing

optimal abstract transformers of template linear domains, such as intervals, octagon, and template

polyhedron. Monniaux [2009]’s algorithm targets linear real arithmetic. To date, there has been

relatively little progress on quantier elimination for the bit-vector theory [Backeman et al. 2018].

Translation from bit-vectors to unbounded arithmetic can result in complicated constraints that are

hard to reason about, and bit-blasting to propositional logic leads to an exponential increase in the

formula size. The algorithms by John and Chakraborty [2011, 2013] only support the linear modulo

arithmetic. Model-based projection [Komuravelli et al. 2016] can compute under-approximations

of quantier elimination, which does not guarantee precision.

9 CONCLUSION

The development of abstract domains has never been easy, which requires signicant expertise,

careful tuning of the abstract transformers, as well as code optimizations. Symbolic abstraction has

the signicant potential to change this landscape. It allows for the automatic synthesis of abstract

transformers for a block of code, which could be more precise than the usual composition of the

individual operations’ abstractions, and less tedious to design and implement transfer functions.

This paper provides strong evidence that symbolic abstraction of numeric domains can be made

ecient and practical for large and realistic programs. In a virtuous cycle, the development and

widespread use of symbolic abstraction algorithms would likely uncover additional client analyses

that benet from the added precision.
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