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Containers, such as lists and maps, are fundamental data structures in modern programming languages.
However, improper choice of container types may lead to significant performance issues. This paper presents
Cres, an approach that automatically synthesizes container replacements to improve runtime performance.
The synthesis algorithm works with static analysis techniques to identify how containers are utilized in the
program, and attempts to select a method with lower time complexity for each container method call. Our
approach can preserve program behavior and seize the opportunity of reducing execution time effectively
for general inputs. We implement Cres and evaluate it on 12 real-world Java projects. It is shown that Cres
synthesizes container replacements for the projects with 384.2 KLoC in 14 minutes and discovers six categories
of container replacements, which can achieve an average performance improvement of 8.1%.
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1 INTRODUCTION

General-purposed programming languages, including Java and C++, support a variety of containers,
which creates great convenience of developing software systems. Unfortunately, performance issues
often emerge because of inefficient usage of container types. Programmers are often unaware of
more efficient container types under their development context and tend to choose the container
types that they are most familiar with. For example, in the program shown in Figure 1, the use
of the container type ArrayList introduces unnecessary time overhead because the method, Ar-
rayList.contains, performs linear searching. The same functionality can be supported efficiently by
the class HashSet. It is quite surprising to find that 16% of execution time of the 3D design software,
Raytrace, is introduced by inefficient container types [Jung et al. 2011], affecting the performance
of ray tracing greatly. Moreover, there is abundant evidence that inefficient containers also increase
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public List load(String [] a, int n) {

List <String > u = new ArrayList <>();
for (int i = 0; i < n; i++)

if (!u.contains(a[i])) u.add(a[i]);
return u;

}

public void check(String [] a, String s) {

List v = load(a, a.length );

if (v.contains(s))
return true;

return false;
}

Fig. 1. An efficient usage of ArrayList in the project iotdb

other resource consumption, including memory [Basios et al. 2018; Jung et al. 2011], energy [Hasan
et al. 2016; Manotas et al. 2014; Oliveira et al. 2021], and CPU usage [Basios et al. 2018].

Goal and Challenge. Given a set of container types, our goal is to synthesize alternative
container types and the associated methods at the container allocation sites and the container
method call sites, respectively, such that the program after replacements preserves the original
semantics and executes more efficiently for large inputs. We also expect our synthesis algorithm
to be general enough, supporting the program optimization to decrease other kinds of resource
consumptions, such as the memory and CPU usage.
However, it is far from trivial to achieve the goal. First, we can not determine the container

types to replace the original ones without violating the behavioral equivalence [Nicola 2011] if
we do not know how container objects are manipulated. Although several container types are
interchangeable, e.g., ArrayList and LinkedList, the replacement patterns might be quite restrictive.
Second, it is far from practical to derive a tight bound of the time complexity for a general container-
manipulating program [Gulwani et al. 2009a,c;Wilhelm et al. 2008], so we can not explicitly compare
the complexity of the program before and after replacements to guide the synthesis.

Existing Effort. The existing works attempt to tackle the problem from two perspectives.
One line of the existing approaches attempts to find optimal container usage by minimizing the
resource consumption upon a given test suite [Basios et al. 2018; Manotas et al. 2014]. They mutate
container types and evaluate the resource consumption via dynamic profiling until the minimal
consumption is reached. The other line of the works selects better container types by performing a
prediction task [Jung et al. 2011; Kennedy and Ziarek 2015; Shacham et al. 2009]. Based on the heap
information and container usage patterns in a specific execution, they predict optimal container
types by utilizing a prediction model, which is specified manually or obtained in a training process.
Unfortunately, the existing works suffer from three drawbacks:
• Huge time overhead. They rely on the execution of the test suite, making the whole process quite
time consuming [Jung et al. 2011; Manotas et al. 2014]. Particularly, the first line of the works
executes the test suite iteratively to find the optimal selection and suffer the huge time overhead.
For example, [Basios et al. 2018] takes 3.1 hours optimizing a project on average, which poses an
enormous obstacle to large-scale adoption.
• Unsoundness. They can not guarantee the semantic equivalence of the program, as they can not
discover how each container object is manipulated and determine the equivalent container types
soundly. Although several approaches assume several container types are interchangeable [Basios
et al. 2018; Jung et al. 2011], the assumptions do not hold in certain cases, such as transforming
LinkedHashMap to HashMap in the presence of map traversal.
• Overfitting. The effectiveness of the optimization can be degraded when the test suite or the
training data does not provide general inputs. The program after replacements can execute slower
when the inputs exercise the program along previously uncovered paths [Xu 2013].
Insight and Solution.We observe that container method calls reveal the intention of the pro-

grammers for which they use the containers. Specifically, programmers concern with specific
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container properties, such as the size, index or value-ownership, and index-value correlation. Con-
tainer methods allow programmers to manipulate a container object by querying and modifying
container properties. Our insight is that we can optimize a container-manipulating program if the
intention can be achieved by other container types and methods with lower time complexity. In
Figure 1, for example, the ArrayList object allocated in the method load is only manipulated by the
methods ArrayList.add and ArrayList.contains. The programmers only wish to know whether an
element is stored in the list, i.e., the value-ownership property of the ArrayList object. Thus, we
can replace ArrayList with HashSet to avoid linear searching caused by ArrayList.contains, thereby
improving program efficiency.

Based on the insight, we present Cres, a container replacement synthesizer to improve program
efficiency. Cres synthesizes container replacements preserving program behavior and achieves the
optimization for general inputs.
• To assure the behavioral equivalence, we propose the notion of container behavioral equivalence to
determine the method candidates. Specifically, Cres analyzes container method calls to determine
the concerned container properties. A method is a candidate of a container method call if it
queries and modifies the concerned container properties in the same way as the original one.
• To achieve the optimization, we introduce the concept of container complexity superiority to
constrain the complexity of container methods in the replacements. Specifically, Cres selects
methods with low complexity from candidates so that the total complexity of the container
method calls manipulating the object is lower than the one in the original program.
With the benefit of our insight, Cres can find the opportunity of achieving input-agnostic

optimization and improve program efficiency significantly. To the best of our knowledge, Cres is
the first work to guarantee the behavior equivalence without any assumption on interchangeable
container types. Moreover, Cres escapes from the burden of huge overhead because it does rely on
program execution and performs efficient static reasoning.
We evaluate Cres upon 12 real-world Java projects with intensive usage of containers in Java

Collections Framework (JCF), of which the sizes range from 18.6 KLoC to 384.2 KLoC. Cres
synthesizes 107 replacements covering six categories [Cres 2021], such as replacing ArrayList

with HashSet, replacing TreeMap with HashMap, etc. Particularly, 71 replacements in six projects
have been confirmed by the developers. The time consumption of each project is decreased by
8.1% on average after replacements. Moreover, Cres finishes analyzing any project in 14 minutes,
which distinguishes it from existing approaches suffering from the heavy time burden [Basios et al.
2018; Manotas et al. 2014]. We also prove its soundness theoretically to guarantee the behavioral
equivalence. Cres has been integrated into the static analysis platform in the Ant Group, an
international IT company providing the financial service for over 1 billion global users. In summary,
we make the following main contributions:
• We propose a novel abstraction of containers and introduce two principled notions, namely
container behavioral equivalence and container complexity superiority, to guide the synthesis.
• We establish an abstract domain and propose the container property analysis to guarantee the
behavioral equivalence of the programs.
• We implement a synthesis framework Cres and evaluate it on real-world Java applications,
showing that it synthesizes replacements efficiently and significantly improves program efficiency.

2 CRES IN A NUTSHELL

In this section, we present a motivating example to state the importance of replacing inefficient
containers for program efficiency improvement (§ 2.1), and illustrate the key idea of our approach
to solving the problem of complexity-guided container replacement synthesis (§ 2.2).
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1 public List getResources(String dir) {

2 List r = new ArrayList <File >(); //o2

3 for (int i = 0; i < RES_NUM; i++) {

4 File s = getFile(dir , i);

5 if (!r.contains(s))
6 r.add(s);
7 }

8 return r;

9 }

10 public List getPrivate(String dir) {

11 List p = new ArrayList <File >(); //o11

12 for (int i = 0; i < N_PRIVATE; i++)

13 p.add(getPrivateFile(dir , i));

14 return p;

15 }

16 public List getProtected(String dir) {

17 List q = new ArrayList <File >(); //o17

18 for (int i = 0; i < N_PROTECTED; i++)

19 q.add(getProtectedFile(dir , i));

20 return q;

21 }

22 public boolean invisible(ArrayList l) {

23 return l.contains(INVISIBLE_FILE );
24 }

25 public List getAllFiles(String dir) {

26 List f = new ArrayList <File >(); //o26

27 for (int i = 0; i < N_FILE; i++)

28 f.add(getFile(dir , i));

29 return f;

30 }

31 public void access(String dir , int token) {

32 List f = getAllFiles(dir);

33 List r = getResources("/OOPSLA");

34 List p = getPrivate("/Data");

35 List q = getProtected("/Data");

36 for (File file : f) {

37 if (! invisible(p)

38 && p.contains(file))
38 continue;
39 if (! invisible(q)

40 && q.contains(file)
41 && q.indexOf(file) > token)

42 continue;
43 if (r.contains(file))
44 System.out.println("Access");

45 }

46 }

Fig. 2. A motivating program accessing the available and visible files in a specific directory

2.1 Motivating Example

Figure 2 presents the example extracted and simplified from the projects iotdb and google-http-

java-client. The container objects o2, o11, o17, and o26 are allocated by the allocation statements at
lines 2, 11, 17, and 26, respectively. The methods getAllFiles and getResources collect the files in
the directories named dir and OOPSLA, and store them in o26 and o2, respectively. The methods
getPrivate and getProtected collect the files demanding two different access privileges and store
them in two ArrayList objects o11 and o17, respectively. We can obtain three observations as follows.
• The ArrayList object o2 is manipulated by the methods ArrayList.add and ArrayList.contains, so
the programmers only wish to know whether an element is stored in o2, i.e., the value-ownership
of o2. Notice that a HashSet object also supports the value-ownership checking and returns
the same result. Besides, the method HashSet.contains works with amortized constant time.
Therefore, the program will be more efficient if we replace ArrayList with HashSet at line 2.
• The ArrayList object o26 is manipulated by the insertions and traversal. The methods of LinkedList
also support the same functionalities. Besides, the method LinkedList.add runs in constant time
complexity while the method ArrayList.add works with amortized constant time because of
memory reallocation. Thus, we can replace ArrayListwith LinkedList to reduce time consumption.
• The ArrayList object o11 is created for the value-ownership checking. However, o11 and o17 are
provided as the parameters of the method invisible. The programmers are concerned about the
index-value correlation of o17 in the invocation of the method ArrayList.indexOf. If we replace
the type of o11 withHashSet, the code cleanliness can be degraded, as the method invisible should
be inlined at two call sites. Thus, we only leverage LinkedList to avoid memory reallocation.
The replacements can bring a significant improvement in program efficiency. For example, the

total execution time of the corresponding test cases in google-http-java-client can be reduced by
27.1% if we replace an ArrayList object with a LinkedList object. A large body of literature also
reveals that inefficient container types can introduce unnecessary time consumption and even
increase time complexity [Basios et al. 2018; Jung et al. 2011; Shacham et al. 2009]. Thus, it is
meaningful to synthesize container replacements to improve program efficiency.
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Fig. 3. Schematic overview of our approach

2.2 Synthesizing Replacement

The synthesized container replacements should preserve the program behavior and achieve the
optimization for large inputs. Unfortunately, it is non-trivial to find the replacements satisfying
the two constraints. First, we can not determine which container types can guarantee the behav-
ioral equivalence after replacements if we do not know how container objects are manipulated.
Even if several container types are interchangeable in any usage context, such as LinkedList and
ArrayList, more general replacements, such as transforming the type of o2 to HashSet, can not
be discovered [Basios et al. 2018; Oliveira et al. 2021; Shacham et al. 2009]. Second, it is far from
practical to derive a tight bound of the time complexity for a real-world program [Gulwani et al.
2009a,c; Wilhelm et al. 2008]. We need an effective and computable measure to guide the synthesis
such that the synthesis can achieve the input-agnostic optimization for large inputs.

The key idea of our approach comes from the observation about the intention of container usage.
We realize that the purpose of programmers is to utilize specific facts about containers, which we
call container properties. Programmers can query and update the container properties by invoking
container methods. In Figure 2, for example, the programmers are concerned about the value-
ownership of o2, i.e., the fact that whether an object is stored in o2. The methods ArrayList.contains
and ArrayList.add query and update the value-ownership, respectively. When the concerned
properties can be updated and queried by more efficient methods in the same way, we can replace
the types and methods to improve program efficiency. Specifically, we propose two concepts to
address the challenges:
• We introduce container behavioral equivalence to determine themethods that query and update the
concerned properties in the same way as the original ones. For instance, only the value-ownership
of o2 is concerned in Figure 2, and the methods of HashSet guarantee the container behavioral
equivalence. Thus, replacing it with a HashSet object preserves the behavioral equivalence.
• We propose container complexity superiority to measure whether the methods manipulating a
container object are more efficient after replacements. In Figure 2, HashSet.contains has much
lower time complexity than ArrayList.contains, and HashSet.add and ArrayList.add do not have
significant difference in complexity. After transforming the type from ArrayList to HashSet, the
new program has container complexity superiority.
Based on our insight, we can improve the program efficiency for general inputs if the replace-

ments guarantee the container behavioral equivalence and the container complexity superiority
simultaneously. Figure 3 shows the workflow of our approach, which consists of three stages.
• In the first stage, the container property analysis identifies which container properties are queried
and how they are updated upon each container object in the program. For example, it can discover
that only the value-ownership is queried upon o2 and o11 in Figure 2.
• In the second stage, the methods are identified as the method candidates if they the preserve
container behavioral equivalence. For instance, the methods HashSet.contains and HashSet.add

are the candidates of the container method calls at line 5, 6, and 43, as they query and update the
value-ownership in the same way as the methods ArrayList.contains and ArrayList.add.
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Program P := F+

Container method FC := fC(v1, . . . ,vm)

Function F := f (v1, . . . ,vn){S ; return e}

Statement S : = v = new τ | v = e | S1; S2 | return e

| if (e) then S1 else S2 | while (e) do S od
| v = c . fC(v1, . . . ,vm) | v = f (v1, . . . ,vn)

Expression e := a | v | u1 ⊕ u2 | ⊗ u

Variable v := c | u
Operator ⊕ := ∧ | ∨ | + | − | = | · · · ⊗ := ¬ | − | · · ·

Fig. 4. The syntax of the language

• In the third stage, we instantiate a CEGIS paradigm [Alur et al. 2013; Gulwani et al. 2011; Solar-
Lezama et al. 2008] to synthesize container types and methods. A synthesizer selects efficient
method candidates and resolves the counterexamples in the consequent rounds if type checking
fails in the verification. For instance, the actual parameters of the method invisible are inconsistent
at lines 37 and 39 if we replace o11 with a HashSet object, so the synthesizer refines the type of
o11 by selecting another type LinkedList in a consequent round.
Specifically, the generation and selection of method candidates both rely on sound reasoning

about the queried container properties and how they are updated in the program. Technically, we
establish an abstract domain to abstract the container-property queries in the program, which guide
the generation of method candidates and further guarantee the container behavioral equivalence.

With the benefits of our insight, our approach stands out due to the following three perspectives.
• The low overhead introduced by the synthesis. The synthesis algorithm does not rely on any input
and execution of the program, and static reasoning of container properties is sufficient to identify
candidates with quite low overhead.
• Sound and various replacements. The algorithm analyzes the concerned container properties to
guide method candidate identification, which not only guarantees the behavioral equivalence but
also discovers the replacements uncovered by existing approaches, such as replacing ArrayList
with HashSet, and replacing LinkedHashMap with HashMap.
• Input-agnostic optimization. The algorithm utilizes the complexity specification of container
methods to guide the synthesis so that the replacements are insensitive to the program inputs,
and the time complexity of the program is more likely to be decreased.

3 PROBLEM FORMULATION

In this section, we first present the language used in this paper and its concrete state (§ 3.1). We
then define the behavioral equivalence (§ 3.2) to constrain the program behavior after container
replacements. Finally, we formalize the problem of complexity-guided container replacement
synthesis (§ 3.3).

3.1 Program Syntax and Concrete State

Let C and M denote the family of the container types and their methods, respectively. Also,
we let method denote the function mapping a container type τ to the set of container methods
supported by τ . Figure 4 shows the syntax of the language. The expressions include literals,
variable expressions, and unary/binary expressions. A statement can be an allocation statement, an
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public boolean foo1(String a) {

List <String > l = new ArrayList <>();
l.put("PL"); l.put("SE");
boolean b1 = l.contains(a);
return b1;

}

public boolean foo2(String a) {

Set <String > s = new HashSet <>();
s.add("PL"); s.add("SE");
boolean b2 = s.contains(a);
return b2;

}

Fig. 5. Two behaviorally equivalent programs

assignment, a sequencing, a branch, a loop, a function call, or a return statement. Particularly, a
function call is either an invocation of a user-defined function f or a container method fC with
the receiver container c . A program has a unique function as its entry, which has a unique return
statement.

We denote the sets of program variables and values by Var and Val := Addr ∪OVal, respectively.
Specifically, Addr is a set of addresses of objects, OVal is a set of non-address values, and Idx ⊆ Val

includes the index values of the containers. Formally, we can define the concrete state as follows.

Definition 3.1. (Concrete State) A concrete state s ∈ State is a 3-tuple (ε, µ, β), where
• An environment ε ∈ Env := Var→ Val maps a set of variables Var to a set of values Val.
• A memory µ ∈ Mem := (Addr, Idx) → Val maps a pair of an address and an index to a value,
which is the value stored at the index of a container object.
• A base β ∈ Base := Addr→ U, where U := {((A, ⪯1), . . . , (A, ⪯k )) | A ⊆ Idx}, maps an address
to a k-tuple, of which the entry is a partially ordered set. Each partial order ⪯i determines a
specific order of the indexes of the container object stored at the address.

The concrete state supports the semantics of container methods with various features. In JCF, for
instance, TreeMap supports accessing the value associated to the largest key, and LinkedHashMap

supports iterating according to the insertion order. These advanced features can be expressed by
specific partial orders in the base.

Example 3.2. Consider the function foo1 in Figure 5. At the exit of the function, we have ε(l) = al ,
µ(al , 0) = “PL” and µ(al , 1) = “SE”, where al is the address where the ArrayList object is allocated.
Particularly, we enforce β(al ) equal to �, as its semantics does not rely on any order of the indexes.

3.2 Behavioral Equivalence

The program after the replacements should preserve the semantic equivalence. Based on the
concrete state, we define the behavioral equivalence [Nicola 2011] for two programs to constrain
the input-output relationship, which is a specific form of program behavior.

Definition 3.3. (Behavioral Equivalence) P is behaviorally equivalent to P ′, denoted by P ≃ P ′, if
and only if for any input, the expressions e and e ′ in the return statements of the entry functions
evaluate to the same value, i.e., [[e]](s) = [[e ′]](s ′). [[e]] is the function mapping a concrete state to
the value of the expression. s and s ′ are the concrete states of P and P ′ at the exits, respectively.

Example 3.4. Suppose that s1 = (ε1, µ1, β1) and s2 = (ε2, µ2, β2) are the concrete states at the exits
of the functions foo1 and foo2 in Figure 5, respectively. We have ε1(b1) = T and ε2(b2) = T iff a is
equal to “PL” or “SE”, i.e., [[b1]](s1) = [[b2]](s2), indicating that they are behaviorally equivalent.

Behavioral equivalence defines an equivalence relation between two programs based on the
input-output relationship, which is a program behavior concerned in many scenarios [Nicola
2011]. The program after replacements should be behaviorally equivalent to the original program,
preserving the semantics we are concern about.
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3.3 Problem Statement

To synthesize container replacements, we identify the allocation statements of container objects
and container method calls as the skeleton of synthesis. Given a program P , we denote the set of
the two kinds of statements by S. In what follows, we let Sa ⊆ S and Sc ⊆ S denote the sets of
container allocation statements and container method calls, respectively. We state the problem of
complexity-guided container replacement synthesis as follows.

Definition 3.5. (Complexity-Guided Container Replacement) Given a program P , we aim to
synthesize the replacement mappingsψc : Sc →M andψa : Sa → C. For stc ∈ Sc and sta ∈ Sa ,
we replace the container method fC invoked by stc withψc (stc ), and replace the container type τ
used in sta withψa(sta), which should satisfy: (1) Behavioral equivalence: P ′ and P are behavioral
equivalent; (2) Complexity superiority: P ′ consumes no more time than P for any large input.

Intuitively, the behavioral equivalence and the complexity superiority formulate our expectations
on the new program after replacements. To solve the problem, we establish the abstraction for
containers in § 4 and design the synthesis algorithm to synthesize the container replacement
mappings in § 5.

Remark. We only concentrate on the statement-wise replacements synthesis in our problem. A
major advantage of performing such a form of replacements is that the program structure is not
affected by the replacements. If we conduct more aggressive changes to the code, e.g., defining
two functions to replace the invocation of the function invisible at lines 37 and 39 in Figure 2, the
program after replacements can have a big difference from the original one, which degrades the
code cleanliness and increases the difficulty of the maintenance.

4 PROGRAM ABSTRACTION

In this section, we first introduce the notion of the container-property query and establish the
abstract states (§ 4.1). We then propose the method semantic specification and define the concept
of the container behavioral equivalence to guarantee the behavioral equivalence (§ 4.2). Finally, we
define the notion of the container complexity superiority as the heuristic guidance to synthesize
replacements satisfying the complexity superiority (§ 4.3).

4.1 Container Property Abstraction

As explained in § 2.2, we can represent the intention of utilizing containers by the concerned
container properties, which are specific forms of facts about containers. To show the intention of
container usage, we define the container-property query (§ 4.1.1) and establish an abstract domain
to abstract the concerned container properties (§ 4.1.2).

4.1.1 Container-PropertyQuery. We introduce the concept of the container property to indicate the
intention of container usage. A container property is essentially a numeric quantity or a predicate
upon the indexes and the values of a container object. Intuitively, it is a specific form of facts about
a container object. Table 1 shows the typical container properties of commonly-used container
types in JCF, which depict the following facts.
• size shows the size of a container object, i.e., the number of the values in the container.
• isIdx(λ) and isVal(v) indicate the index-ownership and value-ownership, respectively. λ or v is
an index or a value of the container if and only if isIdx(λ) = T or isVal(v) = T .
• isCor(λ,v) indicates the index-value correlation. The index λ is paired with the value v if and
only if isCor(λ,v) = T .
• InsOrd(λ1, λ2) indicates the insertion order of indexes. λ1 is inserted before λ2 if and only if
InsOrd(λ1, λ2) = T .
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Table 1. Examples of container properties

size isIdx(λ) isVal(v) isCor(λ,v) InsOrd(λ1, λ2) KeyOrd(λ1, λ2)

ArrayList ✓ ✓ ✓
LinkedList ✓ ✓ ✓
HashSet ✓ ✓ ✓
TreeSet ✓ ✓ ✓ ✓
LinkedHashSet ✓ ✓ ✓ ✓
HashMap ✓ ✓ ✓ ✓
TreeMap ✓ ✓ ✓ ✓ ✓
LinkedHashMap ✓ ✓ ✓ ✓ ✓

• KeyOrd(λ1, λ2) indicates the order of keys. λ1 is larger than λ2 if and only if KeyOrd(λ1, λ2) = T .
Let Property denote the family of the container properties. Based on the concept of the container

property, we define the container-property query to formalize which container property is
utilized by a container method call.

Definition 4.1. (Container-Property Query) A container-property query is a function q mapping
a pair of a concrete state and a container variable to a container property p, i.e.,

q : State × Var→ Property

(s, c) 7→ p

Furthermore, we can construct a family of container-property queries Q to represent all the
possible container-property queries induced by container methods.

Example 4.2. Consider the container type LinkedHashMap as an example. The methods Linked-
HashMap.containsKey and LinkedHashMap.containsValue induce the queries of the container
properties isIdx(λ) and isVal(v), respectively. Besides, the method LinkedHashMap.get queries the
container property isCor(λ,v). Its iterator also queries the container property InsOrd(λ1, λ2), as its
semantics relies on the insertion order.

4.1.2 Abstract State. Based on container-property queries, we can establish an abstraction of
concrete states in § 3.1. To assure the boundedness of the abstract domain, we adopt the allocation
site-based memory abstraction [Kanvar and Khedker 2016], and introduce an abstract object to
summarize the memory objects allocated by the same allocation statement. Formally, we define the
abstract state for container-manipulating programs as follows.

Definition 4.3. (Abstract State)Vc is the set of container variables and Oc is the set of abstract
container objects. An abstract state is s̃ = (̃ε, ρ̃), where
• ε̃ : Vc → 2Oc indicates the points-to fact of container variables. For each container variable
c ∈ Vc , ε̃(c) is the set of abstract container objects which c may point to.
• ρ̃ : Oc → 2Q indicates the property-query fact of container objects. For each container object
o ∈ Oc , ρ̃(o) contains the container-property queries occurring upon the object o.

Example 4.4. Consider the function foo1 in Figure 5. We have Oc = {o2}, where o2 is the ArrayList
object allocated at line 2. The container object is only created for the value-ownership checking.
Before the return statement, the abstract state is (̃ε, ρ̃), where ε̃(l) = {o2}, ρ̃(o2) = {q}, and q(s, c) is
isVal(v), indicating that only the value-ownership of o2 is concerned in the program.

Intuitively, an abstract state abstracts away the facts irrelevant to container variables and objects.
Based on the abstract state, we can determine how a container object is utilized in the program
by identifying (1) which container objects are manipulated and (2) which container properties are
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concerned. The abstract state provides sufficient information about the intention of container usage
and enables us to examine the behavioral equivalence.

4.2 Behavior Constraint

Based on our insight, the behavioral equivalence must hold if the container properties are queried
and updated in the same way as the original program. To formulate the criteria explicitly, we first
introduce the notion of the container-property modifier and provide a novel representation of
method semantic specification (§ 4.2.1). We then propose the container behavioral equivalence to
specify the constraints that guarantee the behavioral equivalence (§ 4.2.2).

4.2.1 Method Semantic Specification. To maintain the container content for further queries in
the program, each container method updates the memory µ and base β in the concrete state
and modifies the container properties. To depict the effect of a container method, we define the
container-property modifier formally as follows.

Definition 4.5. (Container-Property Modifier) A container-property modifier is a function t
mapping a 4-tuple, which consists of a container variable, a tuple of parameter variables, a concrete
state, and a container property, to a container property, i.e.,

t : Var × Var∗ × State × Property→ Property

(c,arдs, s,p) 7→ p ′

where p and p ′ indicate the container properties before and after applying the modifier, respectively.

Similar to container-property queries, we can construct a family of container-property modifiers
T to enumerate all the possible effects of container methods.

Example 4.6. Suppose that the language only supports the usage of LinkedHashMap. A container-
property modifier can be one of the following forms: (1) Increasing or decreasing the size by at most
one; (2) Inserting or removing an index or a value; (3) Inserting or removing a pair; (4) Inserting or
removing an element from the partially ordered set, which preserves the insertion order.

Notice that a container-property modifier can affect several container properties. To show the
effect explicitly, we establish a function ωT : T → 2Q mapping a container-property modifier to
the set of the container-property queries affected by it. For instance, when t inserts or removes an
element in the i-th partially ordered set of the base, it can affect the query of i-th partial order.
Given a container method, its semantics is essentially a combination of two orthogonal parts,

namely specific container-property queries and container-property modifiers. Formally, we can
define themethod semantic specification as follows.

Definition 4.7. (Method Semantic Specification) The method semantic specification is a function
αM : M → 2Q × 2T . For a given fC ∈ M, (Q,T ) := αM(fC) indicates the container-property
queries and the container-property modifiers induced by fC , respectively.

Example 4.8. The method semantic specification maps the method LinkedHashMap.get to
({q},�), where q(s, c) = isCor(λ,v). Similarly, the method LinkedHashMap.put is mapped to
(�, {t1, t2, t3, t4, t5}), where t1 increases the size by at most one, and ti (2 ≤ i ≤ 5) insert an
element or a pair to update isIdx(λ), isVal(v), isCor(λ,v), and InsOrd(λ1, λ2), respectively.

The method semantic specification describes the semantics of container methods in a compact
way, blurring the details of how the memory is updated and container property is computed. Using
the abstraction, we propose the container property analysis in § 5.1 to compute the abstract states,
which maintain the concerned container properties of each container object. The properties provide
sufficient guidance to guarantee the behavioral equivalence in the container replacements.
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4.2.2 Container Behavioral Equivalence. To guarantee the behavioral equivalence in the container
replacements, the container methods in the new program P ′ should query and modify the concerned
container properties in the same way as the ones in the program P . Besides, we need to constrain
the types of container objects manipulating by the same container method call, which should be
equal to assure that P ′ is well-typed. To provide the criteria of the behavioral equivalence for our
problem explicitly, we define the container behavioral equivalence formally as follows.

Definition 4.9. (Container Behavioral Equivalence) Given two programs P and P ′, where P ′ is
obtained by applyingψa andψc to P to perform container replacements. P and P ′ have the container
behavioral equivalence relation, denoted by P ≃C P ′, if and only if for any stc ∈ Sc in the form of
v = c . fC(v1, . . . ,vm),ψa andψc satisfy

Q = Q ′ (1)

∀o ∈ ε̃stc (c) ∀q ∈ ρ̃e (o), η(T ,q) = η(T ′,q) (2)

∀o1 ∈ ε̃stc (c) ∀o2 ∈ ε̃stc (c), alloc(o1, sta1) ∧ alloc(o2, sta2) → ψa(sta1) = ψa(sta2) (3)

where (Q,T ) := αM(fC) and (Q ′,T ′) := αM(ψc (stc )). (ρ̃e , ε̃e ) and (ρ̃stc , ε̃stc ) are the program states
at the exit of P and before stc , respectively. The predicate alloc(o, sta) indicates the relation that o
is allocated by sta . η is defined as follows:

η(T ,q) = {t | q ∈ ωT(t), t ∈ T } (4)

The intuition behind Definition 4.9 is straightforward. The constraints in Equations 1 and 2
assure that the returned value of a container method call in P ′ is always the same as the one in
P , as the methods in P ′ query and modify the concerned container properties in the same way as
the ones in P . Meanwhile, Equation 3 constrains the types of container objects manipulated by the
same container method call, assuring the program P ′ is well-typed.
Obviously, we can explicitly examine the equations based on the abstract states to determine

the methods and types in the replacements. Specifically, we utilize Equations 1 and 2 to identify
possible methods for container method replacements (§ 5.2), and leverage Equation 3 to refine the
replacements in the synthesis (§ 5.3). Formally, we state Theorem 4.10 to justify that container
replacements assuring container behavioral equivalence finally guarantee behavioral equivalence.

Theorem 4.10. Container behavioral equivalence relation is a behavioral equivalence relation, i.e.,

P ≃C P ′⇒ P ≃ P ′

Proof. According to Definition 4.9, P ′ only differs from P in terms of the container allocation
statements and container method calls. Therefore, we only need to prove that for each container
method call v = c . fC(v1, . . . ,vm) in P and the corresponding call v ′ = c . f ′

C
(v1, . . . ,vm) in P ′, we

have the equality relation [[v]](s) = [[v ′]](s ′), where f ′
C
:= ψc (stc ). s and s ′ are the program states

after the container method calls in P and P ′, respectively.
If not, we can find a control flow path l in P and l ′ in P ′ containing stc := v = c . fC(v1, . . . ,vm)

and st ′c := v ′ = c . f ′
C
(v1, . . . ,vm), respectively, which are the first container method calls in l and l ′

violating the equality relation. According to Equation 1, we haveQ1 = Q
′
1, where (Q1,T1) := αM(fC)

and (Q ′1,T
′
1 ) := αM(ψc (stc )). Obviously, there exists a pair of container method calls located not

after stc and st ′c in l and l ′, respectively, which induce different modifiers upon a container property
in Q . Denote the two method calls by stp and st ′p , which invoke дC and д′C , respectively. Assume
that (Q2,T2) := αM(дC) and (Q ′2,T

′
2 ) := αM(д

′
C
). Then, we have

∃q∗ ∈ Q, η(T2,q∗) , η(T ′2 ,q∗)
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The method calls manipulate the container object o, of which the properties in Q are queried by stc
and st ′c afterwards. According to the definition of ρ̃e , we have Q ⊆ ρ̃e (o), thus we have

∃q∗ ∈ ρ̃e (o), η(T2,q∗) , η(T ′2 ,q∗)
This contradicts with Equation 2. The theorem is proved. □

Theorem 4.10 enables us to guarantee the behavioral equivalence by examining the container
behavioral equivalence. For each container method call, we can identify its method candidates
which satisfy the constraints in Definition 4.9. Finally, we can select efficient container candidates
so that the replacements are likely to satisfy the complexity superiority.

4.3 Complexity Guidance

To achieve the optimization, we expect the new program to satisfy the complexity superiority.
Specifically, the synthesis algorithm should be aware of the time complexity of each container
method. To this end, we propose the method complexity specification (§ 4.3.1) and then define
container complexity superiority to provide the effective guidance for the synthesis (§ 4.3.2).

4.3.1 Method Complexity Specification. To depict time complexity of a container method in a
fine-grained manner, we define a family of time complexity functions TC to represent different
time complexities, which include (amortized) constant time complexity, (amortized) linear time
complexity, etc. The functions of amortized time complexity are introduced as symbols to distinguish
them from constant time complexity, linear time complexity, etc. Meanwhile, there exists an order
between several container methods even if they have the same time complexity function. For
example, the method LinkedHashMap.put has to maintain the indexes in a linked list to preserve
the insertion order, and consumes more time than the method HashMap.put. Based on TC, we can
formalize themethod complexity specification as follows.

Definition 4.11. (Method Complexity Specification) The method complexity specification is a
function CS mapping a container method fC to its complexity score θ · tc(n), indicating its time
complexity and a constant factor.

Example 4.12. The methods HashMap.put and LinkedHashMap.put are mapped to θ1 · tc(n) and
θ2 · tc(n), respectively, where θ1 < θ2. tc(n) is the function of amortized constant time complexity.
θ1 < θ2 indicates that the method LinkedHashMap.put consumes more time than the method
HashMap.put.

Based on Definition 4.11, we can measure the total time complexity score of container method
calls by a function of n. Then we can naturally compare the order of the complexity scores of
container method calls in two programs by comparing the coefficients of tci (n), where tci (n) is the
time complexity function occurring in the complexity scores.

4.3.2 Container Complexity Superiority. Although the method complexity specification provides
an abstraction of the efficiency of each container method, we are still unaware of the frequency
of container method calls, and estimating the time complexity for a general program is far from
practical. To establish effective guidance for synthesis, we define the container complexity
superiority formally as the heuristic criteria of the complexity superiority.

Definition 4.13. (Container Complexity Superiority) Let P ′ be the program obtained by applying
ψa andψc to P . P ′ has the container complexity superiority over P if and only if for any sta ∈ Sa
and o allocated by sta , we have ∑

stc ∈Sc (o)

CS(ψc (stc )) ≤
∑

stc ∈Sc (o)

CS(fC) (5)
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where fC is the container method in stc , and Sc (o) contains the container method calls that
manipulate o in an execution of P , i.e.,

Sc (o) = {stc | stc := v = c . fC(v1, . . . ,vm) ∈ Sc ,o ∈ ε̃stc (c)} (6)
ε̃stc indicates the points-to facts before the statement stc .

Example 4.14. Assume that we have specified the method complexity specifications as follows:
CS(ArrayList.add) = tc(n) CS(ArrayList.contains) = n

CS(HashSet.add) = 2 · tc(n) CS(HashSet.contains) = 1

tc(n) is the time complexity function of amortized constant complexity. In Figure 2, the total time
complexity score of the container method calls manipulating o2 is 2n + tc(n), After replacing it
with a HashSet object, the score is 2 + 2 · tc(n) < 2n + 2 · tc(n), showing the container complexity
superiority of the program after the replacements.

Checking the complexity superiority requires precise reasoning of program complexity. However,
deriving a tight bound of program complexity is stunningly difficult [Wilhelm et al. 2008] and
far from practical for a real-world program [Gulwani et al. 2009a; Xie et al. 2016], especially for
programs involving sophisticated manipulations of data structures [Fiedor et al. 2018; Gulwani
et al. 2009c; Lu et al. 2021; Srikanth et al. 2017]. Although the container complexity superiority does
not imply the complexity superiority, it provides the effective guidance to find the opportunity of
synthesizing the replacements to improve program efficiency, as evidenced by our evaluation in § 7.

5 SYNTHESIS ALGORITHM

This section presents our synthesis algorithm that achieves the goals described in § 4.2 and § 4.3.
It takes as inputs the source code of a program P and the container method specifications. The
algorithm finally computes the container replacement mappingsψa andψc , based on which we can
obtain a new program P ′. As shown in § 4.2 and § 4.3, the container behavioral equivalence and
the container complexity superiority pose sophisticated constraints for the container replacement
mappingsψa andψc . To satisfy all the constraints, our synthesis algorithm works with three stages
as follows:
• To understand the intention of container usage, we present the container property analysis to
determine which container-property queries occur upon a container object (§ 5.1).
• To assure P ′ queries and modifies container properties in the same way as P , we identify the
method candidates for a container method call based on Equations 1 and 2 (§ 5.2).
• A synthesizer selects the methods from the method candidates with lowest time complexity to
guarantee the container complexity superiority. A verifier performs type checking by examining
whether Equation 3 holds to assure the container behavioral equivalence. If the type checking
fails, the synthesizer refines the synthesized types and methods in the consequent rounds (§ 5.3).

We also state the soundness and complexity of the synthesis theoretically (§ 5.4). The soundness
theorem guarantees that the new program P ′ must be behaviorally equivalent to P . For clarity, we
use the program in Figure 2 to explain each stage of our approach throughout this section.

5.1 Container Property Analysis

According to Definition 4.1, we can compute container-property queries to reveal the intention of
container usage. Suppose we have obtained points-to fact ε̃ at each program location based on an
off-the-shelf points-to analysis. Using the method semantic specification, we can easily compute
the property-query fact ρ̃ at each program location. Finally, we obtain the property-query fact ρ̃e
at the exit of the program, indicating all the container-property queries occurring in the program.
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ρ̃ ⊢ S1 ⇝ ρ̃1 ρ̃1 ⊢ S2 ⇝ ρ̃ ′

ρ̃ ⊢ S1; S2 ⇝ ρ̃ ′

(Seqencing)

ρ̃ ⊢ S1 ⇝ ρ̃1 ρ̃ ⊢ S2 ⇝ ρ̃2
ρ̃ ′ = ρ̃1[o 7→ ρ̃1(o) ∪ ρ̃2(o) | o ∈ Oc ]

ρ̃ ⊢ if (e) then S1 else S2 ⇝ ρ̃ ′

(Branch)

(Q,T ) = αM(fC)
ρ̃ ′ = ρ̃ [o 7→ ρ̃(o) ∪Q | o ∈ ε̃(c)]

ρ̃ ⊢ v = c . fC(v1, . . . ,vm)⇝ ρ̃ ′

(ContainerCall)

ρ̃ ⊢ S ⇝ ρ̃ ′ ρ̃ = ρ̃ ′

ρ̃ ⊢ f ix(S)⇝ ρ̃

(Fix-I)

ρ̃ ⊢ S ⇝ ρ̃1 ρ̃ , ρ̃1
ρ̃2 = ρ̃1[o 7→ ρ̃(o) ∪ ρ̃1(o) | o ∈ Oc ]

ρ̃2 ⊢ f ix(S)⇝ ρ̃ ′

ρ̃ ⊢ f ix(S)⇝ ρ̃ ′

(Fix-II)

ρ̃ ⊢ f ix(S)⇝ ρ̃ ′

ρ̃ ⊢ while (e) do S od⇝ ρ̃ ′

(Loop)

Fig. 6. Abstract transformers in the container property analysis

Figure 6 defines the abstract transformers of program statements. Specifically, we should handle
four program constructs, including a sequencing, a branch, a container method call, and a loop.
• The rule of sequencing is simple, in which the transformer is exactly the composition of the
transformers of its parts.
• For a branch, the transformer merges the container-property queries occurring upon a container
object along two paths.
• The rule ContainerCall relies on the points-to fact ε̃ before the statement to identify the
container object o manipulated by the container method call. Q indicates the container-property
queries induced by fC . To update ρ̃, we merge ρ̃(o) with Q directly to show that the container-
property queries in Q occur upon o.
• To compute the container-property queries in a loop, we need to calculate the fixed point by
applying the transformer of the loop body iteratively. Due to the finite sizes of Q and Oc , the
fixed point must be reached after applying the rule Fix-II finite times.

Example 5.1. Consider the ArrayList object o11 in Figure 2. According to the method semantic
specification, we have ε̃(r ) = {o11} and ρ̃(o11) = � before line 23. The method ArrayList.contains

queries the container property isVal(v), i.e., the value-ownership of o11. By applying the rule Con-
tainerCall, we have ρ̃ ′(o11) = {q}, where q(s, c) = isVal(v), indicating that the value-ownership
query has occurred upon o11 after line 23. Similarly, o11 is also manipulated by the container method
call at line 38, and we can obtain ρ̃e (o11) = {q} at the exit of the program, which means that only
the value-ownership query occurs upon o11.

Our container property analysis reasons how container objects are utilized in a flow-sensitive
manner. Crucially, ρ̃e over-approximates the container-property queries occurring upon container
objects, and provides the sufficient guidance for method candidate identification to guarantee the
container behavioral equivalence. It is worth noting that pointer analysis affects the precision of
the container property analysis. When the points-to facts are imprecise, the container property
analysis can discover that a container object o is manipulated by a container method call, while o
is not pointed by c in any concrete execution. Therefore, ρ̃e can contain the container-property
queries which do not occur in any execution. We will quantify the effect of pointer analysis in the
evaluation to show that its imprecision degrades the effectiveness of the replacements.
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Algorithm 1: Identifying method candidates.
Input: P : A container-manipulating program; αM : Method semantic specification;
Output: ψ̂c : Method candidate mapping;

1 Sa ,Sc ← getSkeleton(P);
2 ρ̃e ← getQueryFact(P);
3 ψ̂c ← [stc 7→ � | stc ∈ Sc ];
4 foreach stc := v = c . fC(v1, . . . ,vm) ∈ Sc do
5 ε̃stc ← getPTFact(P , stc );
6 foreach f ′

C
∈ M do

7 if isEquivalent (fC , f ′C , ρ̃e , ε̃stc , αM) then
8 ψ̂c (stc ) ← ψ̂c (stc ) ∪ f ′

C
;

9 return ψ̂c ;

5.2 Method Candidate Identification

To guarantee the behavioral equivalence, we have to determine the container methods preserving
the container behavioral equivalence. Specifically, the constraints in Equations 1 and 2 should be
satisfied so that the concerned container properties can be queried and modified int the same way
as the original program. Formally, we define the method candidate as follows.

Definition 5.2. (Method Candidate) Given a container method call stc ∈ Sc , a container method
f ′
C
∈ M is a method candidate of stc if and only if it satisfies Equations 1 and 2.

Essentially, we should compute the method candidate mapping ψ̂c : Sc → 2M to indicate the
method candidates of a container method call. At a high level, we can leverage the method semantic
specification αM and the property-query fact ρ̃e at the exit to identify the method candidates.

Algorithm 1 shows the procedure of identifying method candidates. It first utilizes the points-to
fact ε̃stc to identify the container objects manipulated by the container method call stc . getQueryFact

returns the property-query fact ρ̃e at the exit of P , and isEquivalent checkswhether Equations 1 and 2
hold for a container method call stc . Utilizing the method semantic specification αM , isEquivalent
enumerates each container object o manipulated by stc and checks whether the method f ′

C
queries

and modifies the concerned container properties of o in the same way as the original method fC in
P . Finally, Algorithm 1 collects the method candidates for each container method call.

Example 5.3. Assume that C = {ArrayList, LinkedList,HashSet}. Consider the object o11 in
Figure 2. Utilizing the container property analysis, we obtain ρ̃e (o11) = q, where q(s, c) = isVal(v).
The container method calls stc@l23 and stc@l38 manipulate o11 at lines 23 and 38, respectively. The
methods HashSet.contains and ArrayList.contains both induce the value-ownership query and do
not induce any container-property modifier, so Equations 1 and 2 both hold. Similarly, we have

ψ̂c (stc@l23) = ψ̂c (stc@l38) = {ArrayList.contains, LinkedList.contains,HashSet.contains}

Recall that Theorem 4.10 states that container behavioral equivalence implies the behavioral
equivalence. According to Algorithm 1, Equations 1 and 2 must hold if we select the method for a
container method call stc from its method candidate set ψ̂c (stc ). Next, we can assure the container
behavioral equivalence as long as the replacements satisfy Equation 3, i.e., the new program P ′ is
well-typed. Therefore, we can obtain a well-typed program P ′ after the container replacements,
which is behaviorally equivalent to P .
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5.3 Container Replacement Synthesis

To improve program efficiency, we should select the methods from ψ̂c (stc ) for each container
method call stc to satisfy the container complexity superiority in Definition 4.13. Besides, we have
to conduct type checking by examining Equation 3 to assure the container behavioral equivalence.
To meet the two requirements, we instantiate a counterexample-guided inductive synthesis

(CEGIS) paradigm [Cheung et al. 2013; Gulwani et al. 2011; Solar-Lezama et al. 2008; Yaghmazadeh
et al. 2017]. Algorithm 2 shows the procedure of container replacement synthesis. At a high level,
it processes a container allocation statement sta in a round and finally synthesizes the container
replacement mappingsψa andψc . Specifically, each round contains the following two steps:
• Guess replacements: The synthesizer selects themost efficientmethods from themethod candidates
for the container method calls manipulating o, where o is allocated by sta .
• Type checking: The verifier performs type checking by examining Equation 3. The container
allocation statements are reprocessed in the consequent rounds if they violate Equation 3.
Initially, Algorithm 2 sets the types and methods to ⊥ inψa andψc to indicate undefined types

and methods, respectively. Besides, it introduces the mapping ψ̂a to maintain feasible types for
container allocation statements, and all the types are regarded as feasible initially. Each round of
Algorithm 2 synthesizes the replacements for the container object o allocated by sta . For clarity, we
introduce the function callSites to obtain the container method calls manipulating o.
Next, to illustrate each step, we use the object o11 in Figure 2 as an example. Suppose that

sta@l17 has been processed before sta@l11 in the CEGIS loop, where sta@l17 and sta@l11 allocate
o17 and o11, respectively. At the beginning of the round, we have ψa(sta@l17) = LinkedList and
HashSet < ψ̂a(sta@l17), as the value-ownership of o17 is necessary in the program, and LinkedList

supports more efficient insertions than ArrayList by avoiding memory reallocation.
Guess Replacements. The synthesizer enumerates each feasible container type τ ′ ∈ ψ̂a(sta)

and utilizes getMinCS to find the method candidate supported by τ ′ with the lowest complexity
(lines 11-14). If τ ′ does not support any method candidate, getMinCS returns a symbolic method
⊤ withMAX_CS as its time complexity score, and τ ′ is removed from ψ̂a(sta), indicating that τ ′
is not the feasible type of sta . Finally, the synthesizer selects the container type with the smallest
sum of time complexity scores (lines 15-19).

Example 5.4. The synthesizer selects the methods HashSet.contains and HashSet.add to manipu-
late o11. Because the sum of their complexity scores is smaller than that of any other selection, the
synthesizer enforcesψa(sta@l11) = HashSet.

Type Checking. The verifier performs type checking by examining whether Equation 3 holds
(lines 25-26). If type checking fails, it adds the allocation statements to the set of counterexamples
CE, which are refined by being reprocessed in the consequent rounds (lines 27-31). Moreover, we
constrain that the counterexamples have the same set of feasible container types (line 29), pruning
off the type selections causing the failure of type checking in the consequent rounds.

Example 5.5. Before type checking, we have ψa(sta@l17) = LinkedList and ψa(sta@l11) =
HashSet. The container objects o11 and o17 are both manipulated by the container method call at
line 23, violating the constraint in Equation 3, so they are refined and reprocessed in the consequent
rounds. At the end of this round, we have HashSet < ψ̂a(sta@l11), as HashSet is not the feasible
container type for sta@l17. Furthermore, their feasible type LinkedList is selected in the consequent
rounds, finally passing type checking.

Particularly, the verifier updates a mapping σ to show the relation between sta and st ′a that
the two allocated objects can be manipulated by the same container method call (lines 22-24).
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Algorithm 2: Container replacement synthesis.

Input: P : A program; ψ̂c : Method candidate mapping; CS : Method complexity specification;
Output:ψa ,ψc : Container replacement mappings;

1 Sa ,Sc ← getSkeleton(P);
2 φa ,φc ← getOriginalUsage(P);
3 ψa ← [sta 7→ ⊥ | sta ∈ Sa]; ψc ← [stc 7→ ⊥ | stc ∈ Sc ];
4 σ ← [sta 7→ � | sta ∈ Sa]; ψ̂a ← [sta 7→ C | sta ∈ Sa];
5 foreach sta ∈ Sa do
6 /* Synthesizer: Guess replacements */

7 min ←MAX_CS ;
8 Sa ← Sa \ {sta};
9 foreach τ ′ ∈ ψ̂a(sta) do
10 ψ ′c ← ψc ;
11 foreach stc ∈ callSites(sta) do
12 ψ ′c (stc ) ← getMinCS(ψ̂c (stc ) ∩ method(τ

′),CS);
13 if ψ ′c (stc ) = ⊤ then
14 ψ̂a(sta) ← ψ̂a(sta) \ {τ

′};

15 cur ← getCSSum(callSites(sta),ψ
′
c ,CS);

16 if cur < min then
17 min ← cur ;
18 ψc ← ψ ′c ;
19 ψa(sta) ← τ ′;
20

21 /* Verifier: Type checking */

22 foreach st ′a ∈ Sa do
23 if callSites(sta) ∩ callSites(st ′a) , � then
24 σ (st ′a) ← σ (st ′a) ∪ {sta};

25 CE ← {st ′a | st
′
a ∈ σ (sta), ψa(st

′
a) , ψa(sta), ψa(st

′
a) , ⊥} ∪ {sta};

26 if |CE | > 1 then
27 foreach st ′a ∈ CE do
28 Sa ← Sa ∪ {st

′
a};

29 ψ̂a(st
′
a) ←

⋂
st ′′a ∈CE ψ̂a(st

′′
a );

30 ψa(st
′
a) ← ⊥;

31 ψc ← [stc 7→ ⊥ | stc ∈ callSites(st
′
a)];

32 returnψa ,ψc ;

Intuitively, σ maintains the constraints for type checking, which are refined and utilized inductively
in each round. To improve the efficiency of the synthesis, we use several data structures to cache
the relationships frequently utilized in the synthesis. For example, we memorize the set of container
method calls manipulating the container object allocated by a specific allocation statement so that
we can get the value of callSites at lines 15, 23, and 31 without unnecessary recomputation.
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Algorithm 2 synthesizes the container replacements inductively to guarantee the container
behavioral equivalence and the container complexity superiority. Specifically, the counterexample-
guided refinement assures that container behavioral equivalence must hold in the synthesis. Besides,
the selected candidates have the lowest complexity among the method candidates, which assures
the container complexity superiority. Even if type checking fails, the trivial selection, i.e., setting
all the types and methods to the original ones, is still permissive in the consequent rounds, so
the sum of the time complexity scores can not be increased. Obviously, the method complexity
specifications determine the complexity guidance and further affect the synthesized replacements.
We will configure different specifications to quantify the influence and demonstrate the advantages
of the form of our method complexity specifications in Definition 4.11.

5.4 Summary

Based on the sound points-to facts, our approach synthesizes the container replacements efficiently,
which do not change the program semantics. We formulate two theorems to state the soundness
and the complexity of Algorithm 2.

Theorem 5.6. (Soundness Theorem) ψa and ψc provide sound container replacements, i.e., the
program P ′ obtained by applyingψa andψc for replacements has behavioral equivalence relation with
the original program P .

Proof. Based on Theorem 4.10, we only need to prove that for any stc ∈ Sc and f ′
C
∈ ψ̂c (stc ),

f ′
C
and fC satisfy the three equations in Definition 4.9, where fC is the container method invoked

in stc . In Algorithm 1, isEquivalent checks whether Equations 1 and 2 are satisfied. In Algorithm 2,
the verifier performs type checking and examines whether Equation 3 holds. Given sound points-
to facts, Equation 3 must hold for the synthesized container replacement mappings. Thus, the
soundness of the synthesis totally relies on the soundness of the container property analysis.
The off-the-shelf points-to analysis provides a sound result ε̃ for the abstract transformers in

Figure 6. Consider an arbitrary container method call v = c . fC(v1, . . . ,vm). For any concrete
execution of the program, the container object manipulated by the method call can be abstracted
by an abstract container object o ∈ ε̃(c). We use a set Q to denote the set of the container-property
queries induced by the call, i.e., (Q,T ) := αM(fC).

The rule ContainerCall adds all the container-property queries in Q to ρ̃(o), which is a subset
of ρ̃e (o). Thus, the container-property queries occurring on the concrete container object must be
included by ρ̃e (o), which means the rule ContainerCall defines a sound abstract transformer for
container method calls. Similarly, we can prove the other three rules, i.e., the rules Seqencing,
Branch and Loop, define sound abstract transformers. Finally, the soundness of container property
analysis assures the soundness of container replacements. □

Theorem 5.7. (Complexity of Synthesis) Assume |Sa | < |Sc |. The time complexity of Algorithm 2
is O(|C|2 · |M| · |Sa | · |Sc |).

Proof. First, consider the guessing process, which corresponds to the steps from line 9 to line
19. The upper bound of the iteration count from line 9 to line 19 is

supsta ∈Sa |ψ̂a(sta)| = O(|C|)

Similarly, the upper bound of the iteration count from line 11 to line 14 isO(|Sc |), as callSites(sta) ⊆
Sc . Notice that the function getMinCS has to find the minimal value from at most |M| unordered
elements, so it runs in O(|M|). The function getCSSum at line 15 also runs in O(|Sc |). In each
round, the synthesizer guesses the replacements in

O(|C| · (|Sc | · |M| + |Sc |)) = O(|C| · |Sc | · |M|)
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Second, consider the counterexample generation in the type checking, which corresponds to
the steps from line 22 to line 25. The upper bound of the iteration count is |Sa |. Meanwhile, the
disjointness checking at line 23 can be preprocessed inO(|Sa | · |Sc |) before the synthesis. By looking
up the memorization, the step at line 23 can be achieved in constant time. Also, the construction of
CE at line 25 runs in O(|Sa |). Therefore, the counterexamples are generated in O(|Sa |).

Third, consider the second loop in the type checking, which correspond to the steps from line 27
to line 31. The upper bound of the iteration count is |CE | = O(|Sa |). The computation at line 29
can be hoisted out of the loop, which runs in O(|Sa |). The result can be cached and reused in each
iteration in O(1). Therefore, the loop runs in O(|Sa |).

According to the above results, we can conclude that each round of the synthesis runs in

O(|C| · |M| · |Sc | + |Sa | + |Sa |) = O(|C| · |M| · |Sc | + 2|Sa |)

Finally, consider the upper bound of the number of the rounds in the synthesis. According to the
step at line 29, |ψ̂a(st ′a)| must decrease by at least one, where st ′a will be resolved in the consequent
round. On the one hand, |ψ̂a(st ′a)| is bounded by |C|, as ψ̂a(st ′a) ⊆ C. On the other hand, |ψ̂a(st ′a)|
must be larger than 0 at the end of the synthesis. Therefore, the number of the rounds is bounded
by |Sa | · |C|. Assume |Sa | < |Sc |. The time complexity of Algorithm 2 is

O(|C| · |M| · |Sc | + 2|Sa |) ·O(|Sa | · |C|) +O(|Sa | · |Sc |)

=O(|C|2 · |M| · |Sa | · |Sc | + 2|C| · |Sa |2 + |Sa | · |Sc |)

=O(|C|2 · |M| · |Sa | · |Sc |)

Particularly, the assumption is introduced to simplify the estimated complexity of Algorithm 2. In
general, the container object allocated by a container allocation statement is often manipulated by
more than one container method call, and a container method call often only manipulates a single
container object. Thus, the assumption holds in almost all the programs. □

It is worth mentioning that Theorem 5.7 does not provide a tight upper bound of the complexity.
Actually, the overhead depends on the multiple aspects of the container usage. For example, the
way of manipulating container objects affects the result of the container property analysis, and
further determines the size of callSites(sta ). Besides, it is more likely to trigger the refinements if a
large number of container objects are manipulated by the same container method calls. In practice,
the synthesis performs with almost linear scalability, which is evidenced by our experiments.

6 IMPLEMENTATION

We have implemented our approach as a tool named Cres. The inputs of Cres are the source code
of a Java application and the method specifications, including the method semantic specification
and the method complexity specification. Cres itself is implemented based on Pinpoint [Shi et al.
2018, 2021], the static analysis platform in the Ant Group. When analyzing a Java program, the
frontend of Pinpoint transforms the class files to LLVM IR [Lattner and Adve 2004], and then Cres
identifies the container allocation statements and container method calls to obtain the skeleton. In
what follows, we discuss more key configurations and designs for the synthesis algorithm.

Method Specifications. In the implementation, we concentrate on the containers in JCF. We
specify the method semantic specification in the configuration file by assigning a pair of container-
property queries and modifiers to each container method. Particularly, we adopt the insertion order
and the key order as the partial orders to describe the container properties of LinkedHashMap

and TreeMap, respectively. Besides, we provide the method complexity specification in a fine-
grained manner. Specifically, we specify the constant factor θ along with time complexity to show

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.



68:20 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

the difference between the methods with the same time complexity. For example, the factor θ of
LinkedList.add is smaller than that of LinkedHashSet.add, indicating that the latter consumes
more time than the former due to the extra maintenance of a linked list, although they both run in
amortized constant time.

On-demand Points-to Analysis. To support our container property analysis, we utilize Pin-
point to perform flow and context-sensitive pointer analysis. We are only concerned about the
points-to facts of container variables, as the points-to facts of other variables do not affect the
result of the container property analysis. Therefore, we query the points-to facts on demand to
avoid unnecessary overhead in the container property analysis. Besides, the points-to facts at
each program location are the prerequisite of examining the constraints to achieve the container
behavioral equivalence and the container complexity superiority. To avoid redundant points-to
query, we memorize the points-to facts and obtain the grace performance of the synthesis. Moreover,
the points-to facts can also be obtained from other off-the-shelf pointer analyses [Li et al. 2011;
Späth et al. 2016; Zhang et al. 2013], which means that Cres can be implemented easily based on
other static analysis platforms [Arzt et al. 2014; Shi et al. 2018; Sui and Xue 2016].

7 EVALUATION

We evaluate the effectiveness and efficiency of Cres by investigating the research questions:
• RQ1:What is the improvement Cres achieves for real-world programs?
• RQ2:Which kinds of container replacements does Cres synthesize?
• RQ3:What is the time and space overhead of Cres?

Result Highlights. In summary, Cres is unusually effective and efficient.
• Significant efficiency improvement of experimental subjects: The execution time is reduced by 8.1%
on average. Particularly, Cres reduces the time consumption of the project google-http-java-client
by 27.1%.
• Various replacement patterns and many confirmations: Cres discovers 107 replacements in six
patterns, and 71 replacements have been confirmed by the developers. Several patterns, such as
replacing ArrayList with HashSet, are uncovered by previous works.
• Ability to scale to large-scale programs: Cres finishes analyzing the project iotdb with 384.2 KLoC
in 14 minutes within 10 GB peek memory. The memory and time overhead is almost linear with
the size of the project.
We also design a group of ablation studies to quantify the influence of the method complexity

specifications and the precision of the pointer analysis. At the end of the evaluation, we discuss the
quality of the replacements, the limitations of Cres, and several future directions.

7.1 Experimental Setup

Subjects. We evaluate Cres on 12 real-world Java projects, which are shown in Table 2. The
projects are actively maintained and widely used in both academia and industry, covering different
sizes (ranging from 18.6 KLoC to 384.2 KLoC) and diverse categories (such as microservice platforms,
RPC frameworks, data management systems, etc.) Besides, the projects contain intensive usage
of containers with various types, which provides more opportunities for Cres to find different
patterns of container replacements.

Experimental Setting. For each project, we perform a whole-program analysis to obtain the
points-to facts of container variables. Because we can not obtain the inputs for the projects in
the real-world scenario, we follow the existing works and utilize the test suites of the projects to
measure their time consumption [Basios et al. 2018]. To make the measurement more convincing,
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Table 2. The medium ratio of reduced and original execution time and 95% confidence interval of the ratio

Project Description Size
(KLoC) Medium (%) 95% CI (%)

bootique Microservice platform 18.6 4.5 [4.4, 4.6]
mapper Server application 22.4 7.3 [7.0, 7.6]
incubator-eventmesh Eventing infrastructure 24.9 4.1 [3.9, 4.3]
google-http-java-client Web client 25.2 27.1 [25.9, 28.3]
light-4j Microservice platform 44.3 5.2 [5.0, 5.4]
roller Server application 54.4 9.5 [9.2, 9.8]
IginX Data management system 68.1 3.5 [3.4, 3.6]
sofa-rpc RPC framework 76.4 3.7 [3.4, 4.0]
Glowstone Server application 85.6 13.1 [12.9, 13.3]
dolphinscheduler Eventing infrastructure 89.5 5.3 [5.1, 5.5]
dubbo RPC framework 196.5 7.5 [7.2, 7.8]
iotdb Data management system 384.2 6.3 [6.2, 6.4]

8.1 [7.8, 8.4]

we repeat the execution of the test suite of each project 100 times and performMann-Whitney U

test to examine whether the improvement is statistically significant [Arcuri and Briand 2011; Fay
and Proschan 2010]. We conduct all the experiments on a 64-bit machine with 40 Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz and 512GB of physical memory.

7.2 Answers to ResearchQuestions

Cres aims to reduce the execution time of all the evaluated subjects. We quantify the effectiveness
and efficiency of Cres by answering the three research questions.

7.2.1 Study of RQ1. We utilize the test suite of each project to measure the execution time of
the test tasks affected by the replacements. Specifically, we compute the medium value and 95%
confidence interval of the ratio between the reduced time consumption and the original one.

Table 2 shows the ratio of reduced time consumption and the original one for each project. The
lower bound of 95% confidence interval is positive in each project, which means that Cres can
improve the efficiency of all the projects statistically significantly. On average, the medium of
reduced time cost ratio reaches 8.1%, and the 95% confidence interval is [7.8, 8.4] . This demonstrates
the effectiveness of Cres in improving the efficiency of real-world projects.
Particularly, the medium of reduced time ratio reaches 27.1% for the project google-http-java-

client, and its 95% confidence interval is [25.9, 28.3]. The project is the HTTP client library for
Java, supporting the access of the resource on the web via HTTP. Any project which depends on
the library can benefit from the improvement of efficiency, which shows the significant impact of
Cres. Another example is that the medium of the ratio reaches 13.1% for the project Glowstone.
It is a customizable server for the gameMinecraft, and its efficiency improvement promotes the
performance of the service, shortening the response time of the interactions in the game. Generally,
the improvement can benefit the applications depending on these projects, showing the great
impact of Cres on the performance optimization of real-world programs.

Answer to RQ1:Cres improves the efficiency of all the subjects significantly, and themedium
of reduced time ratio reaches 8.1% on average.
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Table 3. The counts of different replacements

Project #Conf/#Total #R1 #R2 #R3 #R4 #R5 #R6

bootique 0/4 4
mapper 0/6 5 1
incubator-eventmesh 19/19 1 16 2
google-http-java-client 0/4 4
light-4j 0/5 2 3
roller 0/6 5 1
IginX 11/11 9 1 1
sofa-rpc 12/12 5 2 5
Glowstone 0/11 6 3 1 1
dolphinscheduler 7/7 6 1
dubbo 12/12 1 3 1 2 5
iotdb 10/10 2 1 6 1

71/107 4 57 25 4 4 13

R1: LinkedList⇒ArrayList R2: ArrayList⇒LinkedList
R3: ArrayList⇒HashSet R4: TreeMap⇒HashMap
R5: LinkedHashMap⇒HashMap R6: LinkedHashSet⇒HashSet

1 public boolean isExcluded(String s) {

2 List exclusions = new ArrayList <String >();
3 if (EXCLUSIONS != null)
4 exclusions = EXCLUSIONS;

5 return MANAGEMENT.equals(s)

6 || SCALABLE_CONFIG.equals(s)

7 || exclusionList.contains(s);
8 }

(a) An inefficient usage of ArrayList in light-4j

1 public T getPath(T p, T q, T r) {

2 List v = new ArrayList <>();
3 for (T c = p; c != q; c = c.pre())

4 v.add(c.pre(). post (). indexOf(c));
5 for (Integer i : v)

6 r= r.post (). get(i);
7 return r;

8 }

(b) An inefficient usage of ArrayList in mapper

Fig. 7. Examples of inefficient usage of containers

7.2.2 Study of RQ2. Table 3 displays the patterns of container type replacements synthesized by
Cres. There are 107 replacements covering six different categories, and 71 replacements in six
projects have been confirmed by the developers. If Cres replaces the container type of a container
object, the methods in the container method calls manipulating the object are also replaced, e.g., the
invoked container method at line 5 in Figure 2 is the method HashSet.contains in the replacements.
However, the names of the methods are the same before and after the replacements in almost all
the cases, so we do not discuss how the methods are replaced in detail.

Case Studies. Particularly, we show two examples of typical replacement patterns as follows.
Transform ArrayList to HashSet. Figure 7a shows the container replacement in the project light-4j.

Based on the result of the container property analysis, we find that the ArrayList object pointed by
EXCLUSIONS and exclusions is only created for querying the value-ownership, as the method calls
manipulating the object are the insertions or checking whether an object is stored in the list. Cres
synthesizes the replacement in which the types of EXCLUSIONS and exclusions are changed to
HashSet safely, and the time complexity of querying the value-ownership can be reduced from
linear complexity to amortized constant complexity.
Transform ArrayList to LinkedList. Figure 7b shows the transformation from ArrayList to

LinkedList in the project mapper. The ArrayList object allocated at line 2 is manipulated by the
method ArrayList.add and its iterator in the iteration. According to the documentation, we find that
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Fig. 8. Time and memory overheads of Cres

the method ArrayList.add has amortized constant time complexity due to the memory reallocation,
while the method LinkedList.add has constant time complexity, and no memory reallocation occurs
in the insertions. Meanwhile, there is no difference in time complexity between the iterations over
these two types of containers. Therefore, Cres synthesizes the replacement in which ArrayList is
replaced with LinkedList to reduce the time cost of insertions.

Compared with the existing approaches [Basios et al. 2018; Oliveira et al. 2019; Shacham et al.
2009], Cres can discover more general optimization patterns. As shown by the example in Figure 2,
it can replace an ArrayList object with a HashSet object if only the method ArrayList.contains is
invoked after its insertions. Meanwhile, we remark that Cres only aims to discover the replacements
that can make the difference in time complexity and does not consider the environmental factors,
such as the microarchitecture, which can also affect the execution time. Therefore, Cres might
miss the opportunity of performing environment-dependent optimizations. However, Table 2 has
shown that Cres is effective enough to improve the efficiency.

Answer to RQ2: Cres synthesizes 107 container replacements in various patterns without
changing the program behavior, 71 of which are confirmed by the developers.

7.2.3 Study of RQ3. We investigate the efficiency of Cres by measuring its time and memory
overhead in the synthesis. The overhead of each project is shown Figure 8. Overall, Cres finishes
the analysis of the program with 384.2 KLoC in 14 minutes with 9.36 GB peak memory consumption.
We adapt the regression analysis to study the observed complexity of Cres. The R-squared value for
time and memory cost are 0.9796 and 0.9786, respectively, which are pretty close to 1. It indicates
that the overhead of Cres grows nearly linearly at a gentle rate, permitting Cres to efficiently
analyze large-scale programs manipulating containers. Compared with the existing works, Cres
features with its efficiency and only needs 2.5 minutes to analyze per project. However, ARTEMIS
executes the benchmark iteratively to obtain the optimal solution by genetic algorithm [Basios
et al. 2018], and it spends 3.1 hours optimizing a project on average.

Answer to RQ3: Cres features linear scalability and finishes the analysis in 14 minutes with
9.36 GB peak memory for the program with 384.2 KLoC.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 68. Publication date: April 2022.



68:24 Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang

Table 4. The counts of different replacements synthesized by the ablations

Project #R1 #R2 #R3 #R4 #R5 #R6

bootique (4, 4, 3)
mapper (5, 5, 3) (1, 1, 0)
incubator-eventmesh (1, 1, 0) (16, 16, 11) (2, 2, 0)
google-http-java-client (4, 4, 1)
light-4j (2, 2, 2) (3, 3, 1)
roller (5, 5, 4) (1, 1, 0)
IginX (9, 9, 7) (1, 1, 1) (1, 0, 1)
sofa-rpc (5, 5, 4) (2, 0, 2) (5, 0, 3)
Glowstone (6, 6, 6) (3, 3, 2) (1, 1, 1) (1, 0, 1)
dolphinscheduler (6, 6, 5) (1, 1, 1)
dubbo (1, 1, 1) (3, 3, 2) (1, 1, 1) (2, 0, 1) (5, 0, 4)
iotdb (2, 2, 1) (1, 1, 1) (6, 6, 3) (1, 0, 1)

7.3 Ablation Study

Cres leverages an off-the-shelf pointer analysis to identify the manipulated container objects, so
the precision of the pointer analysis can affect the result of the container property analysis and
the synthesized container replacements further. Besides, the method complexity specifications are
specified manually, and the subjectivity of the specifications might also affect the replacements
synthesized by Cres. Therefore, we set up the following ablations to investigate the influence of
the pointer analysis and the method complexity specifications.

7.3.1 Ablation Study Setting. We propose two groups of the ablation studies to quantify the impact
of pointer analysis and the method complexity, respectively.
• We use Cres-NS and Cres-RS to synthesize the replacements with different method complexity
specifications. In Cres-NS, the constant factors are all equal to 1. In Cres-RS, the constant factors
are randomly generated and conform to the specific order. For example, the constant factor of
the method LinkedHashMap.put is larger than the one of the method HashMap.put.
• Cres-P leverages a flow and context-insensitive pointer analysis [Zhang et al. 2013] to perform
the container property analysis. Other modules and configurations are not changed.

We evaluate the three ablations upon the projects in Table 2. It is worth mentioning that the
complexity function of each container method can be derived from the documentations, not
inducing any bias in the manual configuration. Thus, we only quantify the influence of the constant
factors in the method complexity specification.

7.3.2 Ablation Study Result. Table 4 shows the numbers of the container replacements synthesized
by the three ablations 1, based on which we can obtain the following findings:
• Cres-NS can discover all the replacements synthesized by Cres except for the ones belonging to
R5 and R6. Without the constant factors, Cres-NS can not distinguish the container methods
with the same complexity function, such as the methods LinkedHashMap.put and HashMap.put.
• The replacements synthesized by Cres-RS are the same as the ones synthesized by Cres. The
methods of the selected types have lower time complexity than the original ones in the first four
patterns. Besides, all the methods of HashMap and HashSet have smaller constant factors than
the ones of LinkedHashMap and LinkedHashSet, respectively.

1A triple shows the numbers of the replacements synthesized by Cres-NS, Cres-RS, and Cres-P.
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public Point retrieveValidLastPoint(int n) {

List <IChunkMetadata > seqDataList = new LinkedList <>();
for (int i = 0; i < n; i++)

seqDataList.add(getDataFromDevice ());
for (int i = seqDataList.size() - 1; i >= 0; i--) {

Point lastPoint = getChunkLastPoint(seqDataList.get(i));
if (lastPoint.getValue () != null)

return lastPoint;

}

return null;
}

Fig. 9. An example in which Cres fails to synthesize the optimal replacements

• Cres-P synthesizes 74 container replacements out of 107 replacements synthesized by Cres.
The imprecise points-to information yields the spurious container-property queries of several
container objects, which prevents the synthesis algorithm from seizing the opportunity of
optimizing the usage of the objects.
As we can see, the effectiveness of Cres does not largely depend on the manual configuration

but relies on a precise pointer analysis. It is shown that Cres is easy to be configured by the users,
and the documentations of the container methods provide the sufficient knowledge to specify the
specifications, which can support the effective replacement synthesis for Cres.
We also apply the replacements synthesized by the ablations for each project and measure the

improvement of program efficiency. It is shown that the 95% confidence intervals of the reduce time
ratio are [7.0%, 7.6%] and [5.3%, 5.7%] on average for Cres-NS and Cres-P, respectively. We also
measure the overhead of the synthesis for the three ablations. Specifically, Cres-NS and Cres-RS
take the similar overhead to Cres, as the method complexity specifications only affect the selected
method candidates and the types in Algorithm 2. Cres-P is more efficient with the benefit of the
light-weighted pointer analysis, e.g., it finishes analyzing the project iotdb in 10.3 minutes with 7.1
GB peek memory. However, Cres is practical enough for the real-world programs, as it does not
suffer from the heavy overhead and synthesizes more replacements compared with Cres-P.

7.4 Discussion

Quality of Container Replacement. As shown by the answer to RQ2, Cres finds 107 replace-
ments covering six categories. Notably, the developers greatly appreciated our efforts. For example,
a developer of the project iotdb commented that “Since we often pay less attention to these details, if
a tool can be used to do this work, it will be great!” A developer of the project sofa-rpc was even
inquired about Cres with comments like “Where can I get the tool?” Particularly, Cres has been
integrated into the CI process in the Ant Group, which is a FinTech company with over 1 billion
global users. The synthesized replacements can be forwarded to the developers as suggestions
during the development cycle, making the applications deployed and executed economically.

Limitations. Although Cres is shown to be effective and efficient, it also comes with several
limitations. First, the container complexity superiority formulates the complexity superiority in
a heuristic manner. Generally, it is hard to derive a tight bound of the time complexity for a
given program [Gulwani et al. 2009a,c; Wilhelm et al. 2008]. Meanwhile, our method complexity
specification can not capture dynamic features dependent on the architectures [Jung et al. 2011]
and might be imprecise for small inputs. However, it is almost infeasible to quantify the time cost of
a container method for any input and execution environment. Fortunately, the experiential results
have shown the effectiveness of the guidance provided by method complexity specification and
container complexity superiority. Second, Cres can not always find optimal replacements. Consider
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the program extracted from the iotdb in Figure 9. Cres can not discover that the random access in
the second loop is merely used for traversing the container, so it replaces the LinkedList object
with an ArrayList object, while the optimal solution should be replacing the random access in the
second loop by an iterator.

Future Work. The insight underlying Cres is applicable to reduce other resource consumption
and support other kinds of replacements. We only need to provide the method specifications in
which the resource consumption of each container method is specified. For example, we can extend
the method complexity specification to model the energy cost [Hasan et al. 2016], and then Cres
can optimize energy consumption seamlessly. Also, dynamic profiling can be integrated to capture
the runtime data [Mudduluru and Ramanathan 2016] so that Cres can benefit from the static
complexity model and the runtime overhead model simultaneously. Meanwhile, we can empower
Cres with more container properties, such as boundedness. If only a finite number of insertions
occur upon a container object, we can safely replace it with an array to avoid the memory bloat [Xu
and Rountev 2010; Xu et al. 2010]. We believe that Cres provides a general framework to support
the container replacements, reducing different kinds of resource consumption of a program.

8 RELATEDWORK

There is a large and diverse body of literature touching the topic of this work, which covers the
program optimization, synthesis, and verification. We discuss each line of the works as follows.

8.1 Container Selection

There is an extensive body of works on selecting efficient container types. Several approaches, e.g.,
ARTEMIS [Basios et al. 2018] and SEEDS [Manotas et al. 2014], search container types to minimize
resource consumption when executing the program with the given test suite. They execute the
program thousands of times over the test suite to search the optimal selection, introducing the
heavy time burden. Brainy [Jung et al. 2011] and Chameleon [Shacham et al. 2009] utilize dynamic
profiling to obtain the heap information and predict the best container types with a prediction
model, which is specified by expertise or obtained in the training process. However, the model can
be restrictive when the expert knowledge is unavailable or the training data is not general enough.
Different from the dynamic profiling based approaches, CT+ [Oliveira et al. 2019, 2021] attempts
to reduce resource consumption by analyzing container usage statically, and replace container
types based on the class hierarchy diagram. Unfortunately, CT+ can not synthesize more general
replacements, such as replacing ArrayList with HashSet, because of the restrictive assumptions on
interchangeable container types. In contrast, Cres can discover various replacement patterns with
the benefit of our container property analysis.

8.2 Performance Analysis

Several recent works leverage program analysis to detect performance issues. Dynamic approaches
mutate programs to reach peak resource consumption [Lemieux et al. 2018; Petsios et al. 2017;
Wen et al. 2020]. However, they can not evidence the existence of performance bugs or suggest
more efficient implementations. Static analysis techniques mainly focus on specific bug types, such
as API misuse [Jin et al. 2012], inefficient loops [Song and Lu 2017; Xu et al. 2012], inefficient
ORM usage [Yang et al. 2018], etc. Particularly, Clarity [Olivo et al. 2015] detects asymptotic
performance bugs in collection traversals, showing great potential in practical use. Our work
focuses on a subproblem of performance analysis caused by inefficient container types. Different
frommany existing works, Cres can fix performance issues by synthesizing container replacements,
promoting its practicality of analyzing real-world programs.
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8.3 Data Structure Synthesis

Data structure synthesis aims to compose data structure designs out of existing data structures.
Motivated by various scenarios, data structures are supposed to satisfy different constraints. For
example, Volt [Pailoor et al. 2021] is the latest data structure synthesizer, which aims to refine the
data structure satisfying integrity constraints when introducing auxiliary fields.Mask [Samak et al.
2020] replaces outdated data structures by synthesizing their methods with the latest ones. The two
synthesizers assure functional correctness while do not concern the efficiency. Other works, such
as Cozy [Loncaric et al. 2016], RelC [Hawkins et al. 2011, 2012], and Data Calculator [Idreos
et al. 2018], combine static cost models with operational semantics and synthesize data structures
with an excellent performance to alleviate the human burden in designing data structures. Cres
bears similarities to these works in terms of the complexity guidance. However, Cres concentrates
more on performance optimization introduced by container replacements, and does not attempt to
synthesize new data structures.

8.4 Data Structure Specification Inference

Inferring the data structure specifications has been a fundamental problem in the community of
programming languages. A variety of the properties, including the points-to information, aliasing,
and size, are concerned in a large body of the literature [Chase et al. 1990; Gulwani et al. 2009b;
Sagiv et al. 2002]. One typical line of the works is shape analysis [Reps et al. 2007], which aims
to infer the linkage properties and numeric properties [Kim and Rinard 2011; Sagiv et al. 2002;
Zee et al. 2008]. Although the specifications inferred by shape analysis are sound, the analysis is
quite brittle and suffers from the capability problem when analyzing real-world programs [Chang
et al. 2020]. Another line of the works synthesizes the data structure specifications via learning
techniques [Bastani et al. 2018; Eberhardt et al. 2019]. Particularly,USpec [Eberhardt et al. 2019] does
not require the access to the source code of the data structures and only analyzes the usage patterns
to obtain the aliasing specifications. However, the extracted specifications are often restrictive,
ignoring the numeric properties. Cres relies on the manual annotations to decompose the semantics
of container methods into the container-property queries and the container-property modifiers. It
would be promising to generate the specifications automatically to support our semantic model.

9 CONCLUSION

We have introduced Cres, a novel synthesizer that automatically replaces inefficient container
usage. It analyzes the concerned container properties and finds more efficient container methods
that preserve the behavioral equivalence to improve program efficiency. Cres is highly effective and
efficient in analyzing real-world programs. It synthesizes 107 instances of container replacements
covering six categories, which reduce the execution time by 8.1% on average. Cres also stands out
with its excellent scalability, and finishes analyzing the project with 384.2 KLoC in 14 minutes. We
hope the insight underlying Cres can be extended to reduce other resource consumption, such as
memory, energy, and CPU usage.
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