
An Empirical Study of Bugs in the rustc Compiler

ZIXI LIU, Nanjing University, China
YANG FENG∗, Nanjing University, China
YUNBO NI, Nanjing University, China
SHAOHUA LI, Chinese University of Hong Kong, China
XIZHE YIN, Nanjing University, China
QINGKAI SHI, Nanjing University, China
BAOWEN XU, Nanjing University, China
ZHENDONG SU, ETH Zurich, Switzerland

Rust is gaining popularity for its well-known memory safety guarantees and high performance, distinguishing
it from C/C++ and JVM-based languages. Its compiler, rustc, enforces these guarantees through specialized
mechanisms such as trait solving, borrow checking, and specific optimizations. However, Rust’s unique
language mechanisms introduce complexity to its compiler, resulting in bugs that are uncommon in traditional
compilers. With Rust’s increasing adoption in safety-critical domains, understanding these language mech-
anisms and their impact on compiler bugs is essential for improving the reliability of both rustc and Rust
programs. Such understanding could provide the foundation for developing more effective testing strategies
tailored to rustc. Improving the quality of rustc testing is essential for enhancing compiler reliability, which
in turn strengthens the safety and correctness of all Rust programs, as compiler bugs can silently propagate
into every compiled program. Yet, we still lack a large-scale, detailed, and in-depth study of rustc bugs.

To bridge this gap, this work presents a comprehensive and systematic study of rustc bugs, specifically
those originating in semantic analysis and intermediate representation (IR) processing, which are stages that
implement essential Rust language features such as ownership and lifetimes. Our analysis examines issues
and fixes reported between 2022 and 2024, with a manual review of 301 valid issues. We categorize these bugs
based on their causes, symptoms, affected compilation stages, and test case characteristics. Additionally, we
evaluate existing rustc testing tools to assess their effectiveness and limitations. Our key findings include: (1)
rustc bugs primarily arise from Rust’s type system and lifetime model, with frequent errors in the High-Level
Intermediate Representation (HIR) and Mid-Level Intermediate Representation (MIR) modules due to complex
checkers and optimizations; (2) bug-revealing test cases often involve unstable features, advanced trait usages,
lifetime annotations, standard APIs, and specific optimization levels; (3) while both valid and invalid programs
can trigger bugs, existing testing tools struggle to detect non-crash errors, underscoring the need for further
advancements in rustc testing.

CCS Concepts: • Software and its engineering→ Compilers.

Additional Key Words and Phrases: Rust, compiler, testing, empirical study, bug study

∗Yang Feng is the corresponding author.

Authors’ Contact Information: Zixi Liu, Nanjing University, Nanjing, China, zxliu@smail.nju.edu.cn; Yang Feng, Nanjing
University, Nanjing, China, fengyang@nju.edu.cn; YunboNi, Nanjing University, Nanjing, China, yunboni@smail.nju.edu.cn;
Shaohua Li, Chinese University of Hong Kong, Hongkong, China, shaohuali@cse.cuhk.edu.hk; Xizhe Yin, Nanjing University,
Nanjing, China, xizheyin@smail.nju.edu.cn; Qingkai Shi, Nanjing University, Nanjing, China, qingkaishi@nju.edu.cn;
Baowen Xu, Nanjing University, Nanjing, China, bwxu@nju.edu.cn; Zhendong Su, ETH Zurich, Zurich, Switzerland,
zhendong.su@inf.ethz.ch.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART411
https://doi.org/10.1145/3763800

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://orcid.org/0000-0002-3271-7255
https://orcid.org/0000-0002-7477-3642
https://orcid.org/0009-0004-4837-6696
https://orcid.org/0000-0001-7556-3615
https://orcid.org/0000-0002-9588-8393
https://orcid.org/0000-0002-8297-8998
https://orcid.org/0000-0001-7743-1296
https://orcid.org/0000-0002-2970-1391
https://orcid.org/0000-0002-3271-7255
https://orcid.org/0000-0002-7477-3642
https://orcid.org/0009-0004-4837-6696
https://orcid.org/0000-0001-7556-3615
https://orcid.org/0000-0002-9588-8393
https://orcid.org/0000-0002-8297-8998
https://orcid.org/0000-0001-7743-1296
https://orcid.org/0000-0002-2970-1391
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763800

411:2 Liu et al.

ACM Reference Format:
Zixi Liu, Yang Feng, Yunbo Ni, Shaohua Li, Xizhe Yin, Qingkai Shi, Baowen Xu, and Zhendong Su. 2025.
An Empirical Study of Bugs in the rustc Compiler. Proc. ACM Program. Lang. 9, OOPSLA2, Article 411
(October 2025), 33 pages. https://doi.org/10.1145/3763800

1 Introduction
As the demand for more secure programming paradigms grows, the need for languages with
fewer memory vulnerabilities becomes more recognized. For instance, United States White House
recently emphasized the importance of adopting memory-safe languages, with Rust recognized
as a leading example [InfoWorld 2023]. Rust’s unique principles, such as ownership, borrowing,
and lifetimes, enable developers to write both secure and efficient code. Additionally, Rust’s focus
on zero-cost abstractions and fearless concurrency has made it particularly popular in system
programming [Jung et al. 2021; Klabnik and Nichols 2023]. Recently, there is an increasing trend to
re-engineer widely used software systems in Rust [Cloudflare 2023; RedoxOS 2023; Servo 2023;
STRATIS 2023; TiKV 2023].

Tokens Parsing Code
GenerationAST LLVM

IR

HIR Type Checking MIR Borrow Checking

The workflow of a general front-end compiler, e.g., Clang

rustc-specific compilation stages: Semantic Analysis & IR ProcessingFunction

MIR Optimization

Source
Code

Lexical
Analysis

Semantic
Analysis

Decorated
AST

Optimized MIRRepresentation

Fig. 1. The high-level workflow of rustc and a general front-end compiler.

The primary compiler for Rust is the official open-source rustc [Rust 2023c], which is written
in Rust and uses LLVM [Lattner and Adve 2004] as its default backend. Like traditional compilers,
rustc follows the general compilation workflow comprising lexical analysis, parsing, semantic
analysis, and code generation. However, to support Rust’s unique language features (such as
ownership, lifetimes, traits and so on) and memory-safety guarantee, rustc introduces additional
intermediate representations (IRs) and specialized compilation mechanism that distinguish it from
conventional compilers like Clang and GCC. As illustrated in Figure 1, rustc follows a multi-stage
compilation workflow tailored to enforce Rust’s strict safety guarantees and advanced type system.
After parsing the input program, the Abstract Syntax Tree (AST) is transformed into the High-
Level Intermediate Representation (HIR), which abstracts over syntactic details to facilitate type
inference, type checking, and trait resolution. This processing is crucial yet complex due to Rust’s
trait system, which enables zero-cost abstractions while supporting highly flexible usage patterns.
Additionally, some data types are annotated with lifetimes, posing challenges for rustc’s type
inference. Then, the HIR is lowered to Mid-Level Intermediate Representation (MIR), a control-
flow-oriented representation crucial for enforcing Rust’s ownership model, borrow checking, and
move semantics. Before generating LLVM IR, rustc performs several optimizations over the MIR to
ensure both runtime efficiency and the memory safety. This multi-layered design makes semantic
analysis and IR processing in rustc both unique and central to its compilation pipeline.

While these specific IRs and components are essential for enforcingmemory safety and preventing
data races, they also introduce significant complexity to compilation. Bugs in rustc may weaken
these guarantees and compromise Rust’s memory safety. For instance, a recent rustc bug led
to an unsound borrow check, allowing a program that should have been rejected to compile,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://doi.org/10.1145/3763800

An Empirical Study of Bugs in the rustc Compiler 411:3

potentially causing Use-After-Free1. Despite their importance, existing tools and studies have
overlooked the challenges introduced by compilation mechanisms that enforce Rust’s core language
features, leaving a gap in understanding their impact on testing rustc. This gap is especially
concerning because bugs in rustc can propagate silently into every compiled Rust application,
posing significant risks to reliability and security. To date, the only empirical study on Rust
compilers was by Xia et al. [Xia et al. 2023], which provides comprehensive statistics but lacks
in-depth analysis. For example, it identifies src/test, librustc, and librustcdoc are the three most
error-prone modules in rustc, yet they belong to the testing suite and standard library rather than
the compiler itself. This misclassification may mislead our understanding of rustc’s design flaws.

Besides, there is currently limited tooling available to effectively test and improve the reliability
of rustc. In the open-source community, fuzzing scripts are commonly used to generate random
programs for detecting crash bugs, but they often fail to identify compile-time issues such as
miscompilations. In the research domain, RustSmith [Sharma et al. 2023] was proposed as a
program generator but provides limited support for Rust-specific features, including traits and
generics. Other rustc testing techniques [Dewey et al. 2015; Wang and Jung 2024; Yang et al.
2024] attempt to generate MIR or rely on macro-based strategies, but they can only uncover a
small subset of real rustc bugs. We doubt that the key limitation of these tools lies in a lack of
deep understanding of the unique bug characteristics in rustc. For example, for C/C++ compilers,
CSmith is a well-known tool that uncovered hundreds of C compiler bugs despite supporting only
basic language features [Yang et al. 2011]. By contrast, RustSmith [Sharma et al. 2023] adopts a
similar strategy but has proven far less effective for Rust, as it uncovered only a few historical
bugs and none in recent versions of rustc. We consider that the lack of an effective testing tool
specifically designed for rustc stems largely from an insufficient understanding of the unique bug
characteristics within rustc.
To bridge the gap in understanding bugs related to the implementation of memory-safety

guarantee mechanisms, we conduct a quantitative and qualitative study on the official Rust compiler,
rustc. This study focuses on bugs originating in the two critical compilation stages, i.e., semantic
analysis and IR processing, which implements essential language features such as ownership and
lifetimes in Rust 2. These include phases such as IR lowering and optimization, as illustrated in
Figure 1. We focus on rustc because it is the only compiler currently capable of handling large-scale
Rust projects. Other unofficial Rust compilers, such as Rust-GCC [Rust-GCC 2024], remain in early
development stages and lack the maturity for real-world use. Moreover, their bug histories are
more related to build processes, such as cleanup [Xia et al. 2023], rather than features related Rust
language mechanisms. In particular, our study answers the following research questions.
• RQ1 (Bug Causes): What are the main causes of rustc bugs?What is the frequency of these
bug causes? Which stages/components in rustc are more prone to bugs?

• RQ2 (Symptoms): What are the symptoms of rustc bugs?What is the frequency of these
symptoms? What is the relationship between bug causes and symptoms?

• RQ3 (Test Case Characteristics): What are the main characteristics of the bug-revealing
test cases? What kind of test settings are required to trigger rustc bugs?

• RQ4 (Status of Existing Tools): What are the existing testing techniques for rustc?What
kind of bugs can they detect? What are their limitations?
These research questions are designed to provide a comprehensive understanding of rustc

bugs from multiple perspectives. We begin with RQ1 and RQ2, which together characterize rustc

1https://github.com/rust-lang/rust/issues/132186
2In this paper, “rustc bugs" refers specifically to errors arising from the implementation of semantic analysis and IR
processing in the Rust compiler.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/issues/132186

411:4 Liu et al.

bugs by examining their underlying causes and observable symptoms. Understanding both where
bugs originate and how they manifest offers a complete picture of the challenges faced by rustc.
To answer these questions, we collect a list of issues and their corresponding pull requests from
Rust’s official GitHub [Rust 2023b] over the past three years. Each bug is manually labeled with
its symptoms, cause, and the compilation stage where it occurs. Building on this foundation, RQ3
investigates how these bugs are triggered in practice. Specifically, we examine the characteris-
tics of bug-revealing test cases, including the language features, input patterns, and compilation
configurations that tend to trigger rustc bugs. To this end, we extract test cases and compilation
commands from the collected issues and parse their abstract syntax trees (ASTs) to analyze the
involved language features. Finally, RQ4 evaluates the effectiveness of existing testing tools for
rustc by collecting the number and types of bugs these tools have detected. Furthermore, we apply
these tools to a specific version of rustc to assess their bug-finding capabilities in a controlled
setting. Based on these results, we examine the strengths and limitations of current tools and
discuss the broader challenges and future directions for testing rustc.

Contributions. The contributions of this paper can be summarized as follows.
• We manually construct a three-year dataset of rustc bugs, including test cases, issues, and fixes,
providing a foundation for this study and future research on testing and verification.

• We conduct a comprehensive empirical study of rustc bugs frommultiple perspectives, including
bug causes, bug-prone compilation stages, symptoms, and test case characteristics.

• Based on our analysis, we enumerate the implications of our findings, providing actionable
suggestions for Rust users, rustc developers, and programming language researchers to shed
light on detecting rustc bugs and improving its design.
Summary of findings. Some representative findings include:

(1) The rustc-specific IRs and components are prone to bugs due to the complex interplay of
ownership, lifetimes, and trait resolution. In the HIR-processing component, most bugs (51.1%)
stem from type resolution and well-formedness checks, while MIR-related bugs mainly relate
to MIR transformation (50.0%).

(2) Crash is the most common symptom (39.9%), followed by correctness issues (25.9%), where
valid programs are mistakenly rejected or invalid ones are accepted. These often stem from the
unique type checker and borrow checker within rustc. While existing tools can detect many
crash bugs, they struggle with deeper correctness and misoptimization bugs.

(3) Key contributors to rustc bugs include unstable features (24.3%) and specific compilation
settings or optimization levels (18.9%). Features like trait objects often introduce edge cases that
evade conventional testing, and their interactions with core language mechanisms can expose
soundness and correctness issues.

(4) Existing testing tools have detected only 6.1% of non-crash bugs, likely due to gaps in program
generation. Current approaches lack support for Rust-specific features like higher-order trait
bounds, advanced lifetime annotations, and complex borrowing, limiting the detection of
correctness-critical issues in valid Rust programs.

2 Study Methodology
Our bug collection and analysis approach is summarized in Figure 2. Firstly, we perform bug data
collection (Section 2.1) by collecting all closed issues from the official Rust GitHub repository within
a specified time frame (2022-01-01 to 2025-01-01). We apply an initial filter using official issue
labels, focusing on those related to Rust safety guarantee mechanisms. Then, we manually filter
irrelevant or ineligible issues, such as duplicates or those without test cases. For each remaining
issue, we identify the corresponding pull request (PR) and extract the test case provided in the issue

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

An Empirical Study of Bugs in the rustc Compiler 411:5

Issue
Tracker

From 2022-01-01
To 2025-01-01

Closed Issues

rustc Bugs

Backend Bugs
(LLVM, Cranelift, GCC)

Other Issues
(Tooling, Std, Doc, …)

Duplicate

Not a bug

Not reproducible

Discussion

Exclude

287

88

28

56

6

92

9316

8458

571

Bug Report (Issues)

Bug fix/patch (PRs)

Test cases

Bug Dataset 301

(a) Collecting Bugs and Fixes

Bug Analysis Categorization

Cross validation

Iterate per n bugs

Symptoms

Stages

Bug Causes

Running Tools

(b) Analyzing Bugs

Tool Evaluation

AST Collection Statistics &
Manual
Analysis

Characteristics

Fig. 2. The overview of our bug collection and analysis process.

description. The final result is a set of rustc bugs, each comprising an issue, a PR, and a test case.
This dataset serves as the input for our bug analysis process (Section 2.2).

We iteratively analyze the dataset, where each bug is independently labeled by two researchers
across multiple dimensions. In cases of disagreement, all researchers engage in discussion until a
consensus is reached.

Table 1. Bug labels and corresponding descriptions in Rust’s official GitHub issue tracker [rust team 2025b].

Category Label # Num Description

HIR A-HIR 20 The high-level intermediate representation (HIR)
A-THIR 1 Typed HIR

MIR

A-MIR 43 Mid-level IR (MIR) - https://blog.rust-lang.org/2016/04/19/MIR.html
A-mir-opt 78 MIR optimizations

A-mir-opt-inlining 23 MIR inlining
A-mir-opt-GVN 0 MIR opt Global Value Numbering (GVN)
A-mir-opt-nrvo 0 Fixed by the Named Return Value Opt. (NRVO)
A-stable-MIR 1 stable MIR

Type

A-type-system 25 Type system
A-inference 29 Type inference
A-closures 29 Closures (|. . . | { . . . })
A-coercions 13 implicit and explicit expr as Type coercions

A-const-generics 70 const generics (parameters and arguments)
A-DSTs 0 Dynamically-sized types (DSTs)
A-zst 0 Zero-sized types (ZST).

A-trait-system 77 Trait system
A-impl-trait 68 Universally/existentially quantified anonymous types with static dispatch

A-trait-objects 27 trait objects, vtable layout
A-auto-traits 14 auto traits (e.g., auto trait Send {})

A-implied-bounds 9 Implied bounds / inferred outlives-bounds
A-coinduction 0 Concerning coinduction, most often for auto traits
A-coherence 14 Coherence

Lifetimes A-lifetimes 70 Lifetimes / regions
A-borrow-checker 45 The borrow checker

Backend
(Excluded)

A-LLVM 275 Code generation parts specific to LLVM.
A-gcc 2 Things relevant to the [future] GCC backend

A-cranelift 10 Things relevant to the [future] cranelift backend

2.1 Collecting Bugs and Fixes
To capture the evolution of rustc bugs in recent development, we collect all issues reported
between January 1, 2022, and January 1, 2025. This period aligns with the usage of Rust 2021 Edition
which was released on October 21, 2021, while Rust 2024 was released on February 20, 2025. To
ensure all collected bugs are reviewed and patched, we only include closed issues. This yields a
total of 9, 316 closed issues, forming the complete set for our study.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://blog.rust-lang.org/2016/04/19/MIR.html

411:6 Liu et al.

The official Rust GitHub repository hosts not only the source code of rustc but also a wide
range of related components, including the standard library, documentation tools (e.g., rustdoc),
build systems, package managers (e.g., Cargo), and backend integrations for code generation (e.g.,
LLVM). The rustc development team maintains a comprehensive labeling system and they employ
labels prefixed with "A-" to denote individual compiler area, component, or language feature. Thus,
to identify rustc bugs accurately, we follow this convention and choose the labels that are related
to the implementation of Rust language features, including HIR, MIR, Type, and Lifetimes, resulting
in 571 issues.

Table 1 lists the selected labels, along with their descriptions and issue counts. Since a single issue
may be assignedmultiple labels, the total label count exceeds the number of issues. For completeness,
the table also includes backend-related labels, e.g., for LLVM, Cranelift, and GCC [rust team 2025a],
which correspond to 287 issues and are excluded from our following analysis. Notably, there are 7
issues containing both our selected labels and backend-related labels; considering their possible
relation to Rust compilation process, we include them in our study. In addition, 8, 458 issues are not
associated with any of the labels listed in Table 1. These issues typically involve bugs or discussions
related to the Rust standard library and toolchain and are excluded from our study. Note that while
the tracker also offers general-purpose labels such as C-bug and T-compiler, these are unsuitable
for our analysis. The C-bug label includes all types of errors, including general compiler bugs, such
as those in parsers, while T-compiler merely refers to the responsible team and includes many
non-bug or organizational issues. Moreover, issues are not consistently tagged with either label,
making them unreliable for precise filtering.
For the 571 rustc bugs, we manually review and filter out unsuitable ones based on the clas-

sification criteria outlined in Table 2. Specifically, 88 issues are labeled as duplicate, indicating
that they have already been reported and confirmed, typically marked by developers as “closed
as a duplicate.” 28 issues are classified as not a bug, meaning they describe expected behaviors
rather than actual defects. There are 56 issues marked as not reproducible because they can no
longer be reproduced, suggesting the underlying problems may have already been fixed. These
are excluded due to the absence of a verifiable fix. There are 6 issues that fall under the discussion
category, which includes inquiries, suggestions, or vague reports lacking concrete symptoms or
test cases. In addition, 92 issues are marked as exclude, either because they are unrelated to rustc
(e.g., documentation bugs) or cannot be reproduced in the 2021 edition (e.g., bugs specific to the
2015 edition). After filtering, the remaining 301 issues are confirmed as valid rustc bugs, forming
the core dataset for our subsequent empirical analysis.

Table 2. Status and description of collected bugs.

Status Description # Num

Duplicate The bug duplicates other bugs that have already been confirmed. 88
Not a bug It is not a bug because the feature is intentional and designed this way. 28
Not reproducible When the developer confirmed the bug, it was no longer reproducible. 56
Discussion (1) A question about a certain feature; (2) Suggestions for rustc improvement, but not a bug. 6
Exclude (1) Does not contain a test case; (2) Unrelated to rustc; (3) Not reproducible on 2021 edition. 92
Valid The bug has been confirmed as a rustc bug, with a corresponding test case and fix. 301
Total - 571

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

An Empirical Study of Bugs in the rustc Compiler 411:7

2.2 Analyzing Bugs
This section presents our methodology for analyzing rustc bugs to answer RQ1 and RQ2. Because
the analysis for RQ3 and RQ4 involves additional data and tools beyond the collected issues and
PRs, we present their detailed methodologies separately in Section 5 and Section 6.
Following prior bug analysis approaches [Chaliasos et al. 2021; Drosos et al. 2024; Xiong et al.

2023], we systematically study the collected issues and PRs with reference to the principles of
Qualitative Content Analysis (QCA) [Schreier 2012]. To answer RQ1 and RQ2, we employ a mix
of theory-based and data-driven approaches to build the coding frame across the following three
dimensions: (1) the cause of the bug, (2) the compilation stage during which rustc encounters the
bug, and (3) the bug symptom. Specifically, we first define an initial set of main categories for each
dimension using a theory-based approach grounded in prior studies of compiler bugs [Chaliasos et al.
2021; Chen et al. 2020; Romano et al. 2021; Sun et al. 2016; Tang et al. 2020] and our domain expertise
in rustc. Then, we apply a data-driven iterative refinement process, guided by observations during
labeling bug reports, to evaluate and modify the categories. In addition to the main categories,
we also define a set of subcategories to support more fine-grained analysis, which are detailed
in Sections 3 and 4. Specifically, for bug causes, we categorize them based on Rust language
mechanisms implemented in rustc, and classify them into type system errors, lifetime-related
errors, MIR optimization errors, and more general logic or implementation mistakes. To determine
the bug cause, we review the associated test cases, fix patches, and developer discussions to infer
the underlying reason for each bug. For compilation stages, we follow the official Rust compiler
development guide [Rust 2023a] and identify three core stages: the generation of AST, HIR, and MIR.
Additionally, we treat utility components and code generation as separate modules. We then label
the compilation stage by reviewing the files and modules modified in the corresponding PR. For bug
symptoms, we refer to prior studies on compiler bugs and define several major categories, including
crashes, miscompilations, diagnostic issues, misoptimizations, and performance problems. We
determine the symptom by analyzing the descriptions in each bug report to identify discrepancies
between the expected and actual behavior of rustc.
To ensure rigorous and consistent labeling across all three aspects, we evaluate and modify

our coding frame through iterative refinement. We conduct 5 rounds of iterative annotation, each
involving 20 randomly selected bug reports. In each round, we employ double-coding, with the first
two authors independently labeling the bugs according to the current set of categories. After each
round, they compare their results, discuss discrepancies, and refine the definitions of ambiguous
or insufficient categories. During these initial rounds, we evaluate the inter-rater reliability using
Cohen’s Kappa coefficients [Seaman 1999], obtaining values of 0.667 for bug causes, 0.651 for
compilation stages, and 0.683 for symptoms, which guide the refinement of the categories. After
five rounds covering 100 bug reports, both the main categories and subcategories became stable.
A comprehensive description of both the initial and finalized coding frames, along with their
definitions and hierarchical structure, is presented in the appendix (see Appendix A). Once finalized,
the two authors annotate all the issues and compare their annotations. If a discrepancy occurs, the
third co-author independently annotates the same bug report. If the third annotation matches one
of the initial results, that label is adopted as the final category; otherwise, all three annotators share
their perspectives and discuss until reaching consensus. For the results on all data, the Cohen’s
Kappa coefficients are 0.913 for bug causes, 0.952 for compilation stages, and 0.946 for symptoms,
indicating strong agreement between the two annotators. The full manual annotation effort requires
substantial domain expertise in both the Rust language and the rustc implementation, and takes
approximately six person-months to complete.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

411:8 Liu et al.

Table 3. The taxonomy of bug causes.

Category Subcategory Description # Bugs Ratio

Type
System
Errors

Trait & Bound The errors were caused by rustc’s handling of traits and its enforcement of type parameter
constraints, such as requiring specific traits or conditions. 37 12.3%

Opaque types The errors were caused by issues within rustc’s handling of opaque types, which rely on
the ownership system, zero-cost abstractions, and the design of generics and traits. 38 12.6%

New solver The errors are caused due to the interaction between rustc’s new solver, which is designed
to improve trait-bound resolution and reduce workload, and the existing old solver. 7 2.3%

Well-formedness The errors were caused by rustc’s well-formedness checking, including ownership, lifetime,
type system, and the borrow checker. 9 3.0%

Subtotal - 91 30.2%

Ownership
& Lifetime
Errors

Borrow & Move The errors were caused by issues in implementing the ownership model, which ensures
memory safety and concurrency safety through the move and borrow semantics. 7 2.3%

Lifetime The errors were caused by issues in rustc’s lifetime checking, which ensures that every
reference is valid and does not outlive the data it points to. 34 11.3%

Subtotal - 41 13.6%

MIR
Optimization

Errors

Wrong
implementations

The errors were caused by incorrect implementations of rustc’s MIR-based optimizations
(e.g., constant propagation, dead code elimination, inlining). 34 11.3%

Missing cases Some specific corner cases of the optimization algorithm were not considered thoroughly. 12 4.0%
Subtotal - 46 15.3%

General
Errors

Basic structure Bugs caused by rustc errors in processing features like closures and internal data structures. 38 12.6%
Error handling
& Reporting

The errors were caused by rustc’s failure to handle exceptional cases properly or its
misprocessing of reports, leading to misleading error messages or incorrect error locations. 75 24.9%

Compatibility The bugs were triggered by certain operating systems, bugs in the back-end LLVM, or errors
specific to the Rust edition. 10 3.3%

Subtotal - 123 40.9%

3 RQ1: Bug Causes
In our collected bug dataset, each issue is linked to a corresponding fix PR. We analyze PR de-
scriptions and code changes to classify bug causes, as summarized in Table 3. We first introduce
four major categories of bug causes that stem from the implementation of Rust’s core language
mechanisms or other specific reasons within the compiler. Three categories are closely tied to Rust’s
language mechanisms: the type system, the ownership system, and errors from MIR optimizations.
Other categories include bugs from basic Rust syntax implementation in rustc, error handling and
reporting, and compatibility issues. In Section 3.5, we present another perspective by investigating
the compilation stages in which these bugs are triggered within the rustc pipeline. Note that the
compilation stage where a bug manifests is related to but distinct from its bug cause. For example, a
bug caused by an error in the type system may actually arise during type inference or trait solving
within the HIR stage. We provide a detailed discussion of these relationships in Section 3.5.

3.1 Type System Errors
Type system errors are a major cause of bugs in rustc, accounting for 30.2% of all cases. These
issues stem from rustc handling Rust’s complex type mechanism, which emphasizes zero-cost
abstractions, allowing high-level, expressive code without runtime overhead. For example, traits
enable polymorphism, and generics allow code to operate on multiple types while maintaining
type safety. However, their interaction with Rust’s other mechanism such as the ownership model
introduces significant complexity, often leading to intricate type relationships and related bugs. We
classify an error as a type system error if rustc fails to correctly handle Rust’s type mechanisms,
leading to incorrect behavior or a compilation failure. Type system-related bugs belong to one of
the following groups: (1)trait & bound related errors, (2) opaque types related errors, (3) new solver
related errors, or (4) well-formedness related errors.

Trait & Bound Related Errors: Trait-related errors account for 12.3% of all bugs. Traits define
shared behaviors across types, while bounds constrain the types that can be used with generics.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

An Empirical Study of Bugs in the rustc Compiler 411:9

These bounds work with traits to ensure type safety and enable polymorphism. Errors in this
category occur when rustc struggles to resolve trait bounds or apply constraints during type
inference or checking. Typically, this happens when rustc fails to match types to their associated
trait bounds, leading to incorrect type assignments or failure to resolve the required traits.
Opaque Types Related Errors: Opaque types allow defining a type alias that only exposes

certain traits as its interface. The actual concrete type is inferred from its usage in the code
context [rustc-dev guide 2025]. Examples include types introduced by impl Trait and associated
types within traits. For rustc, handling opaque types requires resolving these types and their
associated properties during type checking and inference while maintaining their abstraction across
different scopes. Errors in this category, which account for 12.6% of all causes, occur when rustc
encounters difficulties in properly resolving opaque types or their associated properties, often due
to scope-related issues. These challenges can lead to incorrect behavior, such as type mismatches
or compilation failures, revealing flaws in rustc’s type resolution for opaque types.

New Solver Related Errors: The Rust team has been actively developing and integrating a new
trait solver to replace some of the existing core implementations [Rust 2025a]. This effort aims to
address unsoundness issues in the previous solver and enhance compilation efficiency. Currently,
both the old and new trait solvers coexist within rustc, leading to challenges during the transition.
Errors in this category, accounting for 2.3% of all causes, usually result from issues in the new trait
solver, especially when resolving complex trait bounds.

Well-formedness Related Errors: Well-formedness (WF) [Rust 2025c] ensures that declarations
in a Rust program follow its language’s rules, validating types, bounds, and relationships. The
WF checker generates a logical goal for each declaration and attempts to prove it using the type
system’s rules. If successful, the declaration is deemed well-formed; otherwise, an error is reported.
Errors in this category, accounting for 3.0% of all causes, arise from rustc improperly processing
WF checking, leading to incorrect behaviors or panics when validating the well-formedness.

Example. The patch in Figure 3 (a) addresses a WF-related error (tracked as Issue 118876)
caused by incorrect WF checking for built-in traits. The built-in Fn* traits, including Fn, FnMut, and
FnOnce, allow closures to be used like function pointers, passed as arguments, or stored in structs.
Before explaining the bug cause, we first clarify some definitions. The unnormalized signature
refers to function signatures that may include unresolved associated types, whereas the normalized
signature resolves all associated types to their concrete definitions. Rust’s type system assumes that
if a type is well-formed, its normalized form is also well-formed. As a result, rustc only checks the
WF of the unnormalized signature and ignores the normalized form during type checking. However,
this assumption is violated because the implementations of built-in Fn* traits do not explicitly
declare certain required lifetime bounds, particularly the 's: 'static bound. Consequently, rustc
fails to enforce these implicit lifetime bounds, leading to an unexpected compiler behavior. The
patch in Figure 3 (a) adds checks for the normalized signature to ensure that all associated types
are resolved and necessary lifetime bounds are explicitly declared. This ensures that rustc applies
the same WF rules to both built-in Fn* traits and user-defined traits.

// compiler/rustc_borrowck/src/type_check/mod.rs
- let sig = self.normalize(sig, term_location);
+ let sig = self.normalize(unnormalized_sig, term_location);
// WF(sig) does not imply WF(normalized(sig)) with built-in
// `Fn` implementations, since the impl may not be well-formed itself.
+ if sig != unnormalized_sig { ... }

(a) Type System Errors: Well-formedness related errors. (b) Ownership & Lifetime Errors: lifetime errors.

// compiler/rustc_borrowck/src/type_check/input_output.rs
- if body.yield_ty().is_some() != universal_regions.yield_ty.is_some() { ... }
+ if let Some(mir_yield_ty) = body.yield_ty() {
+ let yield_span = body.local_decls[RETURN_PLACE].source_info.span;
+ ...
+ }

Fig. 3. Two snippets of fix patch for explaining ownership & lifetime bug cause (PR 118882 and PR 119563).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/issues/118876
https://github.com/rust-lang/rust/pull/118882
https://github.com/rust-lang/rust/pull/119563

411:10 Liu et al.

3.2 Ownership & Lifetime Errors
Rust’s ownership and lifetime system ensures memory safety without a garbage collector. Bugs
caused by ownership and lifetime errors make up 13.6% of all rustc bugs. Specifically, rustc
verifies reference validity over their lifetimes, prevents conflicts between mutable and immutable
references, and enforces ownership rules to avoid use-after-move or use-after-drop errors. We
classify an error as an ownership and lifetime error when Rust’s ownership model fails, causing
compilation issues. These bugs belong to one of the following groups: (1) borrow & move related
errors or (2) lifetime related errors.

Borrow & Move Related Errors: The borrow and move mechanisms are fundamental to Rust’s
ownership system, yet bugs arising from them are relatively rare, accounting for only 2.3% of all
identified causes. The borrow model enables references to a value without transferring ownership,
permitting either multiple immutable references or a single mutable reference, but never both
simultaneously. The move model, in contrast, transfers ownership of a value, rendering the original
variable invalid and preventing further use. Bugs in this category typically stem from rustc
mismanaging mutable and immutable borrowing or incorrectly tracking ownership transfers.
Lifetime Related Errors: The lifetime is a key feature of Rust’s ownership system, which

describes the scope for which a reference is valid, preventing issues like dangling references or
data races. The bugs caused by lifetime-related errors account for 11.3% of all. The borrow checker
in rustc utilizes lifetimes to track the validity of references and enforce that they do not outlive
the referenced data. The errors caused by this category are typically because rustc improperly
infer or check the lifetimes of references.
Example. The patch in Figure 3 (b) shows an example of lifetime-related errors. In the test

case (tracked as Issue 119564), coroutines for asynchronous programming are utilized. Unlike
traditional functions, coroutines in Rust allow execution to be paused and resumed at different
points, forming an implicit state machine. This mechanism introduces challenges for the borrow
checker, as it must ensure that all references captured inside the coroutine remain valid across
suspension points. However, in this case, rustc failed to properly enforce lifetime constraints on
values produced by yield, allowing a yielded value to be assigned a stricter lifetime than it should
have. Since yield effectively acts as a suspension point, any borrowed reference tied to it must
remain valid when the coroutine resumes. Without proper checks, this could lead to dangling
references or memory safety violations. The patch shown in Figure 3 (b) improves soundness in
rustc’s coroutine handling by enforcing stricter lifetime checks at yield and resumption points.
When a yield expression is detected, rustc captures the yield_span to determine the scope of the
yielded value. Then, rustc uses this span to perform further checks, ensuring that coroutines
correctly enforce lifetime constraints.

3.3 MIR Optimization Errors
MIR optimization in rustc refines MIR to enhance performance and reduce resource consumption.
These optimizations, including constant folding, dead code elimination, and loop unrolling, refine
the code before it is passed to the backend compiler. While most algorithms have been implemented
within classic compilers, applying them to MIR can introduce subtle interactions and edge cases.
Bugs arising from these challenges, categorized as MIR optimization errors, account for 15.3%
of all causes. An MIR optimization error occurs when incorrect transformation or optimization
causes misbehavior or compilation failure. These bugs fall into two categories: (1) wrong im-
plementations, where rustc incorrectly implement the intended transformations (11.3%), and
(2) missing cases, where certain corner cases or program patterns are not properly addressed,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/issues/119564

An Empirical Study of Bugs in the rustc Compiler 411:11

leading to incomplete optimizations (4.0%). From our study, most MIR optimization bugs require
modifications to the algorithm’s logic, rather than merely fixing a minor overlooked case.

Example. Figure 4 (a) illustrates an example of incorrect MIR optimization. The bug (tracked as
Issue 111355) occurs when inlining results in redundant unreachable blocks. It is caused by the
interaction between two key MIR optimization passes: InstCombine, which simplifies instructions
by combining constant expressions and redundant operations, and SimplifyCfg, which simplifies
control flow graphs by removing unnecessary branches and loops. Initially, the function responsible
for merging duplicate targets was placed within InstCombine, but this placement was ineffective
because InstCombine runs before SimplifyCfg. Since duplicate unreachable blocks are only
introduced after SimplifyCfg is applied, the function was executed too early to have the intended
effect. The patch corrects this by relocating the function, ensuring it properly merges duplicate
unreachable blocks when they actually appear.

(a) MIR optimization errors: wrong implementations.

// compiler/rustc_mir_transform/src/instcombine.rs
- fn combine_duplicate_switch_targets(...) {...}
// compiler/rustc_mir_transform/src/simplify.rs
+ fn combine_duplicate_switch_targets(...) {...}

(a) Other general errors: basic syntax & structure.

// compiler/rustc_hir_typeck/src/fn_ctxt/checks.rs
- let is_closure = matches!(arg.kind, ExprKind::Closure { .. });
+ let is_closure = if let ExprKind::Closure(closure) = arg.kind {...}
+ else {false};

Fig. 4. The fix patch for explaining MIR optimization bug cause PR 110569) and general errors PR 112266).

3.4 General Errors
The remaining bug causes are not directly tied to core language features but instead, result from
more fundamental issues in how rustc processes certain constructs, handles edge cases, or interacts
with its backend systems. These errors can stem from various issues within rustc’s internal logic,
structure, or interaction with external components. These bugs account for 40.9% of all causes. We
classify an error as a general error when flaws in rustc’s design or implementation cause expected
compilation behaviors. General errors in rustc can be classified into three categories: (1) basic
structure errors, where rustc incorrectly processes fundamental constructs, such as closures or
internal data structures (12.6%); (2) error handling and reporting issues, where exceptional cases
or error reports are mishandled, leading to misleading messages or incorrect error locations (24.9%);
and (3) compatibility issues, where bugs arise from specific operating system configurations,
backend LLVM problems, or Rust edition-specific errors (3.3%).
Example. Figure 4 (b) illustrates an example of basic structure errors, which is a regression in

Rust 1.70 (tracked as Issue 112225) affecting type inference in argument-position closures and async
blocks. The issue arises from how rustc evaluates async blocks, where improper closure handling
leads to incorrect type resolution. Unlike regular functions, async blocks are implicitly transformed
into state machines, which affects closure inference and evaluation order. This transformation
caused rustc to misidentify closures in arguments, leading to inference failures. The patch adds an
explicit check to verify whether an argument is a closure, preventing misclassification.

3.5 Bug Prone Compilation Stages
The workflow of rustc involves several specific components, including HIR and MIR, as well as
various specialized checks and analyses based on these IRs that support Rust’s unique memory
management system. To investigate the stages of rustc compiler pipeline prone to bugs, we
decompose its workflow and divide it into several core stages. We then quantify the error rates at
each stage and analyze the underlying causes. In some cases, a bug involves modifications across
multiple stages. To handle such cases, we identify all affected modules in the fixing PR and trace

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/issues/110551
https://github.com/rust-lang/rust/pull/110569
https://github.com/rust-lang/rust/pull/112266
https://github.com/rust-lang/rust/issues/112225

411:12 Liu et al.

0 20 40 60 80 100 120 140 160

6. LLVM

5. Utility

4. Code Gen

3. MIR

2. HIR

1. AST

7 (2.3%)

24 (8.0%)

5 (1.7%)

106 (35.2%)

135 (44.9%)

24 (8.0%)

Type System Errors
Ownership & Lifetime Errors
MIR Optimization Errors
General Errors

(a) Bug distribution across rustc compilation stages.

0 10 20 30 40 50 60 70 80

MIR Diagnostics

Dataflow Analysis

Borrow Checking

MIR Transformation

HIR Diagnostics

Type Inference

Trait Solving

Type & WF Checking

17 (16.0%)

9 (8.5%)

27 (25.5%)

53 (50.0%)

19 (14.1%)

10 (7.4%)

37 (27.4%)

69 (51.1%)

MIR

HIR

Type System Errors
Ownership & Lifetime Errors
MIR Optimization Errors
General Errors

(b) Bug distribution across HIR and MIR components.

Fig. 5. Comprehensive analysis of bug distribution in rustc pipeline and its HIR/MIR components.

the bug cause to the stage where the error originates. Figure 5(a) provides an overview of the
distribution of bug causes across different compilation stages. General errors appear throughout all
stages, while MIR optimization bugs predominantly occur in the MIR-processing stage. Beyond
HIR-processing and MIR-processing, most bugs stem from general errors.
To further understand the bugs triggered in the core HIR and MIR components, we subdivide

them and investigate their bug causes, as shown in Figure 5(b). A closer look at the HIR and
MIR processing stages reveals that bugs related to the type system and ownership mechanisms
are spread across multiple components rather than being isolated to a single stage. Regarding
Figure 5(b), most components contain bugs caused by type system errors. For instance, issues in
type & WF checking may allow invalid types, while errors in trait solving can lead to unexpected
type mismatches. Bugs in MIR transformation and borrow checking can also stem from type system
errors. This is partly because some WF checks are performed during borrow checking, as certain
lifetime information may still be incomplete during the HIR-based type-checking phase. Similarly,
multiple components are affected by ownership and lifetime errors. In the type & WF checking
and type inference components, incorrectly inferred types and constraints can lead to unsound
borrowing rules. Additionally, incorrect trait resolution in the trait solving may introduce errors
that propagate to later stages, ultimately affecting ownership analysis. Errors in borrow checking can
directly cause ownership-related issues. Furthermore, theMIR transformation involves optimization
algorithms related to lifetimes, which can also introduce related issues. Regarding diagnostics in
both the HIR and MIR components, most bugs stem from general programming errors, especially
improper error handling, which can misclassify the bug causes of compilation failures.

4 RQ2: Bug Symptoms
To categorize the bug symptoms of rustc, we manually review bug descriptions from GitHub’s
bug reports and analyze the discrepancies between expected and actual behaviors. Specifically,
we categorized the bugs into five distinct bug symptom categories: Crash, Correctness Issues, Mis-
compilation, Diagnostic Issues and Misoptimization. The distribution of bug symptoms is shown in
Table 4. Among them, crashes are the most prevalent, accounting for 39.9% of cases, followed by
correctness issues (25.9%) and diagnostic issues (19.3%). Miscompilation and misoptimization are
less common, making up 10.0% and 5.0%, respectively.

4.1 Crash
Similar to all software systems, rustc also suffers from crashes. Among the bugs we collected,
36.5% involve crash errors. Based on the compilation stage where the crash occurs, we categorize
them into front-end panics and back-end crashes.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

An Empirical Study of Bugs in the rustc Compiler 411:13

Table 4. Distribution of bug symptoms and the distribution of bug symptoms per cause.

Symptoms Occurrence
Type

System
Ownership
& Lifetime

MIR
Optimization

General
Errors

Crash
Front-end Panic (valid) 42 (14.0%) 120

(39.9%)
30

(25.0%)
3

(2.5%)
19

(15.8%)
68

(56.7%)Front-end Panic (invalid) 75 (24.9%)
Back-end Crash 3 (1.0%)

Correctness Issues Completeness Issues 56 (18.6%) 78
(25.9%)

43
(55.1%)

17
(21.8%)

7
(9.0%)

11
(14.1%)Soundness Issues 22 (7.3%)

Miscompilation Inconsistent Output Issues 18 (6.0%) 30
(10.0%)

5
(16.7%)

4
(13.3%)

12
(40.0%)

9
(30.0%)Safe Rust Causes UB 12 (4.0%)

Diagnostic Issues Incorrect Warning/Error 20 (6.6%) 58
(19.3%)

12
(20.7%)

16
(27.6%)

1
(1.7%)

29
(50.0%)Improper Fix Suggestion 38 (12.6%)

Misoptimization Incorrect Optimization 9 (3.0%) 15
(5.0%)

1
(6.7%)

1
(6.7%)

7
(46.7%)

6
(40.0%)Performance Issues 6 (2.0%)

Front-end Panic: In Rust, a panic occurs on an unrecoverable error, followed by a cleanup
operation before termination. In rustc, an internal compiler error (ICE) often manifests as a panic,
indicating that rustc has encountered an unexpected state or an unhandled scenario. The front-end
panic accounts for 38.9% of all observed symptoms. Among them, 14.0% are triggered by valid
programs, and 24.9% are triggered by invalid programs.
Back-end Crash: Back-end crashes happen due to low-level failures like segmentation faults

(SIGSEGV) or abnormal terminations (SIGABRT), often linked to issues with code generation.
A small number of back-end crashes exist in our dataset, accounting for 1.0% of all cases. Although

we excluded 287 issues labeled as backend-related, as mentioned in Section 2.1, 7 issues were tagged
with both backend-related labels and labels of interest to our study, and were therefore retained.
Manual inspection confirms that some of these issues lead to back-end crashes. It is worth noting
that such crashes are not necessarily specific to the current LLVM-based backend. Similar failures
may still occur with alternative backends, such as the in-development Cranelift backend, since
these bugs may stem from the backend implementation itself.

Bug cause analysis. The primary causes of crash bugs in rustc are general errors (56.7%), such
as inadequate error handling and compatibility issues. When rustc encounters an unexpected
program state, its error recovery mechanisms may be incomplete, leading to rustc front-end panic
instead of graceful handling. The second major category involves the type system (25.0%) and
MIR optimization (15.8%). The complexity of type checking and trait resolution can introduce
subtle inconsistencies, especially with advanced generics and associated types. Additionally, since
MIR serves as the bridge between high-level Rust code and low-level machine code, incorrect
optimizations or misinterpretations of type transformations at this stage can also lead to panic.
Finally, ownership and lifetime errors account for 2.5% of crash bugs. As most violations in this
area are caught at compile time, incorrect checks are more likely to cause correctness issues rather
than immediate crashes.

(a) A Rust program that triggers an ICE.

thread 'rustc' panicked at compiler/rustc_span/src/lib.rs:2028:17:
assertion failed: bpos.to_u32() >= mbc.pos.to_u32() + mbc.bytes as u32

(b) The fix patch. General errors: Error handling& Reporting.

pub fn main() {
main （arr[i]）;

}

// compiler/rustc_hir_typeck/src/fn_ctxt/checks.rs
- call_expr.span.with_lo(call_expr.span.hi() - BytePos(1))
+ self.tcx().sess.source_map().end_point(call_expr.span)

Fig. 6. The example of a crash bug (Issue 128717) and corresponding fix patch (PR 128864).

Example. Figure 6 (a) shows a code snippet that triggers a front-end panic, which is caused by a
general error. This code incorrectly passes an argument into the main function and uses a multi-byte

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/issues/128717
https://github.com/rust-lang/rust/pull/128864

411:14 Liu et al.

brace as the closing delimiter. When rustc detects that the main function involves parameters, it
attempts to provide a fix suggestion and shifts one byte to remove the extra parameter. However,
rustc fails to handle multi-byte characters because it assumes that every closing delimiter is a single
byte. This misalignment violates Unicode boundaries, triggering an assertion failure. Figure 6 (b)
presents the fix patch, which corrects the positioning approach by eliminating the use of BytePos.

4.2 Correctness Issues
Correctness bugs occur when rustc fails to enforce Rust’s syntax or semantic rules, leading to
the unintended rejection or acceptance of programs, thereby undermining its ability to accurately
validate Rust code. We classify these issues into two distinct subcategories: incorrect rejections of
valid programs (completeness issues) and incorrect acceptances of invalid programs (soundness
issues). We make this distinction because soundness issues are generally considered more severe,
as they may allow invalid or unsafe programs to compile and potentially execute incorrectly or
unsafely. The correctness issues account for 25.9% of all cases. Among them, 18.6% are triggered by
completeness issues, and 7.3% are triggered by soundness issues.

Completeness Issues: Completeness bugs occur when rustc fails to compile a syntactically and
semantically valid Rust program as defined by the language specification. These bugs typically
manifest when rustc incorrectly rejects such a program, either by displaying a false error message
or failing to complete compilation.

Soundness Issues: Soundness bugs refer to situations where rustcmistakenly accepts programs
that should be rejected due to violating language rules. Rust is known for its strict rules around
syntax and semantics, and soundness bugs occur when rustc incorrectly allows code that violates
these rules to compile successfully.

Bug cause analysis. Correctness bugs in rustc primarily stem from issues in the type system
(55.1%) and ownership management (21.8%). Unlike crash bugs, correctness issues are not as
immediately apparent, as they often result from logical flaws in rustc’s core checking mechanisms
rather than explicit failures. Other causes, such as MIR optimization errors (9.0%) and general errors
(14.1%), are relatively less common. MIR optimization bugs can introduce subtle miscompilations
when incorrect transformations alter program semantics, particularly in aggressive optimization
scenarios. General errors, includingmissed edge cases in rustc logic, may propagate inconsistencies,
leading to undetected violations of Rust’s safety guarantees.

(a) A Rust program that triggers a completeness bug of rustc.

 Actual output: error[E0220]: associated type `foo` not found for `X`
8 | async fn boom<X: bar>() -> Result<(), X::foo>;

| ^^^ there is an associated type `foo` in the trait `bar`
 Expected output: Compilation succeeds

#![allow(async_fn_in_trait)]

pub trait foo {}

pub trait bar { type foo: foo; }
pub trait baz { async fn boom<X: bar>() -> Result<(), X::foo>; }

(b) The fix patch. Type System Errors: Opaque types related errors.

// compiler/rustc_hir_analysis/.../predicates_of.rs
+ match tcx.opt_rpitit_info(item_def_id.to_def_id()) {
+ Some(ty::ImplTraitInTraitData::Trait {...}) => {...}
+ Some({...}) => unreachable!(...)
+ None => {}
+ }

Fig. 7. The example of a correctness issue (Issue 132372) and corresponding fix patch (PR 132373).

Example. Figure 7 (a) presents a test case that exposes a correctness issue, which is caused by
handling opaque types and Return-Position Impl Trait in Trait (RPITITs), categorized under type
system errors. The test case defines three public traits: foo, bar, and baz. The baz trait includes an
asynchronous method, boom, which is generic over a type X constrained to implement bar. Here,
the asynchronous method can be defined in the trait because the corresponding unstable feature
is enabled. While this code previously compiled successfully, it now fails with the latest rustc
version. Although the test case does not explicitly use impl Trait, the async function implicitly
returns impl Future<Output=T>, thereby involving RPITITs. The bug cause is that RPITITs are
incorrectly assigned the def id of a Generalized Associated Type (GAT) instead of the correct opaque

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/issues/132372
https://github.com/rust-lang/rust/pull/132373

An Empirical Study of Bugs in the rustc Compiler 411:15

type identifier. Consequently, shorthand projections such as T::Assoc fail to resolve properly. The
patch in Figure 7 (b) corrects this by modifying rustc to detect cases where an item originates
from RPITIT lowering and ensuring that queries are forwarded to the appropriate item. As this
case demonstrates, flaws in the complex type system can lead to correctness issues, underscoring
the challenges of maintaining a reliable type system in Rust.

4.3 Miscompilation
Miscompilation bugs occur when rustc generates incorrect machine code or behaves unexpectedly
during compilation, leading to incorrect program execution. Miscompilation issues are particularly
important, as they may compromise the safety and performance guarantees that Rust provides to
its users. Bugs classified as miscompilation account for 10.0% of the total.
Inconsistent Output Issues: These bugs arise when rustc produces different outputs based

on compilation levels or optimization settings. Rust’s debug and release modes apply varying
optimizations, but miscompilation can cause inconsistencies in both the generated machine code
and the program’s execution results across configurations. Bugs classified as inconsistent output
issues account for 6.0% of all symptoms.
Safe Rust Program Causes Undefined Behaviors: This symptom is particularly unique for

rustc due to the language’s strict division between safe and unsafe code. A core design principle
of Rust is that code written entirely in the safe subset should never cause undefined behaviors
(UB) [Wikimedia 2004]. This guarantee is strictly upheld by the Rust compiler [Rust 2025b]. When
UB occurs in a safe Rust program, it indicates a critical violation of this principle and is therefore
considered a compiler bug rather than a user error. This differs from many other languages, where
UB is typically attributed to improper use of low-level or unsafe operations by the programmer. In
Rust, by contrast, rustc is solely responsible for ensuring memory safety in safe code. As such,
when rustc compiles a safe Rust program that leads to UB, it represents a distinct category of
rustc bug that violates Rust’s core safety guarantees and compromises the trust developers place
in the compiler. In our study, such bugs account for 4.0% of all observed symptoms.
Bug cause analysis.Miscompilation bugs in rustc are primarily caused by MIR optimization

errors (40.0%). Faulty optimization logic can lead to semantic differences between optimized and
unoptimized code, directly affecting program correctness. General errors account for 30.0%, as
mistakes in internal data structures or improper handling of basic syntax can propagate through
the compilation process, leading to incorrect code generation. Other causes, including type system
issues (16.7%) and ownership-related errors (13.3%), are relatively less common. Type system bugs
may lead to miscompilations due to incorrect type inference or trait resolution. Similarly, ownership
errors could result in unintended memory access patterns, potentially causing miscompilations.

(a) A Rust program that triggers inconsistent output.

% rustc -Awarnings test.rs -Zmir-opt-level=0 && ./test
e=1
% rustc -Awarnings test.rs -Zmir-opt-level=2 && ./test
e=0

pub fn myfunc() -> i32 {
let mut a: i32 = 0; a = 1;
if !a != 0 { return 1 }
return 0;

}
pub fn main() { let mut e = myfunc(); println!("e={}", e); }

(b) The fix patch. MIR optimization errors: missing cases.

// compiler/rustc_mir_transform/src/jump_threading.rs
Rvalue::UnaryOp(UnOp::Not, Operand::Move(place) | Operand::Copy(place)) => {
+ if !place.ty(self.body, self.tcx).ty.is_bool() {
+ // ... `!a == b` is not `a != b` for integers greater than 1 bit.
+ return;
+ }

Fig. 8. The example of a miscompilation bug (Issue 131195) and corresponding fix patch (PR 131201).

Example. Figure 8 illustrates an inconsistent output bug, caused by a MIR optimization error. The
test case defines a function myfunc, where the variable a is initialized as 0 with type i32. In Rust,
the ! operator performs bitwise negation on integers and logical negation on booleans. Therefore,
applying ! to a should produce a 32-bit value with all bits set to 1, equivalent to −1 in two’s
complement representation, so the expected output is 𝑒 = 1. However, under MIR optimization

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/issues/131195
https://github.com/rust-lang/rust/pull/131201

411:16 Liu et al.

level 2, the actual result is 𝑒 = 0, leading to an inconsistent output. The bug originates from the
jump_threading optimization pass, where rustc incorrectly applies optimizations to non-boolean
operands. The optimizer fails to differentiate between integer and boolean negation, causing
incorrect jump threading in specific cases. The patch in Figure 8 (b) resolves this by introducing a
boundary check, ensuring that only boolean operands are considered for jump threading.

4.4 Diagnostic Issues
rustc generates error messages for compilation failures and warnings for potential misuse, often
accompanied by corresponding fix suggestions. Therefore, we subdivide diagnostic issues into
two categories. In total, diagnostic issues account for 19.3%. Among them, incorrect warning/error
issues account for 6.6%, and improper fixing suggestion issues account for 12.6%.

IncorrectWarning/Error:After the compilation, rustcmay generate warning or errormessages.
Nevertheless, these messages may be inaccurate or deceptive.
Improper Fixing Suggestion: When handling invalid programs, rustc often provides fix sug-

gestions, yet these may be imprecise, or there could be a more optimal recommendation.
Bug cause analysis. Diagnostic issues in rustc primarily stem from general errors (50.0%),

including shortcomings in error handling and suggestion-matching mechanisms. Similar to rustc
front-end panics, while rustc correctly identifies that the input program is non-compilable, in-
complete error handling may lead to unclear diagnostics or ineffective fix suggestions. In addition,
type system (20.7%) and ownership-related issues (27.6%) also contribute significantly, as imprecise
error branch selection within these checkers can result in misleading or unclear messages. Finally,
MIR optimization (1.7%) rarely causes diagnostic issues, as it involves minimal error reporting, but
fix suggestions may still be affected by transformations like incorrect dead code elimination, which
can remove useful code and lead to inaccurate suggestions.

(a) A Rust program that triggers a diagnostic issue.

 Actual output: warning: unnecessary
braces around const expression

 Expected output: no warning message

(b) The fix patch. General errors: Error handling& Reporting.

pub fn foo<const BAR: bool> () {}

pub fn main() { foo::<{cfg!(feature = "foo")}>(); }

// compiler/rustc_lint/src/unused.rs
... && !inner.span.from_expansion() {

self.emit_unused_delims_expr(...) }

Fig. 9. The example of a crash bug (Issue 104141) and corresponding fix patch (PR 105515).

Example. Figure 9 (a) shows a code snippet that triggers a warning message suggesting the
removal of unnecessary braces around a const expression. However, this warning is not correct,
and applying it leads to a compilation failure. Because the braces are required for const generics
combining with the cfg! macro. This bug is classified as an error in error handling and reporting,
which falls under general errors. Figure 9 (b) presents the corresponding fix, refining the linting
process to exclude edge cases involving macros in const generics.

4.5 Misoptimization
Misoptimization bugs in rustc occur during the optimization phase. While the final execution
results may be correct, the MIR generated by rustc may not match the expected optimizations.
Besides, intermediate compilation stages can introduce inefficiencies or subtle issues, affecting
soundness or performance. In total, misoptimization issues account for 5.0% of all.
Incorrect Optimization: rustc may apply unexpected optimization strategies, resulting in

MIR that deviates from intended semantics or fails to incorporate expected transformations. These
issues reflect flaws in the optimization logic but do not necessarily cause incorrect execution.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/issues/104141
https://github.com/rust-lang/rust/pull/105515

An Empirical Study of Bugs in the rustc Compiler 411:17

Performance Issues: In some cases, missing or ineffective optimizations lead to runtime perfor-
mance or prolonged compilation time. Such issues are relatively rare and typically arise from the
absence of expected optimizations rather than from functional errors in the compiled code.

Bug cause analysis. Misoptimization bugs in rustc are primarily caused by MIR optimization
errors (46.7%) and general errors (40.0%). Unlike crash or diagnostic issues, misoptimizations are not
explicitly detected but instead manifest as deviations in the generated MIR from expected behavior.
These issues often stem from flaws in MIR optimization algorithms or unhandled corner cases in
rustc. Additionally, the type system (6.7%) and ownership-related issues (6.7%) contribute to a
smaller portion of misoptimizations. In these cases, incorrect analyses can propagate errors into
MIR lowering, leading to unintended transformations in the optimized code.

Example. Figure 10 illustrates a misoptimization caused by an ownership & lifetime error, specifi-
cally a borrow and move error. The issue arises in the SimplifyLocals optimization pass, which
removes unused variables and redundant code at the MIR level. As shown in Figure 10 (c), the
optimizer incorrectly eliminates _2 (a usize variable) and _3 (a raw pointer of type const T),
highlighted in red. Under Rust’s strict provenance model, pointer-to-integer conversions must
retain provenance information, as they encode the pointer’s origin. While the program may still
compile and execute, a deeper MIR-level analysis reveals deviations from expected behavior. The
patch in Figure 10 (b) fixes this by introducing stricter validation for pointer-to-integer casts,
ensuring they are preserved when necessary.

// These lines are removed after SimplifyLocals optimization.
fn expose_addr(_1: &T) -> () {

debug a => _1; // in scope 0 at a.rs:1:23: 1:24
let mut _0: (); // return place in scope 0 at a.rs:1:30: 1:30
let _2: usize; // in scope 0 at a.rs:2:5: 2:27
let mut _3: *const T; // in scope 0 at a.rs:2:5: 2:18

bb0: {
_3 = &raw const (*_1); // scope 0 at a.rs:2:5: 2:6
_2 = move _3 as usize (Misc); // scope 0 at a.rs:2:5: 2:27
return; // scope 0 at a.rs:3:2: 3:2

}
}

(a) A Rust program that trigger a misoptimization bug.

pub fn expose_addr<T>(a: &T) { a as *const T as usize; }

(b) The fix patch. Ownership & Lifetime Errors: borrow and move errors.

// compiler/rustc_middle/src/mir/mod.rs
- pub fn is_pointer_int_cast(&self) -> bool {
- matches!(self, Rvalue::Cast(CastKind::PointerExposeAddress, _, _))
+ pub fn is_safe_to_remove(&self) -> bool {
+ match self {
+ Rvalue::Cast(CastKind::PointerExposeAddress, _, _) => false,
+ Rvalue::Use(_) | ... => true,
+ }

(c) The MIR before/after optimization.

Fig. 10. The example of a misoptimization bug (Issue 97421) and corresponding fix patch (PR 97597).

5 RQ3: Test Case Characteristics
In this section, we analyze the characteristics of the bug-revealing test cases. By studying the
characteristics and properties of these test cases, we can identify specific aspects of Rust that
contribute to rustc bugs, offering guidance for test case design.
Analysis Method. A test case consists of a Rust program and a compilation command, which

we collect from each issue. If both original and reduced test cases are reported, we collect them
separately. If only a single test case is reported, it is categorized as an original test case. If a
minimized version is included in the corresponding comment, it is collected as a reduced test
case; otherwise, we record the reduced case as the same as the original case. Additionally, if a bug
is reproducible only within a separate Rust project, we exclude it, as the excessive presence of
unrelated elements may obscure the test case characteristics. Among the 301 valid bugs, we have
collected 276 original test cases and 293 reduced test cases. The number of original test cases is
less than the reduced ones because some original cases are separate projects, which we do not
collect, yet their reduced versions are included. There are 8 issues without test cases, due to: (1)
unavailable external links, (2) separate projects, and (3) test cases with only compilation commands,
not executable programs. To analyze the characteristics of test cases, we convert the reduced test

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/issues/97421
https://github.com/rust-lang/rust/pull/97597

411:18 Liu et al.

cases into an AST and count the node types that reflect syntactic structures. Specifically, we use syn
library [Tolnay 2025] to parse the AST and extract the occurrences of item and type nodes. The item
nodes represent top-level constructs in Rust, such as functions, structs, traits, and enums, which
define the overall structure of a program. The type nodes capture the different kinds of types in
Rust, including primitives, references, and more complex types like trait objects, providing insights
into how values are represented and manipulated in the code. Excluding a few cases where no test
case is provided or where severe syntax errors prevent generating an AST, we collect a total of
293 test cases and 271 corresponding ASTs. Since syn library cannot parse Rust code fragments
without a main function, we manually supplement such snippets. If the test case only defines items
like functions or structs, we append an empty main function. Otherwise, if it contains statements,
we wrap the entire snippet in a main function. Additionally, we also analyze features triggering
rustc bugs from various perspectives, including unstable features, compilation flags, built-in traits,
and other keywords or APIs. For the compilation command, we identify the most frequently used
commands and their usage frequency.

Table 5. Statistics on test case sizes: lines of
code (LoC).

mean median min max
Original tests 17.8 12 2 346
Reduced tests 14.2 11 2 123

Analysis Results. Table 5 presents some general sta-
tistics on test cases. The average size of original test cases
is 17.83 lines of code (LoC), while the median is 12 LoC.
Since not every test case has a reduced version, the av-
erage LoC for reduced test cases is 14.17, with a median
of 11. The difference from the original test cases is not
significant, although the maximum LoC has decreased
from 346 to 123. Based on these statistics, we could infer
that rustc bugs are mainly triggered by small fragments of code. Analyzing test case sizes provides
valuable insight into the complexity required to trigger rustc bugs. Consistent with prior studies
on compilers such as GCC, LLVM [Sun et al. 2016], JVM [Chaliasos et al. 2021], and WebAssem-
bly [Romano et al. 2021], our findings confirm that compiler bugs are often revealed by relatively
short programs—typically under 100 lines. This suggests that even small code fragments containing
key language features are sufficient to expose critical issues in rustc, highlighting the importance
of targeted, fine-grained testing.
Table 6 presents the distribution of Item and Type nodes across test cases. Among Item nodes,

function is the most common node, followed by struct, impl, and trait, accounting for around 35%.
These nodes often appear multiple times per file, suggesting that a test case usually defines several
custom data structures. About 20% of test cases contain use statements, mainly for standard library
imports and some third-party dependencies. Type, representing custom types like type aliases,
appears in nearly 10%, common in Rust’s trait-based generics for abstract and reusable code. Among
data type nodes, Path is the most frequent, representing the fully qualified name of types, e.g.,
Vec<i32>, std::fs::File. Reference is the second most common type, appearing in 43.9% of cases,
reflecting Rust’s ownership and borrowing system. This is also linked to ptr (raw pointers), which
bypass safety checks in advanced use cases. Trait-related types such as Impl Trait (20.7%) and Trait
Object (10.7%) support compile-time and runtime polymorphism, respectively.

The other features triggering rustc bugs are listed in Table 7. Around 25% of the test cases involved
unstable features, while about 20% required specific compilation flags. In total, we identified 42
distinct unstable features and 41 different compilation flags. Many frequently used unstable features
are applied to support advanced trait usages. The generic_const_exprs feature (17.8%) allows
constant expressions in generic parameters, enabling more flexible compile-time computations.
The type_alias_impl_trait feature (15.1%) simplifies complex trait bounds by allowing type
aliases with impl Trait, making generic code more concise. Meanwhile, the const_trait_impl

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

An Empirical Study of Bugs in the rustc Compiler 411:19

Table 6. Summary of AST node types and their occurrence across test cases.

Item Total1 Prevalence Mean
per File2

Max
per File2 Type Total1 Prevalence Mean

per File2
Max

per File2
Function 524 100.0% 1.93 8 Path 1262 88.2% 5.28 41
Struct 130 37.6% 1.27 4 Reference 276 43.9% 2.32 10
Impl 157 37.6% 1.54 6 Tuple 161 30.3% 1.96 8
Trait 144 34.3% 1.55 6 Impl Trait 87 20.7% 1.55 10
Use 64 20.3% 1.16 3 Array 55 11.4% 1.77 10
Type 29 7.4% 1.45 6 Trait Object 49 10.7% 1.69 3
Enum 8 3.0% 1 1 Ptr 35 7.8% 1.67 4
Macro 11 3.0% 1.38 2 Infer 18 4.8% 1.38 2

Extern Crate 7 2.6% 1 1 BareFn 21 4.1% 1.91 5
Static 7 2.2% 1.17 2 Slice 13 3.0% 1.62 3
Mod 8 1.9% 1.6 3 Never 1 0.4% 1 1
Const 5 1.9% 1 1 Paren 1 0.4% 1 1

Verbatim 4 1.1% 1.33 2 Group 0 0.0% 0 0
Foreign Mod 2 0.7% 1 1 Macro 0 0.0% 0 0
Trait Alias 1 0.4% 1 1 Verbatim 0 0.0% 0 0
Union 0 0.0% 0 0

1 The total occurrences of each node.
2 The average occurrences per file, and the highest count in a single file.

feature (4.1%) enables trait implementations in constant contexts, further extending Rust’s compile-
time capabilities. These features enhance Rust’s type system but also introduce complexity to
trait resolution, type inference, and constant evaluation. The interplay of traits, generics, and
compile-time computation boosts expressiveness while increasing the edge cases rustc must han-
dle. Unstable trait-related features often reveal subtle issues in type checking, trait coherence, and
monomorphization. Consequently, testing rustc becomes more challenging, as ensuring sound-
ness while supporting richer abstractions demands rigorous validation against an increasingly
intricate trait system. The other two unstable features are primarily related to low-level opti-
mizations. The core_intrinsics feature (12.3%) provides direct access to compiler intrinsics for
performance-critical operations. The custom_mir feature (11.0%) allows custom transformations
on MIR, enabling experimental optimizations and analysis. The most common compilation flags are
related to optimization. The -Zmir-opt-level=X (45.6%) and -Copt-level=X flag (14.0%) controls
MIR and LLVM optimizations, respectively. The -Zmir-enable-passes=+X flag (15.8%) enables
specific MIR passes. The +nightly flag (14.0%) specifies the nightly rustc version, and -edition=X
specifies the Rust edition.

Table 7. The five most frequent unstable features and compilation flags required by test cases.

Most frequent unstable features Most frequent compile flags Most frequent traits Other features
Feature Occ (%) Flag Occ (%) Trait Occ (%) Feature Occ (%)

#![feature(generic_const_exprs)] 17.8% -Zmir-opt-level=X 45.6% (?)Sized 49.2% lifetimes 34.6%
#![feature(type_alias_impl_trait)] 15.1% -Zmir-enable-passes=+X 15.8% FnOnce 12.3% std API 18.6%

#![feature(core_intrinsics)] 12.3% -Copt-level=X 14.0% Iterator 7.8% dyn 10.0%
#![feature(custom_mir)] 11.0% +nightly 14.0% Copy 6.2% async 7.3%

#![feature(const_trait_impl)] 4.1% –edition=X 12.3% FnMut 4.6% core API 6.3%
Total: 73 24.3% Total: 57 18.9% Total: 65 21.6% - -

Given the frequent occurrence of traits in test cases, we further analyze the usage of built-in
traits, which can increase test case complexity, as demonstrated by the examples in Section 3.1 and
Section 3.2. Test cases involving at least one built-in trait account for 21.6% of all cases. Additionally,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

411:20 Liu et al.

18.6% of cases import standard library traits (use std), and 6.3% use core library traits (use core).
This suggests that the flexible use of Rust’s built-in traits contributes to triggering rustc bugs.
Table 7 shows the five most frequently used build-in traits. The Sized trait (49.2%) ensures a
type has a known size at compile time, while ?Sized allows dynamically sized types like str
and dyn Trait. The FnOnce trait (12.3%) applies to types callable at most once, typically due to
ownership constraints. The Iterator trait (7.7%) enables value generation, whereas Copy (6.2%)
allows duplication via bitwise copying instead of moves. The FnMut trait (4.7%) permits multiple
calls, modifying the captured environment each time. For other language features, lifetimes play a
crucial role, with 34.6% of test cases using lifetime annotations. Additionally, the usage of dyn (for
dynamic dispatch via trait objects) and async (for asynchronous programming) also contributes to
detecting rustc bugs.

6 RQ4: Status of Existing Techniques
A major concern for developers is how to automate the testing and verification of rustc as it
evolves. Several rustc-specific testing tools have been proposed by the Rust community and
academia, and they differ in program generation and testing methods. This section reviews existing
automated techniques for finding rustc bugs.
Analysis Method. Table 8 lists the selected testing tools, their first release time, program

generation approaches, supported features, and testing methods. In the Rust community, several
individual projects have been developed to perform fuzz testing on rustc. Fuzz-rustc [Renshaw
2019] adapts LibFuzzer [LLVM 2023] into a custom script to systematically mutate input byte stream
and uncover crashes in rustc. Tree-splicer [Barrett 2023] constructs new test cases by recombining
ASTs extracted from existing programs, though it is constrained by the structures present in
its seed inputs and often produces syntactically invalid programs. ICEMaker [Krüger 2020], the
most widely used fuzzing tool, combines elements of both Fuzz-rustc and Tree-splicer, leveraging
iterative mutations and employing tools like Miri [Miri 2023] and Clippy [Rust-clippy 2023] to
analyze generated programs. In academia, several tools have been developed to test rustc by
generating Rust programs using different methodologies. RustSmith [Sharma et al. 2023] constructs
ASTs that conform to Rust’s grammar, ensuring syntactically valid programs, and uses differential
testing to detect inconsistencies across rustc versions or optimization levels. Rustlantis [Wang and
Jung 2024] generates custom MIRs via the mir!() macro, making it effective at detecting bugs in
MIR-based optimizations. Rust-twins [Yang et al. 2024] employs differential testing by generating
semantically equivalent programs using macros and comparing their HIRs and MIRs, aided by
Large Language Models (LLMs) for generation. Typecheck-fuzzer, an early work by Dewey et
al. [Dewey et al. 2015], uses Constraint Logic Programming (CLP) to generate well-typed programs
and uncover type-checking bugs in Rust’s type system.
To investigate the performance of these tools, we conduct a two-step analysis. In the first step,

we determine whether each rustc bug in our dataset falls within the scope of an existing tool’s
capability by examining the submitter’s identity. If the issue was submitted by a known developer of
a testing tool, we attribute the bug to that tool. If the submitter is a member of the Rust development
team, we classify it as reported by the Rust team. All other reports are attributed to general Rust
users. In addition, we examine all these open-source tools and review their corresponding papers
to understand their techniques. In the second step, we run each tool for 12 hours to test a specific
historical version of rustc (v1.58.0), recording the number and types of detected bugs. For tools
that require seed programs, we use the official test suite of the rustc being tested. Since the official
test suite includes many cases expected to cause rustc crashes, we exclude these cases and apply
the remaining ones as the seed set. After excluding these cases, there are a total of 6, 876 test cases.
We did not run CLP-Fuzzer because the code link is no longer available and it was tested on an early

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/releases/tag/1.58.0

An Empirical Study of Bugs in the rustc Compiler 411:21

Table 8. Information and statistical results of existing tools for detecting rustc bugs. (Validity: indicates all
of the generated programs are valid, indicates approximately half of the generated programs are valid, and
indicates the generated programs are mostly invalid. Support features: means unsupported, means

fully supported, and means partially supported for specific features.)

Tool First Program generation approaches Supported features Testing #Reported #Tested
Release1 Method Representation Validity Unstable Flag API Method Bugs2 Bugs

Co
m
m
un

ity Fuzz-rustc 2019-07 mutation Byte Stream Fuzzing 49 1
Tree-splicer 2023-03 splicing AST Fuzzing 27 0
ICEMaker 2020-12 mutation AST Fuzzing 873 0

A
ca
de
m
ia RustSmith 2022-04 Rule-based AST Differential 3 0

Rustlantis 2023-01 Rule-based MIR Differential 8 0
Rust-twins 2024-10 LLM-based Rust code Differential 8 2
CLP-Fuzzer 2015-10 Rule-based Rust code Fuzzing 14 -
1 For tools proposed in academic papers without open-source availability, we document the publication date of the
paper, the actual tool development likely preceded this date.

2 The bugs detected by these tools do not fully align with our dataset. For community-sourced tools, we use their
official bug statistics (up to March 3, 2025), and for paper-proposed tools, we record the data from their publications.

1.0-alpha version of rustc, which is very different from modern rustc. We follow the default setup
(e.g., verification commands, LLM settings) of each tool in our experiment, and all experiments are
conducted in the same environment.

Analysis Results. As shown in validity column in Table 8, the success rate of generating compi-
lable programs varies across different tools. Community-developed fuzzers often produce invalid
programs due to the randomness of program generation and the coarse-grained nature of their
mutation and splicing rules. In contrast, academic research tends to focus more on generating
valid programs, which is particularly useful for uncovering deeper rustc bugs, such as miscom-
pilations and misoptimizations. As shown in the Supported features column, each tool supports
a subset of the high-frequency features summarized in Section 5. Community-developed fuzzers
rarely provide explicit support for unstable features and the std/core API, relying instead on seed
programs. If present in seeds, these features may be incorporated during mutation. However, due
to the lack of semantic awareness, generated test cases may declare an unstable feature or API
without actually exercising its functionality, limiting their effectiveness in systematically testing
such features. Academic research often explores various compilation flag combinations, which
is particularly beneficial for differential testing, yet rarely supports unstable features and APIs
explicitly. Among these four tools, only Rust-twins fully supports them, leveraging LLMs for code
generation. Rustlantis supports a few unstable features for custom MIR and low-level optimizations,
while RustSmith and CLP-Fuzzer overlook them. Also, we can observe that Fuzz-rustc found 1
bug, and Rust-twins identified 2 bugs, all of which are rustc front-end panics. Upon our careful
check, the bug found by Fuzz-rustc was previously submitted by ICEMaker3 and is still in an open
state, which seems that it has not been actively maintained or verified since then. The two rustc
front-end panics discovered by Rust-twins are duplicates, with identical error messages and bug
causes. They overlap with another issue submitted by ICEMaker in the past4, which was closed after
Rust developers determined it to be an intentional behavior. Among all detected results, front-end
panic is the most frequent and observable bug symptom in rustc. We believe that the effectiveness
of testing tools may be influenced by a longer testing time and the quality of seed programs.

3https://github.com/rust-lang/rust/issues/114920
4https://github.com/rust-lang/rust/issues/123950

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://github.com/rust-lang/rust/issues/114920
https://github.com/rust-lang/rust/issues/123950

411:22 Liu et al.

0 20 40 60 80 100 120
Misoptimization

Diagnostic Issues
Miscompilation

Correctness Issues
Crash

15
58

30
78

120

ICEMaker
Fuzz-rustc
Rustlantis
Rust team
Rust users

(a) Distribution of bug symptoms across existing tools.

0 20 40 60 80 100 120
General Errors

MIR Optimization Errors

Ownership & Lifetime Errors

Type System Errors

123

46

41

91 ICEMaker
Fuzz-rustc
Rustlantis
Rust team
Rust users

(b) Distribution of bug causes across testing tools.

Fig. 11. Distribution of bug causes and symptoms across existing tools.

Figure 11 presents the detection status of the 301 valid bugs we collected across different tools.
Among them, ICEMaker, Fuzz-rustc, and Rustlantis have detected some bugs, while issues submitted
by other tools are not included in our collected bug list. This discrepancy may be due to some
tools submitting issues beyond our dataset collection timeframe, their reported issues lacking the
labels we collected, or their submitted issues remaining open and thus not included. As shown
in Figure 11(a), ICEMaker and Fuzz-rustc, as fuzzing tools, are capable of detecting crash bugs,
while Rustlantis specializes in identifying miscompilation bugs. Additionally, ICEMaker has also
detected a few miscompilation and diagnostic issues, thanks to its more comprehensive verification
approach, which leverages a wider range of compilation flags and integrates tools like Miri to detect
UB. However, as Figure 11(b) indicates, the majority of the bugs detected by ICEMaker are caused by
general errors, rather than issues related with Rust language mechanism, highlighting ICEMaker’s
ability to uncover corner cases within rustc. An interesting observation from Figure 11(a) is that
existing tools fail to detect correctness issues and misoptimizations. This highlights the limitations
of current tools in identifying deep rustc bugs, which require a deep understanding of Rust’s
language rules and extensive experience.

7 Implications and Discussion
The primary goal of this study is to systematically characterize bugs in rustc’s semantic analysis
and IR processing stages. This characterization offers actionable guidance for testing and analysis of
rustc, with insights that are valuable both for understanding Rust’s type system and for advancing
compiler validation techniques.

7.1 Findings
➤ Finding 1: A large number of rustc bugs in the HIR and MIR modules are caused by
Rust’s unique type system and lifetime model. In our dataset, although 40.9% of the bugs are
attributed to general programming errors (Table 3), the HIR (44.9%) and MIR (35.2%) stages remain
the most error-prone, as shown in Figure 5(a). This is because HIR and MIR are the stages where
high-level constructs are desugared and processed by complex analyses, such as trait resolution,
borrow checking, and MIR optimizations, which increases the likelihood of subtle interactions
manifesting as bugs. The characteristics of bug-revealing test cases further support this observation.
As shown in Table 6, trait-related constructs including traits, impl traits, and trait objects
frequently appear in both item and type nodes. Moreover, certain unstable trait-related features
and the explicit use of lifetimes, as reported in Table 7, also contribute to rustc bug manifestation,
indicating that these language features may interact with the HIR and MIR modules and thereby
increase the likelihood of rustc errors.

➤ Finding 2: rustc bugs share many symptoms with other compiler bugs but also intro-
duce unique types, such as undefined behavior in safe Rust. Like other compilers, rustc
experiences various compilation and runtime bugs. However, its crash bug often causes panic with

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

An Empirical Study of Bugs in the rustc Compiler 411:23

safety protection, setting it apart from other compilers where crash typically results in segmentation
faults or abnormal terminations. Another unique symptom is undefined behavior in safe Rust code,
tied to Rust’s safety guarantees. While performance-related bugs are absent in our analysis, this
doesn’t mean rustc is free of performance issues. Rather, these issues tend to appear less frequently
in Rust-specific issues or may be categorized as misoptimizations related to code efficiency.

➤ Finding 3: rustc’s diagnostic module still has considerable potential for enhancement,
with many issues distributed across different IR-processing modules. As shown in Table 3,
diagnostic issues account for about 20% of all bugs. Figure 5(b) illustrates that error reporting is
scattered across different components, including HIR (14.1%) and MIR (16.0%), with each component
having its own dedicated module for error analysis and reporting. Moreover, gaps in these modules
still exist, causing some errors to be inaccurately detected or reported.

➤ Finding 4: Existing rustc testing tools are less effective at detecting non-crash bugs.
Figure 11(a) shows that about 50% of the crash bugs are detected by existing rustc testing tools.
On the one hand, non-crash bugs such as soundness and completeness issues often lack directly
observable symptoms, making them difficult to detect during development or testing. On the
other hand, this suggests that current testing tools are limited to finding easily observed crash
bugs with obvious symptoms while remaining unaware of the syntactic and semantic validity of
generated programs. As shown in Table 4, certain bug symptoms such as partial front-end panics
and completeness issues can only be triggered by valid programs, which indicates that testing tools
need to be aware of the validity of programs to find such bugs.

7.2 Actionable Suggestions and Takeaways
➤ Suggestion 1: (For Rust developers) Be cautious with unstable features and custom
optimization settings. As shown in Table 7, unstable features account for over 20% of triggering
rustc bugs, indicating that these features may introduce flaws leading to unexpected behavior.
Additionally, custom optimization settings, such as enabling specific MIR passes or adjusting
optimization levels, can cause unintended side effects or instability. (1) Rust developers should first
execute programs with the default optimization level to check results before applying higher-level
optimizations, ensuring consistency and avoiding potential rustc bugs. (2) Rust developers should
avoid using unstable features and employ a stable version of rustc when developing system-level
software, which is beneficial for ensuring software reliability.

➤ Suggestion 2: (For Rust developers) The suggestions provided by rustc may be inaccu-
rate. As shown in Table 4, nearly 20% of rustc bugs are linked to the feedback provided by rustc,
including error messages and suggested fixes. This suggests that rustc’s diagnostic tools may not
always provide accurate or effective solutions. If rustc’s suggestion does not resolve the issue, Rust
developers should consider alternative approaches. Reporting the bug to the Rust team can also be
beneficial for improving the reliability of rustc.

➤ Suggestion 3: (For rustc developers) Designing testing and verification techniques for
rustc components across different IRs. The core process of rustc involves HIR and MIR
lowering, along with type checking, borrow checking, and optimization. Figure 5 indicates that
44.9% and 35.2% of the issues occur in the modules responsible for processing HIR and MIR,
respectively. However, existing fuzzers rarely employ specialized testing techniques for these
components. Currently, Rustlantis is the only tool capable of generating valid MIR, but it lacks
support for other modules, such as type checking and lifetime analysis. To verify the key rustc
components, rustc developers should generate valid HIRs and MIRs under specific constraints. For

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

411:24 Liu et al.

example, generating HIRs to ensure well-formedness in different scenarios, such as for build-in traits
and user-defined traits.

➤ Suggestion 4: (For rustc developers) Investing more effort in implementing and main-
taining new language features and compilation settings. As shown in Table 7, 24.3% of the
bug-revealing test cases apply unstable features, and 18.9% employ special compilation commands.
This indicates that some less frequently used or newly proposed features still have many flaws,
which should receive attention from rustc developers. For newly proposed unstable features or syn-
tax rules, developers should discuss thoroughly their potential use cases and rustc’s expected behaviors
in RFC meetings. This helps design diverse test cases, ultimately enhancing rustc’s reliability.

➤ Suggestion 5: (For researchers) Building better Rust program generators that fully sup-
port Rust’s unique type system. Research on testing, debugging, and analyzing C/C++ compilers
often relies on CSmith [Yang et al. 2011], a random generator that produces valid C programs
covering a wide range of syntax features. For Rust, the only preliminary tool, RustSmith [Sharma
et al. 2023], generates complex control flow and extensive use of variables and primitive types
but has limited support for Rust’s higher-level abstractions. As shown in Table 3, many rustc
bugs stem from improper handling of advanced features like traits, opaque types, and references.
Additionally, Table 6 indicates that test cases combining these abstractions are more likely to trigger
bugs. Researchers should create a Rust program generator that supports Rust’s advanced features like
generics, traits, and lifetime annotations, for example, by enhancing RustSmith.

➤ Suggestion 6: (For researchers) Generating well-designed, both valid and invalid Rust
programs to test rustc’s type system. Our analysis shows that over half of rustc bugs originate
from the HIR and MIR modules, particularly in type and WF checking, trait resolution, borrow
checking, and MIR transformation. Many corner cases expose weaknesses in rustc’s type handling.
(1) Researchers should develop Rust-specific mutation rules, such as altering lifetimes, to introduce
minor errors into valid programs and generate invalid ones for detecting soundness bugs. (2) Researchers
should synthesize test programs from real-world Rust code, which provides diverse unstable features,
std API usage, lifetime annotations, and complex trait patterns that benefit for testing rustc.

7.3 Threats to Validity
One potential threat to internal validity concerns the selection criteria and representativeness of
the bugs analyzed. We focus on fixed bugs accompanied by both a patch and a test case, as they
provide concrete, developer-acknowledged issues with sufficient context for analysis. New feature
requests, enhancements, non-reproducible issues, and discussion-based reports were excluded to
reduce noise. This filtering strategy aligns with prior studies[Chaliasos et al. 2021; Di Franco et al.
2017; Jin et al. 2012; Sun et al. 2016] that similarly concentrate on fixed bugs. We acknowledge
that our dataset may not include all reported bugs, particularly those that remain undiscovered
or unresolved. While this limitation is inherent to studies based on historical data, we believe
our dataset is sufficiently representative for characterizing common issues and also present the
developers’ knowledge in Rust’s semantic analysis and IR processing. Notably, the selected time
frame spans the entire lifetime of the Rust 2021 Edition (from January 1, 2022 to January 1, 2025),
capturing a complete cycle of development and bug resolution under this edition.

To identify rustc bugs relevant to our study, we relied on the official labeling system maintained
by the Rust team and filtered for core components related to Rust’s safety guarantees. Specifically,
we excluded backend-related labels such as "A-LLVM" and general compiler labels like "A-Parser",
as they are not directly involved in semantic analysis or the Rust-specific IR stages we target.
While LLVM plays a crucial role in target code generation and low-level optimizations, our focus

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

An Empirical Study of Bugs in the rustc Compiler 411:25

is on bugs arising from Rust compilation stages—such as type checking, trait solving, and the
generation of HIR and MIR, before lowering to LLVM IR. To ensure precision, we used a label-based
filtering strategy and manually verified all selected issues. Despite these efforts, a small number
of LLVM-related bugs remain in our dataset. As discussed in Section 2.1, 7 of the 287 backend-
labeled issues were also tagged with labels of interest to our study and thus retained. Some of these
lead to back-end crashes or are caused by LLVM-level errors. However, the low counts in these
categories do not indicate that LLVM-related bugs are uncommon in practice. Instead, they are
underrepresented in our dataset, as our study specifically targets bugs tied to the implementation
of Rust’s core language mechanisms.

Another potential threat lies in the subjectivity of our manual bug analysis. To mitigate this issue,
we establish criteria for classifying each label, drawing references from existing compiler bug studies
and the official Rust documentation. Additionally, each issue is independently inspected by two co-
authors and then cross-checked the results between themselves and the other co-authors to achieve
consensus. This aligns with the bug analysis approach from prior empirical studies [Chaliasos et al.
2021; Sun et al. 2016; Xie et al. 2021; Xiong et al. 2023], where each bug was manually reviewed
and labeled by multiple researchers.

8 Related Work
In this section, we primarily focus on two perspectives of closely related research: (1) the empirical
studies of compiler bugs, and (2) the studies of Rust programs.

8.1 Understanding Compiler Bugs
The most relevant bug study to our work is conducted by Chaliasos et al. [Chaliasos et al. 2021],
which analyzes typing-related bugs in four JVM compilers: Java, Scala, Kotlin, and Groovy. It
highlights numerous overlooked type-related bugs in JVM compilers. While some findings align
with ours, the design differences between rustc and JVM compilers are significant. Notably, Rust’s
use of associated functions, types, and borrow checking introduces new type-related bugs. Another
closely related study by Xia et al. [Xia et al. 2023] provides the first analysis of historical bugs in
two Rust compilers, rustc and Rust-GCC. However, their analysis relies solely on statistical data,
such as lines of code in issues, variable counts, label classifications, and affected modules in pull
requests, without delving into the rustc’s implementation details. The analysis lacks depth, for
example, it fails to elucidate the symptoms and causes of the errors within rustc. In contrast, our
work presents the first comprehensive bug analysis specifically for rustc, the only official and
mature Rust compiler. We manually reviewed and annotated issues and PRs related to Rust features
covering a three-year period, categorizing and quantifying their bug causes and symptoms. Our
study also examines the susceptibility of different compilation stages to bugs and compares existing
testing techniques for rustc. By offering deeper insights into rustc’s design and prevalent bugs,
we aim to inform researchers and guide future improvements in Rust compiler development.

Empirical studies on compiler bugs have been conducted extensively, especially for C/C++
compilers, such as the investigation proposed by Sun et.al. [Sun et al. 2016], which focused on
understanding compiler bugs in GCC and LLVM. Subsequently, Zhou et al. [Zhou et al. 2021]
conducted further research and analysis on the characteristics of optimization bugs in GCC and
LLVM, providing some testing and debugging guidance for testing compilers. Another study [Xie
et al. 2021] analyzed LLVM’s tool-chain bugs, summarizing typical reasons for their interaction
and their corresponding fixing commits. Additionally, an empirical study on WebAssembly compil-
ers [Romano et al. 2022] investigated the bugs’ lifecycle, impact, and sizes of bug-inducing inputs
and bug fixes. Unlike these works, which all focus on investigating the bug characteristics of the
compiler back-end, our work is the first systematic study towards rustc as a front-end compiler.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

411:26 Liu et al.

8.2 Empirical Studies of Rust Programs and Testing Approaches
Most existing studies focus on the unsafe usages of Rust, such as investigating how programmers
employ unsafe Rust [Astrauskas et al. 2020; Cui et al. 2024; van Oorschot 2023; Zhang et al. 2023],
the potential risks associated with unsafe code [Höltervennhoff et al. 2023], and whether Rust
programs are used safely [Evans et al. 2020]. Zhu et al. [Zhu et al. 2022] analyzed the difficulty of
understanding, application, and challenges associated with Rust safety rules. Xu et al. [Xu et al.
2021] conducted an in-depth analysis of Rust CVEs, exploring bugs related to memory safety. Qin et
al. [Qin et al. 2020] conducted research on memory and thread safety issues in real Rust programs.
Zheng et.al. [Zheng et al. 2023] performed an investigation into the security risks in the Rust
ecosystem, discussing the characteristics of the vulnerabilities in Rust programs. Different from
existing studies, we propose the first systematic bug study of rustc, which is resilient to memory
safety issues and has unique IRs designed for type checking and borrow checking.
With Rust’s powerful type system and memory management model, some research has been

conducted on the testing and verification of Rust programs. For instance, SyRust [Takashima et al.
2021] automatically generates Rust programs to effectively test Rust libraries. Verus [Lattuada
et al. 2023] is an SMT-based verifier for Rust programs, while Aeneas [Ho and Protzenko 2022]
translates lightweight functions for verification. RustHornBelt [Matsushita et al. 2022] employs a
semantic model to check Rust’s soundness. Additionally, some approaches [Astrauskas et al. 2019;
Wolff et al. 2021] leverage Rust’s type system for verification. Unlike these works focusing on
testing and verification, our study examines the Rust compilation process, particularly the reliability
of its type-checking and borrow-checking implementations. We believe our findings can benefit
compiler developers, Rust programmers, and programming language researchers while opening
new directions for Rust research.

9 Conclusion
This paper presents a comprehensive empirical study of rustc bugs, analyzing their causes, symp-
toms, affected compilation stages, and test case characteristics. Our findings offer insights, sug-
gestions, and potential research directions for testing and debugging rustc. We observe that bugs
involving HIR and MIR occur at comparable rates, with most issues stemming from Rust-specific
analyses, checks, and MIR-based optimizations. Moreover, existing test generation techniques for
rustc are limited, with insufficient support for both correctness and misoptimization bugs. We
expect our research to deepen the understanding of bugs in rustc and provide guidance for rustc’s
testing and development, as well as research on Rust’s compilation and optimization.

Data-Availability Statement
All source code and data for this study is publicly available [Liu 2025]. We have already submitted
the artifact for evaluation via this link: https://zenodo.org/records/16600026.

Acknowledgments
We would like to thank reviewers for their constructive comments. This project was partially
funded by the National Natural Science Foundation of China under Grant No. 62372225 and No.
62272220.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://zenodo.org/records/16600026

An Empirical Study of Bugs in the rustc Compiler 411:27

A Coding Frame for Issue Labeling
This appendix presents the coding frame used for labeling rustc bugs, which involves three
manually classified dimensions: bug cause, the compilation stage in which rustc bug occurs, and
the observed symptom. These categories formed the basis of our manual analysis and supported
our empirical findings and suggestions. As described in Section 2.2, our labeling process begins
with a predefined set of categories and subcategories for these three dimensions. These categories
were informed by prior compiler bug studies and our domain expertise in rustc. The annotation
was performed iteratively by the first two authors. We conducted 5 rounds of labeling, each round
involving 20 randomly selected bug reports. In each round, the two authors independently annotated
the bugs using the current taxonomy, then compared their results and discussed any discrepancies.
This iterative process allowed us to refine ambiguous or insufficient category definitions and
stabilize the taxonomy after labeling 100 reports. Once the labeling taxonomy was finalized, the
authors re-annotated the previously labeled bug reports to ensure consistency, and then continued
to annotate the remaining dataset using the stable taxonomy. Each batch of 20 bug reports was
independently labeled by the same two authors. In cases of disagreement, the third author joined
the discussion to facilitate consensus. This rigorous process ensured high reliability of the manual
annotations across the entire dataset.

The classification of bug causes and its detailed criteria are presented in Section 3 (see Table 3).
The classification scheme for bug causes, which remained unchanged from the initial to the finalized
version, is fully presented in Section 3 and thus not repeated here. Therefore, this appendix focuses
on the other two dimensions, compilation stage and bug symptom, providing both their initial
classification schemes and the refinements made during the analysis process, along with the
rationale behind the adjustments.

A.1 Bug Prone Compilation Stages
For compilation stages, we follow the official Rust compiler development guide [Rust 2023a] and
identify five categories that correspond to key phases and components of rustc: AST, HIR, MIR,
Code Generation, and Utility. Among these, HIR and MIR are the most critical for enforcing Rust’s
safety guarantees. To better reflect their internal complexity, we further subdivide these two
stages based on functionality. Table 9 summarizes our classification of each compilation stage
along with representative modules where bugs are typically fixed. Each module is accompanied
by a brief description based on rustc documentation and source code comments. For diagnostic-
related modules under HIR and MIR, the table includes selected examples of the module name. In
practice, most of these modules contain sub-modules or files dedicated to diagnostics, which are
too numerous to list exhaustively.
The classification in Table 9 reflects the final taxonomy, refined through multiple rounds of

iterative labeling and revision. Initially, our predefined labels did not include a separate category
for "LLVM". However, during the labeling process, we encountered several bug-fix pull requests
that resolved issues by upgrading LLVM. To better capture such cases, we added "LLVM" as a
distinct category. Our original taxonomy also did not account for diagnostic-related categories. In
practice, we found that many bug-fix PRs modified only diagnostic code. Although these modules
vary in naming, such as error_reporting or diagnostics, they are generally well-structured
and clearly identifiable in the rustc source code. To explicitly represent them, we introduced a
dedicated "Diagnostics" subcategory under both the HIR and MIR stages.
Finally, we clarify the scope of modules listed in Table 9. All of them are located under the

"compiler/" directory in the official Rust repository. Most of these modules contain several sub-
modules and numerous Rust source files, which are not exhaustively shown in the table. Besides,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

411:28 Liu et al.

Table 9. The typical modules and descriptions for compilation stages.

Compilation Stages Typical Modules Description

1. AST

rustc_ast
Contains syntax-related components such as the AST,
token definitions, AST mutation utilities, and shared
structures used by the lexer and macro expansion.

rustc_ast_lowering Lowers the AST to the HIR.

rustc_ast_passes
Implements validation passes over the AST pro-
duced by rustc_parse, prior to its lowering by
rustc_ast_lowering.

rustc_parse Represents the main parser interface.
rustc_const_eval Evaluates compile-time constant expressions.

rustc_resolve
Responsible for the part of name resolution that
doesn’t require type checker.

2. HIR

Type &
Checking

rustc_hir_analysis Performs semantic checks on HIR.

rustc_hir_typeck
Responsible for: 1. Determining the type of each expres-
sion. 2. Resolving methods and traits. 3. Guaranteeing
that most type rules are met.

Trait Solving

rustc_trait_selection Defines the trait resolution method.

rustc_next_trait_solver
Contains the implementation of the next-generation
trait solver, along with shared components that were
generalized from the old solver during the transition.

Type Infer rustc_infer Defines the type inference engine.
rustc_hir Defines the structure of the HIR.

Diagnostics {*hir}/src/error Generates diagnostics for all HIR-related components.

3. MIR

MIR Transform rustc_mir_transform Applies MIR-based optimizations and passes.
Borrow Checking rustc_borrowck Performs borrow checking and ownership analysis.

Dataflow Analysis rustc_mir_dataflow
Defines the type of the dataflow state, the initial value
of that state at entry to each block, as well as the di-
rection of the analysis.

Diagnostics {*mir}/src/diagnostics Emits diagnostics for borrow check failures.

4. Code Gen rustc_codegen_ssa
Contains code generation code that is used by all back-
ends (LLVM and others).

5. Utility

rustc_middle Defines shared compiler data structures.
rustc_ty_utils Provides type system utility functions.
rustc_metadata Handles crate metadata encoding and decoding.
rustc_lint Implements lints and warning infrastructure.

6. LLVM The bug can be resolved by updating LLVM.

the table does not cover all modules in the "compiler/" directory. While we initially assigned
compilation stages to all core modules in this directory, some of them did not appear in our dataset
and are therefore not included.

A.2 Bug Symptoms
Following the classification principles adopted in prior bug studies [Romano et al. 2022; Shen et al.
2021; Zhou et al. 2021], we initially predefined four categories of bug symptoms to characterize how
bugs manifest in rustc. The final taxonomy with examples is presented in Section 4 (Table 4). The
overview of the mapping from initial to final bug symptom taxonomies is shown in Figure 12. In
the following, we describe our predefined categories, the refinements made in the final taxonomy,
and the rationale behind each adjustment.

Initial Category (1): ICE. This category refers to internal compiler errors that cause rustc to
terminate unexpectedly and abnormally. Such failures are typically indicated by panic messages and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

An Empirical Study of Bugs in the rustc Compiler 411:29

(1) ICE

(2) Unexpected Behaviors

(4) Performance Issues

Completeness Issues

Soundness Issues

Inconsistent Output Issues

Slow

Hang

(1) Crash

(2) Correctness Issues

(4) Diagnostic Issues

(5) Misoptimization

Completeness Issues

Soundness Issues

Safe Rust Causes UB

Incorrect Warnings/Errors

Improper Fix Suggestions

(3) Miscompilation

Inconsistent Output Issues

Front-end Panic (valid)

Front-end Panic (invalid)

Back-end Crash

(3) Diagnostic Issues

Incorrect Warnings/Errors

Improper Fix Suggestions

Initial categories Final categories

Incorrect Optimization

Performance Issues

42

75

3

56

22

18

12

20

38

9

6

Fig. 12. An overview of the mapping from initial to final bug symptom taxonomies.

explicit mentions of “internal compiler error (ICE).” ICEs reflect violations of compiler invariants
and generally reveal severe faults within rustc’s implementation.

Final Category (1): Crash.After several iterations of labeling and refinement, the final taxonomy
includes a new top-level category, "Crash", comprising "Front-end Panic" and "Back-end Crash".
Initially, our focus was exclusively on ICEs caused by faults in rustc’s implementation, and we
assumed that all crashes would arise from panics during the front-end stages. However, during
manual inspection of issues, we observed a small number of cases where the crash was triggered
by bugs in the backend components, particularly in LLVM. To account for such cases, we extended
our taxonomy to explicitly include "Back-end Crash". Furthermore, within the "Front-end Panic"
category, we distinguished between panics triggered by valid and invalid Rust programs. This
distinction arose from the observation that many panics were caused by malformed inputs, such as
random symbols or incomplete fragments, often generated by fuzzing tools. We separately recorded
panics from invalid programs, as they may reflect robustness issues in the parser or early-stage
analysis, rather than logic errors in handling valid code.

Initial Category (2): Unexpected Behaviors. This category encompasses cases where the
behavior of rustc deviates from the expected outcomes defined by the Rust language specification.
These deviations may compromise correctness, user expectations, or language soundness. The
following subcategories are predefined:

• Completeness Issues: rustc erroneously rejects well-formed Rust programs that should
compile successfully according to the Rust specification.

• Soundness Issues: rustc incorrectly accepts ill-formed code that should have been rejected,
allowing it to pass compilation.

• Inconsistent Output Issues: rustc produces results that deviate from the expected program
output. Alternatively, rustc yields inconsistent results across different compilation settings,
despite the input program remaining semantically unchanged.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

411:30 Liu et al.

Final Category (2): Correctness Issues & (3): Miscompilation. In the final taxonomy, we
refined the predefined category of "Unexpected Behaviors" by reorganizing it into two higher-level
categories: "Correctness Issues" and "Miscompilation". The "Correctness Issues" category includes
the predefined subcategories of "Completeness Issues" and "Soundness Issues", which respectively
capture scenarios where rustc rejects valid programs or accepts invalid ones. The newly introduced
"Miscompilation" category covers symptomswhere rustc produces incorrect code despite successful
compilation. This category includes two subcategories: "Inconsistent Output Issues" and a new
subcategory we define as "Safe Rust Causes UB". The latter represents a Rust-specific bug symptom
not observed in most other language compilers. According to Rust’s safety guarantees, code
written entirely in safe Rust should not exhibit UB. However, during the annotation process,
we encountered several issues where developers reported UB triggered by programs that did not
involve any use of unsafe blocks. These cases were also acknowledged by rustc developers as
miscompilations. Thus, we introduced "Safe Rust Causes UB" as a distinct subcategory, thereby
making our classification more comprehensive and aligned with Rust’s unique language semantics.

Initial Category (3): Diagnostic Issues. This category covers bugs in rustc’s diagnostic
system, which helps developers identify and fix issues. We predefine the following subcategories:

• Incorrect Warnings/Errors: rustc emits warnings or error messages that are spurious or
misleading, potentially resulting in unnecessary code modifications or confusion.

• Improper Fix Suggestions: The suggestions or fix hints provided by rustc are irrelevant,
misleading, or ineffective in resolving the actual issue.

Final Category (4): Diagnostic Issues. We did not revise the category of "Diagnostic Issues", as
our labeling process consistently revealed that related issues could be attributed to either incorrect
or misleading error messages, or problematic compiler suggestions. No additional patterns were
observed that would justify a further split or reorganization within this category.

Initial Category (4): Performance Issues. This category includes bugs that degrade the
performance of rustc, without necessarily affecting the correctness of its output. We predefine
the following subcategories:

• Slow: rustc exhibits unusually long compilation times for input programs.
• Hang: rustc enters a non-terminating state (e.g., infinite loop or deadlock), failing to com-
plete compilation without external interruption.

Final Category (5): Misoptimization. In the final taxonomy, we replaced the predefined
category "Performance Issues" with a broader category named "Misoptimization", which encompasses
both incorrect optimizations and performance-related problems. This change was driven by two
main considerations. First, we observed that the number of issues explicitly reporting compilation
slowness or runtime performance degradation was very small. Given their rarity and the inherent
difficulty in detecting or reproducing such issues, we found it unnecessary to maintain a separate
category for them. Second, we identified some issues involving unexpected optimization behaviors.
For example, in some cases, specific optimization flags had no effect, or the generated MIR did not
match the expected optimizations. We classified these cases as "Incorrect Optimization". Because
performance problems often result from missing or ineffective optimizations, we consider both
types as performance issues. Therefore, we merged them into the unified category "Misoptimization",
which better reflects the nature of the underlying compiler defects observed in our study.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

An Empirical Study of Bugs in the rustc Compiler 411:31

References
Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller, and Alexander J Summers. 2020. How do programmers

use unsafe rust? Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–27.
Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2019. Leveraging rust types for modular

specification and verification. Proc. ACM Program. Lang. 3, OOPSLA, Article 147 (oct 2019), 30 pages. https://doi.org/10.
1145/3360573

Langston Barrett. 2023. langston-barrett/tree-splicer: Simple grammar-based test case generator. https://github.com/langston-
barrett/tree-splicer. (Accessed on 12/05/2023).

Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-Petros Drosos, Charalambos Mitropoulos, Dimitris Mitropoulos, and
Diomidis Spinellis. 2021. Well-typed programs can go wrong: A study of typing-related bugs in jvm compilers. Proceedings
of the ACM on Programming Languages 5, OOPSLA (2021), 1–30.

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A survey of
compiler testing. ACM Computing Surveys (CSUR) 53, 1 (2020), 1–36.

Cloudflare. 2023. Cloudflare - The Web Performance & Security Company. https://www.cloudflare.com/. (Accessed on
12/06/2023).

Mohan Cui, Shuran Sun, Hui Xu, and Yangfan Zhou. 2024. Is unsafe an Achilles’ Heel? A Comprehensive Study of Safety
Requirements in Unsafe Rust Programming. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering (Lisbon, Portugal) (ICSE ’24). Association for Computing Machinery, New York, NY, USA, Article 106,
13 pages. https://doi.org/10.1145/3597503.3639136

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Typechecker Using CLP (T). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 482–493. https://doi.org/10.1109/ASE.2015.65

Anthony Di Franco, Hui Guo, and Cindy Rubio-González. 2017. A comprehensive study of real-world numerical bug
characteristics. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE). 509–519.
https://doi.org/10.1109/ASE.2017.8115662

Georgios-Petros Drosos, Thodoris Sotiropoulos, Georgios Alexopoulos, Dimitris Mitropoulos, and Zhendong Su. 2024.
When Your Infrastructure Is a Buggy Program: Understanding Faults in Infrastructure as Code Ecosystems. Proc. ACM
Program. Lang. 8, OOPSLA2, Article 359 (Oct. 2024), 31 pages. https://doi.org/10.1145/3689799

Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust used safely by software developers?. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering. 246–257.

Son Ho and Jonathan Protzenko. 2022. Aeneas: Rust verification by functional translation. Proc. ACM Program. Lang. 6,
ICFP, Article 116 (aug 2022), 31 pages. https://doi.org/10.1145/3547647

Sandra Höltervennhoff, Philip Klostermeyer, Noah Wöhler, Yasemin Acar, and Sascha Fahl. 2023. {“I} wouldn’t want my
unsafe code to run my {pacemaker”}: An Interview Study on the Use, Comprehension, and Perceived Risks of Unsafe
Rust. In 32nd USENIX Security Symposium (USENIX Security 23). 2509–2525.

InfoWorld. 2023. White House urges developers to dump C and C++ | InfoWorld. https://www.infoworld.com/article/
3713203/white-house-urges-developers-to-dump-c-and-c.html. (Accessed on 03/17/2024).

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Understanding and detecting real-world
performance bugs. SIGPLAN Not. 47, 6 (jun 2012), 77–88. https://doi.org/10.1145/2345156.2254075

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2021. Safe systems programming in Rust. Commun.
ACM 64, 4 (2021), 144–152.

Steve Klabnik and Carol Nichols. 2023. The Rust programming language. No Starch Press.
Matthias Krüger. 2020. matthiaskrgr/icemaker: automatially find crashes in the rust compiler & tooling. https://github.com/

matthiaskrgr/icemaker. (Accessed on 12/05/2023).
Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In

International symposium on code generation and optimization, 2004. CGO 2004. IEEE, 75–86.
Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and

Chris Hawblitzel. 2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc. ACM Program. Lang. 7, OOPSLA1,
Article 85 (apr 2023), 30 pages. https://doi.org/10.1145/3586037

Zixi Liu. 2025. An Empirical Study of Bugs in the rustc Compiler. https://doi.org/10.5281/zenodo.16600026
LLVM. 2023. libFuzzer – a library for coverage-guided fuzz testing. — LLVM 18.0.0git documentation. https://llvm.org/docs/

LibFuzzer.html. (Accessed on 12/09/2023).
Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. 2022. RustHornBelt: a semantic foundation

for functional verification of Rust programs with unsafe code. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for
Computing Machinery, New York, NY, USA, 841–856. https://doi.org/10.1145/3519939.3523704

Miri. 2023. rust-lang/miri: An interpreter for Rust’s mid-level intermediate representation. https://github.com/rust-lang/miri.
(Accessed on 12/14/2023).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://github.com/langston-barrett/tree-splicer
https://github.com/langston-barrett/tree-splicer
https://www.cloudflare.com/
https://doi.org/10.1145/3597503.3639136
https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1109/ASE.2017.8115662
https://doi.org/10.1145/3689799
https://doi.org/10.1145/3547647
https://www.infoworld.com/article/3713203/white-house-urges-developers-to-dump-c-and-c.html
https://www.infoworld.com/article/3713203/white-house-urges-developers-to-dump-c-and-c.html
https://doi.org/10.1145/2345156.2254075
https://github.com/matthiaskrgr/icemaker
https://github.com/matthiaskrgr/icemaker
https://doi.org/10.1145/3586037
https://doi.org/10.5281/zenodo.16600026
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/3519939.3523704
https://github.com/rust-lang/miri

411:32 Liu et al.

Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020. Understanding memory and thread safety practices
and issues in real-world Rust programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 763–779.

RedoxOS. 2023. Redox - Your Next(Gen) OS - Redox - Your Next(Gen) OS. https://www.redox-os.org/. (Accessed on
12/06/2023).

David Renshaw. 2019. dwrensha/fuzz-rustc: setup for fuzzing the Rust compiler. https://github.com/dwrensha/fuzz-rustc.
(Accessed on 12/05/2023).

Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2021. An empirical study of bugs in webassembly compilers.
In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 42–54.

Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2022. An empirical study of bugs in webassembly compilers.
In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering (Melbourne, Australia)
(ASE ’21). IEEE Press, 42–54. https://doi.org/10.1109/ASE51524.2021.9678776

Rust. 2023a. Compiletest - Rust Compiler Development Guide. https://rustc-dev-guide.rust-lang.org/tests/compiletest.html.
(Accessed on 12/05/2023).

Rust. 2023b. rust-lang/rust: Empowering everyone to build reliable and efficient software. https://github.com/rust-lang/rust.
(Accessed on 11/29/2023).

Rust. 2023c. What is rustc? - The rustc book. https://doc.rust-lang.org/rustc/what-is-rustc.html. (Accessed on 12/06/2023).
Rust. 2025a. Next-gen trait solving - Rust Compiler Development Guide. https://rustc-dev-guide.rust-lang.org/solve/trait-

solving.html [Online; accessed 2025-03-03].
Rust. 2025b. On Undefined Behavior - High Assurance Rust: Developing Secure and Robust Software. https://highassurance.

rs/chp3/undef.html [Online; accessed 2025-06-21].
Rust. 2025c. Well-formedness checking. https://rust-lang.github.io/chalk/book/clauses/wf.html [Online; accessed 2025-03-

03].
Rust-clippy. 2023. rust-lang/rust-clippy: A bunch of lints to catch common mistakes and improve your Rust code. Book:

https://doc.rust-lang.org/clippy/. https://github.com/rust-lang/rust-clippy. (Accessed on 12/14/2023).
Rust-GCC. 2024. Rust-GCC/gccrs: GCC Front-End for Rust. https://github.com/Rust-GCC/gccrs. (Accessed on 09/07/2024).
rust team. 2025a. Code generation - Rust Compiler Development Guide. https://rustc-dev-guide.rust-lang.org/backend/

codegen.html [Online; accessed 2025-06-20].
rust team. 2025b. Labels rust-lang/rust. https://github.com/rust-lang/rust/labels [Online; accessed 2025-01-19].
rustc-dev guide. 2025. Opaque Types - Rust Compiler Development Guide. https://rustc-dev-guide.rust-lang.org/opaque-

types-type-alias-impl-trait.html [Online; accessed 2025-03-06].
Margrit Schreier. 2012. Qualitative content analysis in practice. (2012).
C.B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. IEEE Transactions on Software

Engineering 25, 4 (1999), 557–572. https://doi.org/10.1109/32.799955
Servo. 2023. Servo, the embeddable, independent, memory-safe, modular, parallel web rendering engine. https://servo.org/.

(Accessed on 12/06/2023).
Mayank Sharma, Pingshi Yu, and Alastair F. Donaldson. 2023. RustSmith: Random Differential Compiler Testing for Rust. In

Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023). Association
for Computing Machinery, New York, NY, USA, 1483–1486. https://doi.org/10.1145/3597926.3604919

Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung, and Xiang Chen. 2021. A comprehensive
study of deep learning compiler bugs. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for
Computing Machinery, New York, NY, USA, 968–980. https://doi.org/10.1145/3468264.3468591

STRATIS. 2023. Stratis Storage. https://stratis-storage.github.io/. (Accessed on 12/06/2023).
Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward understanding compiler bugs in GCC and LLVM. In

Proceedings of the 25th international symposium on software testing and analysis. 294–305.
Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăreanu. 2021. SyRust: automatic testing of Rust libraries with

semantic-aware program synthesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York,
NY, USA, 899–913. https://doi.org/10.1145/3453483.3454084

Yixuan Tang, Zhilei Ren, Weiqiang Kong, and He Jiang. 2020. Compiler testing: a systematic literature analysis. Frontiers of
Computer Science 14 (2020), 1–20.

TiKV. 2023. TiKV is a highly scalable, low latency, and easy to use key-value database. https://tikv.org/. (Accessed on
12/06/2023).

David Tolnay. 2025. syn - crates.io: Rust Package Registry. https://crates.io/crates/syn [Online; accessed 2025-03-03].
Paul C. van Oorschot. 2023. Memory Errors and Memory Safety: A Look at Java and Rust. IEEE Security & Privacy 21, 3

(2023), 62–68. https://doi.org/10.1109/MSEC.2023.3249719

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://www.redox-os.org/
https://github.com/dwrensha/fuzz-rustc
https://doi.org/10.1109/ASE51524.2021.9678776
https://rustc-dev-guide.rust-lang.org/tests/compiletest.html
https://github.com/rust-lang/rust
https://doc.rust-lang.org/rustc/what-is-rustc.html
https://rustc-dev-guide.rust-lang.org/solve/trait-solving.html
https://rustc-dev-guide.rust-lang.org/solve/trait-solving.html
https://highassurance.rs/chp3/undef.html
https://highassurance.rs/chp3/undef.html
https://rust-lang.github.io/chalk/book/clauses/wf.html
https://github.com/rust-lang/rust-clippy
https://github.com/Rust-GCC/gccrs
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://rustc-dev-guide.rust-lang.org/backend/codegen.html
https://github.com/rust-lang/rust/labels
https://rustc-dev-guide.rust-lang.org/opaque-types-type-alias-impl-trait.html
https://rustc-dev-guide.rust-lang.org/opaque-types-type-alias-impl-trait.html
https://doi.org/10.1109/32.799955
https://servo.org/
https://doi.org/10.1145/3597926.3604919
https://doi.org/10.1145/3468264.3468591
https://stratis-storage.github.io/
https://doi.org/10.1145/3453483.3454084
https://tikv.org/
https://crates.io/crates/syn
https://doi.org/10.1109/MSEC.2023.3249719

An Empirical Study of Bugs in the rustc Compiler 411:33

Qian Wang and Ralf Jung. 2024. Rustlantis: Randomized Differential Testing of the Rust Compiler. Proc. ACM Program.
Lang. 8, OOPSLA2, Article 340 (Oct. 2024), 27 pages. https://doi.org/10.1145/3689780

Wikimedia. 2004. Undefined behavior - Wikipedia. https://en.wikipedia.org/wiki/Undefined_behavior [Online; accessed
2025-03-23].

Fabian Wolff, Aurel Bílý, Christoph Matheja, Peter Müller, and Alexander J. Summers. 2021. Modular specification and
verification of closures in Rust. Proc. ACM Program. Lang. 5, OOPSLA, Article 145 (oct 2021), 29 pages. https://doi.org/
10.1145/3485522

Xinmeng Xia, Yang Feng, and Qingkai Shi. 2023. Understanding Bugs in Rust Compilers. In 2023 IEEE 23rd International
Conference on Software Quality, Reliability, and Security (QRS). 138–149. https://doi.org/10.1109/QRS60937.2023.00023

Xiaoyuan Xie, Haolin Yang, Qiang He, and Lin Chen. 2021. Towards Understanding Tool-chain Bugs in the LLVM Compiler
Infrastructure. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
1–11.

Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang Pu, Jifeng He, and Zhendong Su. 2023. An
Empirical Study of Functional Bugs in Android Apps. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for Computing Machinery, New York, NY,
USA, 1319–1331. https://doi.org/10.1145/3597926.3598138

Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael R Lyu. 2021. Memory-safety challenge considered
solved? An in-depth study with all Rust CVEs. ACM Transactions on Software Engineering and Methodology (TOSEM) 31,
1 (2021), 1–25.

Wenzhang Yang, Cuifeng Gao, Xiaoyuan Liu, Yuekang Li, and Yinxing Xue. 2024. Rust-twins: Automatic Rust Compiler
Testing through Program Mutation and Dual Macros Generation. In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering (Sacramento, CA, USA) (ASE ’24). Association for Computing Machinery,
New York, NY, USA, 631–642. https://doi.org/10.1145/3691620.3695059

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In Proceedings
of the 32nd ACM SIGPLAN conference on Programming language design and implementation. 283–294.

Yuchen Zhang, Ashish Kundu, Georgios Portokalidis, and Jun Xu. 2023. On the Dual Nature of Necessity in Use of
Rust Unsafe Code (ESEC/FSE 2023). Association for Computing Machinery, New York, NY, USA, 2032–2037. https:
//doi.org/10.1145/3611643.3613878

Xiaoye Zheng, Zhiyuan Wan, Yun Zhang, Rui Chang, and David Lo. 2023. A Closer Look at the Security Risks in the Rust
Ecosystem. ACM Trans. Softw. Eng. Methodol. 33, 2, Article 34 (dec 2023), 30 pages. https://doi.org/10.1145/3624738

Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. 2021. An empirical study of optimization bugs in GCC and LLVM.
Journal of Systems and Software 174 (2021), 110884.

Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song. 2022. Learning and programming challenges of rust: A
mixed-methods study. In Proceedings of the 44th International Conference on Software Engineering. 1269–1281.

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 411. Publication date: October 2025.

https://doi.org/10.1145/3689780
https://en.wikipedia.org/wiki/Undefined_behavior
https://doi.org/10.1145/3485522
https://doi.org/10.1145/3485522
https://doi.org/10.1109/QRS60937.2023.00023
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/3691620.3695059
https://doi.org/10.1145/3611643.3613878
https://doi.org/10.1145/3611643.3613878
https://doi.org/10.1145/3624738

	Abstract
	1 Introduction
	2 Study Methodology
	2.1 Collecting Bugs and Fixes
	2.2 Analyzing Bugs

	3 RQ1: Bug Causes
	3.1 Type System Errors
	3.2 Ownership & Lifetime Errors
	3.3 MIR Optimization Errors
	3.4 General Errors
	3.5 Bug Prone Compilation Stages

	4 RQ2: Bug Symptoms
	4.1 Crash
	4.2 Correctness Issues
	4.3 Miscompilation
	4.4 Diagnostic Issues
	4.5 Misoptimization

	5 RQ3: Test Case Characteristics
	6 RQ4: Status of Existing Techniques
	7 Implications and Discussion
	7.1 Findings
	7.2 Actionable Suggestions and Takeaways
	7.3 Threats to Validity

	8 Related Work
	8.1 Understanding Compiler Bugs
	8.2 Empirical Studies of Rust Programs and Testing Approaches

	9 Conclusion
	Acknowledgments
	A Coding Frame for Issue Labeling
	A.1 Bug Prone Compilation Stages
	A.2 Bug Symptoms

	References

