
Pinpoint: Fast and Precise Sparse Value Flow Analysis
for Million Lines of Code

Qingkai Shi
Hong Kong University of Science and

Technology, China
qshiaa@cse.ust.hk

Xiao Xiao
Sourcebrella Inc

China
xx@sbrella.com

Rongxin Wu
Hong Kong University of Science and

Technology, China
wurongxin@cse.ust.hk

Jinguo Zhou
Sourcebrella Inc

China
jinguo@sbrella.com

Gang Fan
Hong Kong University of Science and

Technology, China
gfan@cse.ust.hk

Charles Zhang
Hong Kong University of Science and

Technology, China
charlesz@cse.ust.hk

Abstract

When dealing with millions of lines of code, we still cannot
have the cake and eat it: sparse value-flow analysis is pow-
erful in checking source-sink problems, but existing work
cannot escape from the łpointer trapž ś a precise points-to
analysis limits its scalability and an imprecise one seriously
undermines its precision. We present Pinpoint, a holistic ap-
proach that decomposes the cost of high-precision points-to
analysis by precisely discovering local data dependence and
delaying the expensive inter-procedural analysis through
memorization. Such memorization enables the on-demand
slicing of only the necessary inter-procedural data depen-
dence and path feasibility queries, which are then solved
by a costly SMT solver. Experiments show that Pinpoint
can check programs such as MySQL (around 2 million lines
of code) within 1.5 hours. The overall false positive rate
is also very low (14.3% - 23.6%). Pinpoint has discovered
over forty real bugs in mature and extensively checked open
source systems. And the implementation of Pinpoint and
all experimental results are freely available.

CCS Concepts · Software and its engineering → Soft-
ware verification and validation;

Keywords Sparse program analysis, error detection, path-
sensitive analysis.

ACM Reference Format:

Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan,

and Charles Zhang. 2018. Pinpoint: Fast and Precise Sparse Value

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00

https://doi.org/10.1145/3192366.3192418

Flow Analysis for Million Lines of Code. In Proceedings of 39th

ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’18). ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3192366.3192418

1 Introduction

The analysis of value flows underpins many recent tech-
niques in statically finding bugs such as null pointer defer-
ence [3, 29, 30, 53], memory leak [9, 45, 47, 52], use-after-
free and double-free [9, 16, 21]. Unfortunately, despite this
tremendous progress, we still observe the difficulty of ap-
plying value-flow analysis at industrial scale ś finding bugs
hidden behind sophisticated pointer operations, deep calling
contexts, and complex path conditions with low false posi-
tive rates, while sieving through millions of lines of code in
just a few hours.

Techniques following the design of conventional data-flow
analysis and symbolic execution, such as the IFDS frame-
work [39], Saturn [53], and Calysto [3], propagate data-
flow facts to all program points following control-flow paths.
These łdensež analyses are known to have performance prob-
lems [9, 38, 47, 49]. For example, a recent report [3] observes
that it takes 6 to 11 hours for Saturn [53] and Calysto [3] to
check only one property (null pointer dereference, a typical
source-sink problem) for programs of 685 KLoC.
Sparse value-flow analysis (SVFA) [9, 35, 43, 45, 47] miti-

gates this performance problem by tracking the flow of val-
ues via data dependence on sparse value-flow graphs (SVFG),
thus, eliminating the unnecessary value propagation. These
techniques are referred to as the łlayeredž approaches due to
the need of discovering data dependence as a priori through
an independent points-to analysis. However, since a highly
precise points-to analysis is difficult to scale to millions of
lines of code [28], these łlayeredž SVFA techniques often give
up the flow- or the context-sensitivity in the points-to analy-
sis and avoid using SMT solvers to determine path-feasibility,
such as in the cases of Fastcheck [9] and Saber [47]. Choos-
ing a scalable but imprecise points-to analysis blows up the
SVFG with false edges, overloads SMT solvers, and gener-
ates many false warnings, which we refer to as the łpointer

693

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3192366.3192418

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang

trapž. In practice, we observe that developers have very low
tolerance to such compromises because forsaking any of the
following goals ś scalability, precision, the capability of find-
ing bugs hidden behind deep calling contexts and intensive
pointer operations ś creates major obstacles of adoption.

In this work, we make no claims of breakthroughs to the
innate scalability limitations of points-to analysis and solv-
ing path conditions using SMT solvers. However, we note
that the conventional łlayeredž approaches can significantly
exacerbate the impact of these limitations on the perceived
performance of SVFA, for which we are able to address. Our
key insight is that an independent points-to analysis is un-
aware of the high-level properties being checked and, thus,
causes a great deal of redundancy in computing pointer rela-
tions.
Let us illustrate this insight using the example in Fig-

ure 1(a), which contains an inter-procedural use-after-free
bug, triggered when the łfreedž pointer c in the function
bar propagates to the dereference site at Line 9 of the func-
tion foo. Following a representative łlayeredž approach by
Cherem et al [9], we first build a global SVFG labeled with
path conditions. To determine the value flow incurred by
the expression f = ∗ptr (Line 8 in function foo), a points-to
analysis, whether exhaustive or demand-driven, is needed
to discover that the pointer ptr can point to any of the five
variables in the set {a,b, c,d, e}, resolving the corresponding
calling contexts of bar and qux, as well as checking the satis-
fiability of the five path conditions for the points-to relations.
After building the SVFG, to find the use-after-free bug, we
need to traverse the SVFG starting from the vertex free(c),
generating a value-flowpath, ⟨free(c), c, f , print(∗f)⟩, that
may trigger the bug with the associated path condition:
θ1 ∧ θ2 ∧ θ3.

To summarize, in the above example, the łlayeredž conven-
tional approach computes over five inter-procedural points-
to relations, two calling contexts and six path conditions.
However, if we take a łholisticž view across the layers of
SVFA: points-to analysis, SVFG construction, and bug de-
tection, it is easy to discover that, in this example, only the
points-to relation between ptr and c is needed, one calling
context between bar and foo required, and one path condi-
tion, θ1 ∧ θ2 ∧ θ3, to be solved.
In this work, we advocate a novel łholisticž approach to

SVFA, in which, instead of hiding points-to analyses behind
points-to query interfaces, we create an analysis slice, in-
cluding points-to queries, value flows, and path conditions,
that is just sufficient for the checked properties. We present
Pinpoint, a tool that decomposes the cost of high-precision
points-to analysis by precisely discovering local data depen-
dence first and delaying the expensive inter-procedural data
dependence analysis through symbolically memorizing the
non-local data dependence relations and path conditions.
At the bug detection step, only the relevant parts of these

mementos are further łcarved outž in a demand-driven way
to go for a high precision.
The local analysis in Pinpoint is cheap due to a light-

weight points-to analysis that identifies infeasible paths with-
out an expensive SMT solver. In addition, to enable the inter-
procedural and context-sensitive analysis, we only clone the
memory access-path expressions that are rooted at a func-
tion parameter and incur certain side-effects. These clones
serve as the context-sensitive łconduitsž to allow values of
interests flow in and out of the function scope on demand
when answering value-flow queries. Summaries and path
conditions are not cloned but memorized instead by our
intra-procedural SVFG called the symbolic expression graph
(SEG). Program properties are then checked by stitching to-
gether and traversing relevant SEGs. Along the way, data
dependence relations hidden behind deep calling contexts, as
well as the feasibility of the vulnerable paths, are determined
altogether at the SMT solving stage.

Like many of the bug finding techniques [3, 9, 35, 47, 53],
Pinpoint is soundy [34]. However, it is comparatively much
more scalable without sacrificing much precision and recall.
We have used Pinpoint to check critical safety properties,
such as use-after-free, double-free, and taint issues, on a
large set of popular open-source C/C++ systems. Although
these systems have been checked by numerous free and com-
mercial tools, we are still able to report and confirm over
40 previously-unknown use-after-free and double-free vul-
nerabilities, some of which are so serious and even assigned
with CVE IDs. We show that Pinpoint has good scalabil-
ity as it can build high precision SVFG up to >400X faster
with only 1/4 memory space, compared to the state of the
art. In addition, it is able to complete the inter-procedurally
path-sensitive checking of a 2 MLoC code-base in 1.5 hours,
fastest in terms of scale and precision, to the best of our
knowledge.

In summary, this paper makes the following contributions:

• An efficient approach to building precise data depen-
dence without an expensive global points-to analysis.
• A new type of SVFG, i.e., symbolic expression graph,
which enables efficient path-sensitive analysis.
• A demand-driven and compositional approach to de-
tecting bugs that can be modeled as value-flow paths.
• An implementation and an experiment that evaluates
Pinpoint’s scalability, precision, and recall.

2 Pinpoint in a Nutshell

To find the use-after-free vulnerability in Figure 1(a), we
begin with an intra-procedural points-to analysis to analyze
each function in a bottom-up manner, where we discover
data dependence and function side-effects.1 We then perform

1Side-effects here has a broader meaning, including both referencing and

modifying non-local memory locations in a function.

694

Pinpoint: Fast and Precise Sparse Value Flow Analysis... PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

1. void foo(int *a) {

2. int **ptr = malloc();

3. *ptr = a;

4. if (𝜃1)

5. bar(ptr);

6. else

7. qux(ptr);

8. int *f = *ptr;

9. if (𝜃2) print(*f);

10. }

void bar(int **q) {

int *c = ...;

if (bool 𝜃3 = (*q ≠ 0)) {

*q = c; free(c);

} else {if (bool 𝜃4=...) *q = b; }

}

void qux(int **r) {

if (𝜃5) *r = d;

else *r = e;

}

f

print(*f)a

b

c

e

d

free(c)

𝜃1∧¬𝜃3∧¬𝜃4 ¬𝜃1∧¬𝜃5

𝜃1∧¬𝜃3∧ 𝜃4 ¬𝜃1∧𝜃5

𝜃1∧𝜃3

𝜃3

𝜃2foo

bar
qux

⟨free(c), c, f, print(*f)⟩

𝜃1∧𝜃3∧𝜃2

Independent Global

Points-to Analysis
Global SVFG

Inter-procedural

Bug Detection

㸦a㸧 㸦b㸧

Figure 1. The łlayeredž design of SVFA. It builds five inter-procedural data-dependence relations between each in {a,b, c,d, e}
and f . However, only the dependence between c and f is related to the vulnerability.

1. void foo(int *a) {

2. int **ptr = malloc()

3. *ptr = a;

4. if (𝜃1) {

5. int *K = *ptr;

6. int *L = bar(ptr, K);

7. *ptr = L;

8. } else {

9. int *M = qux(ptr);

10. *ptr = M;

11. }

12. int *f = *ptr;

13. if (𝜃2) print(*f);

14. }

int* bar(int **q, int *X) {

*q = X;

int *c = ...;

if (bool 𝜃3 = (*q ≠ 0)) {

*q = c; free(c);

} else { if (bool 𝜃4=...) *q = b; }

int* Y = *q;

return Y;

}

int* qux(int **r) {

…

int* Z = *r;

return Z;

}

a

K

X

c

YL

f

print(*f)

foo bar

bar(p, K)

ret YM

b

free(c)

foo

bar
qux

⟨free(c), c, Y, ret Y,

L, f, print(*f)⟩

𝜃1∧𝜃3∧𝜃2

Inter-procedural

Bug Detection

Local SEGs

(conditions omitted)

Local

Points-to Analysis

㸦a㸧 㸦b㸧

Figure 2. Pinpoint’s łholisticž design. The design is łholisticž because, instead of using an independent global points-to
analysis to find data dependence, we spread it across all stages of bug finding.

a semantic-preserving transformation of each function to ex-
plicitly expose side-effects on its interface, i.e., its parameters
and return values.
For instance, as illustrated in Figure 2(a), our points-to

analysis identifies the side-effect incurred by the formal pa-
rameter q of the function bar: a load statement ∗q , 0 and
two store statements ∗q = c and ∗q = b. We transform the
function bar so that the value stored in the non-local mem-
ory, ∗q, is explicitly passed in via an extra formal parameter
X and returned via an extra return value Y . To reflect the
change of the signature of the function bar, its call site is
transformed correspondingly as shown in Lines 5-7. The
transformation of the function qux is similar. These transfor-
mations in the function foo set the stage for the same local
points-to analysis in foo.
Based on both the local points-to results and the trans-

formed program, we build our local SVFG for each function,
referred to as the symbolic expression graph (SEG), as shown
in Figure 2(b). For example, to build data dependence for the
variable f at Line 12, we first obtain ptr ’s local points-to set,
{(L,θ1), (M,¬θ1)}.

2 Note that we do not invoke SMT solvers

2In condition θ1, ptr points-to L, otherwise, it points-to M .

on path conditions θ1 and ¬θ1 at this point but store them
compactly in SEG, detailed later in Section 3.

To detect the use-after-free vulnerability, we traverse the
SEG in Figure 2(b) and obtain a complete value-flow path,
⟨free(c), c,Y , return Y ,L, f , print(∗f)⟩, with a conjunction
of all path conditions. Its feasibility is finally checked by an
SMT solver. Notice that this path automatically prunes away
the unrelated points-to target,M , together with its associated
path condition, ¬θ1. Moreover, the path condition, θ1, of the
other target, L, is checked as part of the overall path condition
of the vulnerability. To sum up, Pinpoint only computes
one inter-procedural data dependence relation and solves
one path condition.

In the next section, we formally present the function trans-
formation rules and the construction algorithms for SEG. We
will also explain how SEG facilitates the generation of func-
tion summaries, which enable fast inter-procedure analysis
for bug detection.

3 The Holistic Design in Pinpoint

The key design goal of Pinpoint is to dodge the łpointer
trapsž incurred by the łlayeredž design in conventional SV-
FAs [9, 35, 43, 45, 47]. In this section, we first explain how

695

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang

we decompose the points-to analysis so that the cheap data
dependence is built first. We then define the symbolic expres-
sion graph (SEG) and explain SEG enables the demand-driven
checking of properties, which simultaneously resolves the
inter-procedural, context- and path-sensitive points-to (or
data-dependence) relations.
Language. To present our approach formally, we use the

following simple call-by-value language similar to the previ-
ous work [17, 18]:

Program P := F +

Function F := f (v1,v2, · · ·) { S ; }

Statement S := v1 ← v2 | v ← ϕ (v1,v2, · · ·)

| v1 ← v2 binop v3 | v1 ← unop v3

| v1 ← ∗(v2,k ∈ N
+) | ∗ (v1,k ∈ N

+) ← v2

| if (v) then S1; else S2 | return v

| r ← call f (v1,v2, · · ·) | S1; S2

binop := + | − | ∧ | ∨ | > | = | , | · · ·

unop := − | ¬ | · · ·

Statements in this language include common assignments, ϕ-
assignments (assuming the SSA form), binary and unary op-
erations, loads, stores, branches, returns, calls, and sequenc-
ing. With no loss of generality, we assume each function
has only one return statement. We name the variable r at a
call statement the łreceiverž of the callee’s return value. The
operational semantics of most statements are standard and
omitted. Specially, in a load/store statement, ∗(v,k ∈ N+)
meansv is dereferenced k times, where k is a positive integer.
We write ∗v as a shorthand when k = 1.

3.1 Decomposing the Cost of Data Dependence
Analysis

Building precise SVFGs requires to resolve data dependence
through expensive context- and path-sensitive points-to anal-
ysis. Our solution is to perform a łquasiž path-sensitive and
intra-procedural points-to analysis to resolve both the local
data dependence and the function side-effects (a.k.a. MOD-
/REF sets [3, 53]). Through a connector model, we compute
the inter-procedural data dependence path- and context-
sensitively in a demand-driven way, which significantly alle-
viates the cost of path and context explosion.

3.1.1 A Quasi Path-Sensitive Points-to Analysis

We first perform a local points-to analysis for each function
in a łquasiž path-sensitive manner, without expensive SMT
solvers, but is able to prune most points-to relations that
involve infeasible paths. The conditions of feasible paths
are recorded to determine the feasibility of a value-flow
path that may lead to a bug at the bug finding stage. In
our experiment, we observed that about 70% of the path
conditions constructed during the points-to analysis are sat-
isfiable. Therefore, if we employ a full SMT solver at this
local stage, the constraints of feasible points-to relations will

be solved again at the bug finding stage, causing a great deal
of redundancy, as illustrated by our motivating example.

Our solution is to introduce a linear-time constraint solver
to filter out the łeasyž unsatisfiable path conditions, i.e., the
ones including apparent contradictions such as a ∧ ¬a. This
is because, based on our observations, more than 90% of the
unsatisfiable path conditions are easy constraints. The linear
time constraint solver works in the way of continuously
collecting positive and negative atomic constraints,3 denoted
by P (C) and N (C), respectively, during the construction of a
constraint C . If there exists an atomic constraint a ∈ P (C) ∩
N (C), it means C contains a ∧ ¬a and, thus, is unsatisfiable.
P (C) and N (C) are built using the following rules:

C = a ⇒P (C) = {a }, N (C) = ∅

C = ¬C1 ⇒P (C) = N (C1), N (C) = P (C1)

C = C1 ∧C2 ⇒P (C) = P (C1) ∪ P (C2), N (C) = N (C1) ∪ N (C2)

C = C1 ∨C2 ⇒P (C) = P (C1) ∩ P (C2), N (C) = N (C1) ∩ N (C2)

Because the time complexity of the solver is linear to the
number of atomic constraints, we pay a very low price to
replace 90% of constraints that would otherwise require a
full SMT solver. The path conditions found feasible by our
linear time solver will be compactly encoded in our new type
of SVFG, i.e., SEG, introduced later in Section 3.2.

3.1.2 A Connector Model for Inter-procedural Data
Dependence Analysis

The outcome of the points-to analysis is used to build the
local data dependence obtained through pointer operations,
e.g., connecting the load statement p ← ∗q to the store
statement ∗u ← w if ∗q and ∗u are aliased. However, q and u
could point-to non-local memory locations passed in by func-
tion invocations. Conventional summary-based approaches
record the load and store statements that access non-local
memory locations as the side-effect or the MOD/REF sum-
mary [3, 53], which is then cloned and instantiated at every
call site of the summarized function in the upper-level callers.
Due to a large number of the load and store statements in
programs, the size of the side-effect summary can quickly
explode and become a significant obstacle to scalability [1].

We noticed that the IFDS/IDE approaches solve this prob-
lem much more efficiently [39], in which the summary edges
are built after analyzing each function, transferring the input
data flow facts to the output without re-analyzing the func-
tion. These input-to-output fast tracks are used on-demand to
the relevant data-flow problems and, therefore, avoid blindly
inlining the unused data flow results to the callers. This idea
inspires us to build the łconnectorsž for representing the
input and output side-effects for each function.
For example, in Figure 2, the circles labeled X and Y are

the input and output connectors for the function bar. Each

3 An atomic constraint is a bool-type expression without logic operators

∧, ∨, and ¬. For example, x = y + 1 and z are two atomic constraints in

(x = y + 1) ∧ ¬z .

696

Pinpoint: Fast and Precise Sparse Value Flow Analysis... PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

input or output connector represents a memory location
read from or write to via some load or store statements. At
a call site, we build the call-site connectors, which work as
actual parameters and return-value receivers. For example,
the circles K and L are the call-site connectors for the call
statement at Line 6. Then we can connect K to X and L to Y
path- and context-sensitively if they are involved in building
the inter-procedural data dependence. As described later
in Section 3.3, this connector model is sufficient to run a
standard value-flow analysis for checking the source-sink
properties.
In Pinpoint, the input and output connectors are imple-

mented by two kinds of auxiliary variables: the Aux Formal
Parameter and the Aux Return Value.

Definition 3.1. An Aux formal parameter is a local vari-
able that stands for a non-local memory location referenced
through a pointer expression ∗(p,k ∈ N+), where p is a for-
mal parameter. An Aux return value is defined similarly
but the non-local memory location is modified.

Figure 3 defines the rules for inserting the auxiliary vari-
ables to represent the input and output connectors for func-
tions and call sites. In addition to the connectors, we also
insert the load and store statements to model the relations
between an auxiliary variable and corresponding actual or
formal parameters, just as illustrated in Figure 2.

Summary. In summary, the quasi path-sensitive points-
to analysis and the connector model enable a holistic design:
the points-to analysis is aware of its subsequent clients, in-
cluding both the construction of SVFG and the subsequent
analysis. Thus, the expensive context- and path-sensitive
computations in the points-to analysis are delayed until the
bug-finding phase. This holistic result cannot be achieved
by an independent points-to analysis, whether exhaustive or
demand-driven, in the conventional łlayeredž design. This is
because, being unaware of the properties being checked, an
independent points-to analysis always performs the expen-
sive path- and context-sensitive computations for building
the inter-procedural data dependence, which will be com-
puted again in the bug detection phase.

3.2 Symbolic Expression Graph

Our analysis is based on a new type of SVFG, the symbolic
expression graph (SEG), which enables the efficient and fully
path-sensitive analysis through the following features:

1. It compactly and precisely encodes all the conditional
and unconditional data dependence, as well as the
control dependence (Section 3.2.1);

2. It enables the convenient query of the łefficient path
conditions [43]ž to provide the full support of path-
sensitive analysis (Section 3.2.2);

3. It is separately built for each function, not only saving
time costs, as described in Section 3.1, but also enabling
the efficient compositional analysis (Section 3.3).

▶ f (v1,v2, · · ·){· · · ; return v0; }

Fi is an Aux formal parameter of f

Fi = ∗(vj ,k) at the beginning of f (j > 0)

Rp is an Aux return value of f

Rp = ∗(vq , r) at the end of f (q ≥ 0)

f (v1,v2, · · · , F1, F2, · · ·) {

∗(vj ,k) ← Fi ; /* for all (i, j,k). */

· · · ;

Rp ← ∗(vq , r); /* for all (p,q, r). */

return {v0,R1,R2, · · · };

}

(a)

▶ u0 ← call f (u1,u2, · · ·)

f (v1,v2, · · · , F1, F2, · · ·){· · · ; return {v0,R1,R2, · · · }; }

Fi = ∗(vj ,k) (j > 0); Rp = ∗(vq , r) (q ≥ 0)

Ai ← ∗(uj ,k); /* for all (i, j,k). */

{u0,C1,C2, · · · } ← call f (u1,u2, · · · ,A1,A2, · · ·);

∗(uq , r) ← Cp ; /* for all (p,q, r). */

(b)

Figure 3. Transformation rules. The code starting with ▶
is the target to transform and the result of each rule is the
transformation result. (a) Transforming a function by in-
serting Aux formal parameters and Aux return values. (b)
Transforming a call statement according to the signature
change of the callee.

3.2.1 Definition

Definition 3.2. The symbolic expression graph (SEG) of
a function consists of two sub-graphs, i.e., Gd = (V ∪

O, Ed ,Ld) and Gc = (V, Ec ,Lc), describing the data de-
pendence and the control dependence, respectively:

• V is a set of vertices, each of which is denoted byv@s ,
meaning the variable v defined or used at a statement
s . If v is defined at s , we write v@s as v for short,
because v is defined exactly once in SSA form and the
abbreviation will not cause ambiguity.Vb ⊆ V is the
set of all boolean variables inV . O is a set of binary
or unary operator vertices, each of which represents a
symbolic expression.
• Ed ⊆ (V∪O)× (V∪O) is a set of directed edges, each
of which represents a data dependence relation. The
labeling function, Ld : Ed 7→ {true} ∪ Vb , represents
the condition on which a data dependence relation
holds. Specially, a directed edge (v1@s1,o) ∈ V ×O ⊆

Ed , labeled by true, means the variable v1 defined at
the statement s1 is used as an operand of the operator
o. A directed edge (o,v1@s1) ∈ O ×V ⊆ Ed , labeled
by true, means the result of the operator o defines the
variable v1 at the statement s1.
• Ec ⊆ V ×Vb is a set of directed edges, each of which
represents a control dependence relation. The labeling

697

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang

X

c

Y

Y@return Y

b

c@free(c)

≠

0

𝜃3

true

𝜃3

n

m

𝜃4

∧

¬ ¬∧ m

n

q q@*q = bq@*q = c

true
true false

Figure 4. The complete SEG of function bar in Figure 2.
Solid edges represent data dependence. The label true for
unconditional data dependence is omitted. Dashed edges
represent control dependence.

function, Lc : Ec 7→ {true, false}, implies that only if
v2@s2 = Lc ((v1@s1,v2@s2)), v1@s1 is reachable.

Following Definition 3.2, we build the SEG for each func-
tion. As an example, the SEG of the function bar in Figure 2
is shown in Figure 4.

In SEG, the definition and the use of all variables, as well
as operators, are modeled as vertices, which are similar to
those in the conventional approaches [9, 45, 47]. Vertices
for operators are used to represent symbolic expressions, as
illustrated in Example 3.3. These operator vertices enable
us to efficiently query symbolic expressions (e.g., a = b + c)
instead of simple def-use relations (e.g., b and c are used to
define a). Thus, they can help construct path conditions.

Example 3.3. As shown in Figure 4, the expression łX , 0ž
is explicitly presented by an operator vertex ł,ž and two
other vertices standing for its operands, i.e., łX ž and ł0ž.

Following the previous work [22], each directed edge in
SEG represents either a data dependence relation or a control
dependence relation, labeled with the condition on which
the dependence holds. The data dependence concealed by
pointer operations are collected by the points-to analysis.
For each ϕ-assignment, v ← ϕ (v1,v2, · · ·), the condition
for selecting vi is known as the gated function, which can
be computed in almost linear time [48]. Example 3.4 shows
two concrete examples for unconditional and conditional
data dependence in SEG, respectively. Control dependence
represents the branch conditions on which a statement is
reachable [22]. The control dependence of a statement is
in the form v or ¬v where v is a branch-condition variable.
Example 3.5 shows a concrete example of control dependence
in SEG.

Example 3.4. In Figure 4, the data dependence edge (q, ∗q =
b) does not have any label, because the dependence is uncon-
ditional (∗q = b always depends on q). The data dependence
edge (b,Y) is labeledm, because the dependence is condi-
tional:m ⇒ Y = b. According to the pointer analysis,m is

equal to ¬θ3 ∧ θ4, which is encoded in the graph using the
same method described in Example 3.3.

Example 3.5. In Figure 4, the control dependence of the
statement ∗q = b is θ4 and, thus, there is an Lc -labeled
edge from the statement to θ4 (labeled true). In addition, the
control dependence of the statement defining θ4 is ¬θ3 and,
thus, there is an Lc -labeled edge from θ4 to θ3 (labeled false).

3.2.2 Querying łEfficient Path Conditionsž on SEG

The design of SEG enables us to conveniently query the
łefficient path condition [43]ž of a value-flow path, which is
much more succinct than those computed according to the
definition of path condition [31]. Intuitively, an efficient path
condition only contains the necessary data dependence and
control dependence so that the value-flow path is feasible at
runtime. The following is an example.

Example 3.6. Based on the SEG in Figure 4, the łefficient
path conditionž on which the statement łreturn Y ž is reach-
able is true, because there are no control-dependence edges
outgoing from the vertex Y@return Y . It does not contain
any unnecessary branch-condition variables like θ3 and θ4. In
comparison, if we follow the canonical definition [31] to com-
pute the path condition of the same statement, it will be the
disjunction of the path conditions of all paths from the entry
to the exit of the function, i.e., θ3 ∨ (¬θ3 ∧ θ4) ∨ (¬θ3 ∧¬θ4),
which is much more verbose and inefficient.

Given a value-flow path, π=⟨v1@s1, · · · ,vn@sn⟩, in Gd ,
the basic idea of computing the łefficient path conditionž is
to conjunct the data dependence and control dependence
associated with this path. To be clear, for a given vertex,
v@s , in SEG, we introduce two functions, DD(v@s) (see
Example 3.7) and CD(v@s) (see Example 3.8), to compute
the constraints that describe the data dependence and the
control dependence, respectively. The path condition of π
can be computed as following:

PC(π) =
∧

i=1· · ·n

CD(vi@si) ∧
∧

i=2· · ·n

(vi−1@si−1 = vi@si)

∧
∧

i=2· · ·n

Ld ((vi−1@si−1,vi@si))

∧
∧

i=2· · ·n

DD(Ld ((vi−1@si−1,vi@si)))

(1)

As shown in the above equation, a path condition includes
following parts: (1) CD(vi@si) represents the condition on
which si is reachable at runtime; (2) vi−1@si−1 = vi@si
describes the fact that the value stored in vi−1@si−1 flows
to vi@si ; (3) the remaining part represents the condition on
which the value flow from vi−1@si−1 to vi@si is feasible.

Example 3.7. Assume we are computing the data depen-
dence of Y shown in Figure 4. DD(Y) will result in the con-
straint: (n ⇒ Y = X) ∧ (m ⇒ Y = b) ∧ (θ3 ⇒ Y = c) ∧

DD(n) ∧ DD(X) ∧ DD(m) ∧ DD(b) ∧ DD(θ3) ∧ DD(c). This

698

Pinpoint: Fast and Precise Sparse Value Flow Analysis... PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

1. int* foo(int* a, int* c) {

2. int *b = a;

3. free(b);

4.

5. if (bool t = test(c))

6. output(*c, *a);

7. return c;

8. }

9. bool test (int *e) {

10. bool f = (e != 0);

11. return f;

12. }

a

a@s6 t

c@s5

f

e 0

true

①
②

③
c

① t@s5=f@s11 ② DD(f@s11)

i.e., f@s11=(e@s9 ≠0)
∅

{e}

③ e@s9=c@s5∧DD(c@s5) ∅
{a}

i.e., e@s9=c@s5∧c@s5=c@s1

PC(⟨a@s1, a@s6⟩) =PC(⟨a@s1, a@s6⟩) ∧①∧②∧③{t}∅

{a} {a}

≠

Figure 5. An example to illustrate our inter-procedural anal-
ysis. We use si to stand for the statement at Line i .

is because the sources of incoming edge of Y are X , b, and c ,
labeled by n,m, and θ3, respectively. Also, we should recur-
sively compute the data dependence of n, X ,m, b, θ3, and c .

Example 3.8. To compute the control dependence of q@ ∗
q = b, shown in Figure 4, CD(q@ ∗ q = b) results in the
constraint: θ4 ∧¬θ3∧ DD(θ4) ∧ DD(θ3). This is because there
is a true-labeled control-dependence edge from the vertex to
θ4 and a false-labeled control-dependence edge from the θ4 to
θ3. Also, we should recursively compute the data dependence
of θ3 and θ4.

3.3 Global Value Flow Analysis for Vulnerability
Detection

The inter-procedural analysis in Pinpoint addresses two
problems to achieve precision and efficiency. The first is
how to achieve path- and context-sensitivity when stitching
value flows from different functions. The other is how to
reuse analysis results to avoid repeated computation, thereby
improving efficiency.

3.3.1 Demand-Driven Path- and Context-Sensitive
Value Flow Analysis

We now explain how to perform path- and context-sensitive
SVFA in a demand-driven way.

(1) Achieving inter-procedural path-sensitivity. To achieve
inter-procedural path-sensitivity, the key is to compute the
path condition of a global value-flow path, for which we
need to address two problems. First, given a local value-flow
path π in a function, the afore-defined PC(π) (Equation (1)
in Section 3.2.2) only computes the path condition based on
the function’s local SEG. Thus, the resulting condition loses
the constraints from both of its callers and callees, which we
should be able to recover. Second, we also should be able to
compute the path condition of any global value-flow path.
To explicitly describe what is lost in a formula like PC(·),

we rewrite it as PC(·)PR where P and R are the sets of function

parameters and return-value receivers, of which the con-
straints are lost, respectively. The following is an example
to illustrate P and R.

Example 3.9. In Figure 5, for the local value-flow path
⟨a@s1,a@s6⟩, according to Equation (1), its path condition
will be t@s5 = true∧a@s1 = a@s6, where the constraints of
the parameter a@s1 and the return-value receiver t@s5 are

lost. Thus, we can write PC(⟨a@s1,a@s6⟩)
{a@s1 }
{t@s5 }

= (t@s5 =

true ∧ a@s1 = a@s6).

Because Pinpoint performs a bottom-up program analy-
sis that always analyzes callees before callers, we only can
recover the lost constraints from the callees when analyzing
a function. That is, we only can eliminate the dependence on
the return-value receivers in PC(·)PR , so that it can be written

as PC(·)P
′

∅
. Note that the dependence on P then can be elim-

inated by adding the constraints of the actual parameters
when the caller function is analyzed. The basic idea of elim-
inating the dependence on R is that, for each return-value
receiver in R, we add the constraints of the corresponding
return value, which can be computed based on the callee’s
SEG. The following is an example.

Example 3.10. Following the last example, we need to add

the constraints of t@s5 into PC(⟨a@s1,a@s6⟩)
{a@s1 }
{t@s5 }

, so that

the dependence on the return-value receiver t@s5 can be
eliminated. Apparently, the constraint to add for t@s5 is
t@s5 = f@s11∧ f@s11 = (e@s9 , 0) ∧ e@s9 = c@s5 ∧

c@s5 = c@s1, which consists of three parts:

① t@s5 = f@s11 describes the fact that the return-value
receiver is equal to the corresponding return value.

② f@s11 = (e@s9 , 0) describes the value range of
the callee’s return value f@s11, which depends on the
function’s parameter e@s9 that is passed in via the
actual parameter c@s5 at Line 5.

③ e@s9 = c@s5∧c@s5 = c@s1 describes the dependence
of the actual parameter.

In this way, we get the precise path condition, which can be

recorded as PC(⟨a@s1,a@s6⟩)
{a@s1,c@s1 }
∅

.

Following the above example, formally, we can convert

PC(π)PR to PC(π)P
′

∅
by adding the three parts of conditions

(① - ③) as

PC(π)P
′

∅ = PC(π)PR ∧
∧

vi@si ∈R

vi@si = M(vi@si)
︸ ︷︷ ︸

①

∧DD(M(vi@si))
Qi
∅

︸ ︷︷ ︸

②

∧

∧

vj@sj ∈Qi

vj@sj = M(vj@sj) ∧ DD(M(vj@sj))
Pj

∅

︸ ︷︷ ︸

③

(2)

In the equation, the bold part is the constraints from the
callee function.M represents a mapping between a pair of
formal and actual parameters or a pair of return value and

its receiver. P ′ is the union of P and all Pj . DD(·)
P ′

∅
can be

converted from DD(·)PR recursively in a similar way.

699

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang

The next problem is to compute the precise path condi-
tion of a global value-flow path across different functions.
That is, given two local value-flow paths from two func-
tions, π1=⟨v1@s1, · · · ,vn@sn⟩ and π2=⟨u1@r1, · · ·un@rn⟩,
we need to generate the path-condition of their connection
π1π2, where vn@sn and u1@r1 is a pair of formal and actual
parameters or a pair of return value and its receiver. With no
loss of generality, we assume vn@sn is an actual parameter
andu1@r1 is the corresponding formal parameter. Then π1 is
in a caller function and π2 is in one of its callees. The precise
path condition of π1π2 can be generated as below where the
bold part is the constraints from the callee function.

PC(π1π2)
P
∅ =PC(π1)

P1
∅
∧ PC(π2)

P2
∅
∧ vn@sn = u1@r1∧

∧

vi@si ∈P2

vi@si = M(vi@si) ∧ DD(M(vi@si))
Qi
∅

(3)

The first row of the equation includes the path conditions of
both paths, as well as the factvn@sn flows tou1@r1. Because
the path condition of π2 may depend on the callee’s formal
parameters, we add the conditions of the corresponding ac-
tual parameters in the second row of the above equation.
Apparently, P is the union of P1 and all Qi .

(2) Achieving context-sensitivity. We follow the cloning-
based approach to achieve context-sensitivity [33, 50]. That
is, if a function is used at multiple call sites, constraints com-
puted based on the function’s SEG is cloned to distinguish
different call sites.
(3) Demand-driven searching. Because the bug detection

process is to search the value-flow paths starting from a
bug-specific source vertex, the path- and context-sensitive
computations are only carried out for the bug-related paths.
Therefore, this is a demand-driven process that avoids the
exhaustive path- and context-sensitive computation.

3.3.2 Compositional Approach to Bug Detection

It is well known that bottom-up compositional approach can
improve the efficiency of program analysis, because we can
summarize function behaviors and reuse function summaries
at different call sites [3, 53]. According to the computation
of inter-procedural path condition in Section 3.3.1, when-
ever we analyze a function, we actually require two kinds
of information from the callees (see the bold parts in Equa-
tions (2) and (3)). One is the data dependence, DD(v@s)P

∅
,

where v@s is a callee’s return value. The other is PC(π)P
∅

where π is a value-flow path in certain callee function. Thus,
we generate two types of summaries for them, the return-
value (RV) summary and the value-flow (VF) summary,
respectively.
As described by the data-dependence constraints of a re-

turn value, DD(v@s)P
∅
, an RV summary, which summarizes

the value range of a function’s return value, is a three-tuple
consisting of:

• An SEG vertex v@s that stands for a return value.

• A constraint that restricts the range of the return value,
i.e., DD(v@s)P

∅
.

• A subset P of the function’s formal parameters that
the constraint depends on.

As described by the path condition, PC(π)P
∅
, a VF sum-

mary, which summarizes value flows in a function, is a three-
tuple:

• A list of SEG vertices standing for a value-flow path π .
• The condition on which the summarized value-flow
path is feasible at runtime, i.e., PC(π)P

∅
.

• A subset P of the function’s formal parameters that
the condition depends on.

To detect a bug that can be modeled as a global value-
flow path between a pair of bug-specific łsourcež and łsinkž
vertices, we define four kinds of VF summaries:

• VF1 summarizes a value-flow path from a function
parameter to a return value;
• VF2 summarizes a value-flow path from a łsourcež to
a return value;
• VF3 summarizes a value-flow path from a function
parameter to a łsourcež;
• VF4 summarizes a value-flow path from a function
parameter to a łsinkž.

The above VF summaries describe all possible relations
between the bug-specific vertices (i.e., sources and sinks) and
the function interface values (i.e., function parameters and
return values). VF1 determines whether an actual parameter
at a call site would flow back to the return-value receiver at
the same call site. Thus, when reaching an actual parame-
ter during path-searching, VF1 decides whether we should
continue the search starting from the return-value receiver.
VF2 and VF3 determine if a return-value receiver and an
actual parameter would become buggy (i.e., get value from a
bug-specific source) after a call statement, respectively. They
help to decide whether we should start the path search from
a return-value receiver or an actual parameter when analyz-
ing a function. We show an example of the VF3 summary in
Figure 5. In order to detect the use-after-free vulnerability,
we create a VF3 summary containing the value-flow path
⟨a@s1,b@s2,b@s3⟩, which summarizes the behavior of func-
tion foo: after calling function foo, the function parameter
a is łfreedž. VF4 determines if an actual parameter at a call
site would flow to a sink in the callee. A bug may happen in
the callee if we reach an actual parameter during the path
search and the callee has a VF4 summary.

4 Implementation

Pinpoint is implemented on top of LLVM 3.6 [32] using
Z3 [14] as the SMT solver. Its main architecture is shown in
Figure 6. The implementation is publicly available.4

4https://whichbug.github.io/artifact.html

700

https://whichbug.github.io/artifact.html

Pinpoint: Fast and Precise Sparse Value Flow Analysis... PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

Mod/Ref

Analysis

Local	and	Quasi

Points-to Analysis

SEG Building

Building Data Dependence

Global

SVFA

Summary

Generation

Compositional Analysis

Linear Time
Solver

SMT Solver

Reports

LLVM Bitcode

Path

Conditions

Path

Conditions

Data Dependence

SEGs

Figure 6. Pinpoint’s architecture.

4.1 Checkers

To evaluate Pinpoint as a general framework, we have been
continuously adding łcheckersž in addition to those for use-
after-free and double-free. In our experience, problems that
can be modeled as value-flow paths are straightforward to
solve using Pinpoint. For instance, a path-traversal vulner-
ability, which is a taint issue, allows an attacker to access
files outside of a restricted directory.5 It can be modeled as a
value-flow path starting with SEG vertices representing user
inputs like input@input=fgetc(), and ending with SEG ver-
tices representing operations on files like path@fopen(path,
...) [40]. Similarly, a data transmission vulnerability may leak
sensitive data to attackers.6 It can be modeled as a value-flow
path starting with SEG vertices representing sensitive data
like password@password=getpass(...), and ending with SEG
vertices representing statements that may leak information
like data@sendto(data, ...) [40]. Similar to the previous taint
analysis work [2], we have not modeled the sanitization
operations in our taint-issue checkers.

4.2 Soundness

Pinpoint is soundy [34] as it shares the same łstandard as-
sumptionsž with previous techniques that aim to find bugs
rather than rigorous verification [3, 9, 35, 47, 53]. In our
implementation, we regard all elements in an array or a
union structure to be aliases and unroll each loop once in
control flow graphs and call graphs. Following Saturn [53],
we currently have not modeled inline-assembly and func-
tion pointers, but we adopt a class hierarchy analysis to
resolve virtual function calls [15]. Also, we assume distinct
parameters of a function do not alias with each other, which
potentially can be improved using the idea of partial transfer
function [51] in the future. For library code, we manually

5https://cwe.mitre.org/data/definitions/23.html
6https://cwe.mitre.org/data/definitions/402.html

model some standard C libraries like memset and memcpy,
which are significant for the points-to analysis, but have not
modeled standard template libraries, such as std::vector
and std::map.

5 Evaluation

We aim to, as systematic as possible, evaluate the precision,
the recall, and the scaling effect of Pinpoint, due to the
extensive work from both academia and industry in scal-
ing static bug finding to industrial-sized software systems.
We not only compare Pinpoint to the state-of-the-art tech-
niques of SVFA, but also conduct comparison experiments
on the tools using abductive inference (Facebook Infer7)
and symbolic execution (CSA8). We also seek to evaluate
other prominent static bug detection implementations such
as Saturn, Compass, and Calysto. However, they are either
unavailable or outdated for the operating systems we are
able to set up.

The subjects we use include the standard benchmark SPEC
INT 2000, commonly used in the SVFA literature, as well
as eighteen real-world open source C/C++ projects such
as PHP, FFmpeg,MySQL, and Firefox. We note that many
of these subjects are extensively and frequently scanned
by commercial tools such as Coverity SAVE9 and, thus,
expected to have very high quality. The sizes of these subjects
range from a few thousand LoC to close to ten million with
470 KLoC on average.

Our results show that Pinpoint is quite promising: it can
complete a deep scan, i.e., inlining six levels of calls, of eight
million lines of code in just four hours; at the time of writing,
it has found more than forty confirmed and previously un-
known vulnerabilities. Some of them are from high-quality
systems such asMySQL, while others are even assigned with
CVE IDs10 for their high impact on software security. Pin-
point is also quite precise with an average false positive rate
around 25%. This performance is aligned with the common
industrial requirement of checking millions-of-LoC code in
5-10 hours with less than 30% false positives [5, 36].

5.1 Comparing with SVFA Techniques

We compare Pinpoint with the most recent and relevant
work, SVF [46], based on the so-called fully-sparse value-
flow graph (FSVFG). FSVFG captures memory-related data
dependence by performing a flow- and context-insensitive
points-to analysis with a flow-sensitive refinement. To the
best of our knowledge, this is the most precise and efficient
SVFA technique we can get our hands on. Both SVF and Pin-
point are targeting value flow problems, and we choose to
check use-after-free, including double-free, for assessing the

7http://fbinfer.com/
8https://clang-analyzer.llvm.org/
9https://scan.coverity.com/projects/
10https://cve.mitre.org/

701

https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/402.html
http://fbinfer.com/
https://clang-analyzer.llvm.org/
https://scan.coverity.com/projects/
https://cve.mitre.org/

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang

12hr time-out

Subject ID (ordered by program size)

T
im

e

lo
g

 s
c
a

le

∆≈20min

135KLoC

∆>11hr
>135KLoC

∆≈20sec

50KLoC

Figure 7. Time cost: building SEG vs. building FSVFG.

quality of our tool. We do not choose other properties for the
assessment because, unlike most of the previous approaches,
to reduce the subjectivity of evaluation, we set a high bar
for łtrue positivež: bugs confirmed by the developers of the
evaluated subjects. Our experience showed that developers
are much more responsive to the reports of use-after-free
vulnerabilities due to its critical importance to security [7].
This allows us to complete our quantification of bug finding
capability within a reasonable period of time.
The real obstacle for scaling SVFA to millions of lines

of code is the cost for building SVFG, which is the core
problem solved in this paper. Therefore, we compare the
time and memory cost for building SEG and FSVFG, as well
as the total time and memory consumed by Pinpoint and
SVF to complete bug finding. For precision, we compare
the false positive rates of both checkers. Since we cannot
flood developers with all the warnings the tools report, we
manually pre-screen bug reports before sending them out.
Measuring recall is challenging as it requires the exis-

tence of a golden standard, which is hard to establish for
the subjects we evaluate. We use Juliet Test Suite [6], a test
suite developed by the National Security Agency’s Center
for Assured Software, because it provides the ground truth
with a collection of known use-after-free and double-free
vulnerabilities.

The number of nested levels of calling context is set to
six and the timeout to twelve hours. All the experiments
were performed on a computer with two 20 core processors
łIntel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHzž and 256GB
physical memory running Ubuntu-16.04.

5.1.1 Scalability

Figure 7 and Figure 8 show the comparison of the time and
the memory cost between SEG and FSVFG. We observe that
the two techniques perform similarly when the code size is
less than 135 KLoC. For the subjects larger than 135 KLoC,
the construction of FSVFG always timeouts while consuming
40-60G more memory space. Building SEG, however, takes
less than an hour, up to >400X faster.

Subject ID (ordered by program size)

M
e

m
o

ry
 (

G
)

>60G

>135KLoC

>160G

>2,030KLoC

time-out

>120G

>900KLoC

∆≈3G

∆>40G

∆>60G

Figure 8. Memory cost: building SEG vs. building FSVFG.

Table 1. Results of Use-after-Free Checkers

Program Size
(KLoC)

Pinpoint SVF

Origin Name #FP #Reports FP Rate #Reports

SPEC
CINT
2000

mcf 2 0 0 0 0
bzip2 3 0 0 0 0
gzip 6 0 0 100% 46
parser 8 0 0 0 0
vpr 11 0 0 100% 55

crafty 13 0 0 100%† 546

twolf 18 0 0 100%† 145

eon 22 0 0 100%† 1324
gap 36 0 0 0 0

vortex 49 0 0 100%† 125
perkbmk 73 0 0 100% 13
gcc 135 0 0 0 0

Open
Source

webassembly 23 0 1 100%† 902

darknet 24 0 0 100%† 152
html5-parser 31 0 0 100% 32

tmux 40 0 0 100%† 2041
libssh 44 0 1 100% 102

goacess 48 0 1 100%† 312

shadowsocks 53 0 2 100%† 1972

swoole 54 0 0 100%† 534
libuv 62 0 0 0 0

transmission 88 0 1 100%† 802
git 185 0 0 NA NA
vim 333 0 0 NA NA
wrk 340 0 0 NA NA
libicu 537 0 1 NA NA
php 863 0 0 NA NA
ffmpeg 967 0 0 NA NA
mysql 2,030 1 5 NA NA
firefox 7,998 1 2 NA NA

† We only inspect one hundred randomly-selected reports.

As for the bug checking process, we observe that Pinpoint
is also much more time and memory efficient than SVF. Pin-
point finished checkingMySQL (2 MLoC) in 1.5 hours and
Firefox (8 MLoC) in approximately 4 hours, whereas SVF
took more than twelve hours to complete fifteen out of thirty
subjects and timed out on eight of them. Pinpoint also re-
quires significantly less memory compared to SVF as shown
in Figure 9: for the subjects larger than 135 KLoC, SVF uses
10-30G additional memory compared to Pinpoint, while still
unable to finish building FSVFG for these subjects.

We adopt the curve fitting approach [42] to study the ob-
served time- and memory-complexity of Pinpoint. Figure 10

702

Pinpoint: Fast and Precise Sparse Value Flow Analysis... PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

Subject ID (ordered by program size)

M
e
m

o
ry

 (
G

)

time-out

Fail to build FSVFG

Building SEG

+

Checking bugs

Figure 9. Memory cost: SEG- vs. FSVFG-based checkers.

KLoC

T
im

e
 (

m
in

)
/

M
e

m
o

ry
 (

G
)

MySQL

Firefox

Figure 10. Scalability of an SEG-based checker. The x-axis
stands for the number of lines in a project (KLoC) and the
y-axis stands for the time cost (min) or the memory cost (G).

shows the fitting curves and their coefficients of determina-
tion R2. R2 ∈ [0, 1] is a statistical measure of how close the
data are to the fitting curve. The more R2 is close to 1, the
better the fitting curve is. It shows that Pinpoint’s time and
memory cost grow almost linearly in practice (R2 > 0.9) and,
thus, scale up quite gracefully.

5.1.2 Precision and Recall

Pinpoint reports fourteen use-after-free vulnerabilities with
twelve true positives and a false-positive rate of (14−12)/14 =
14.3%. All the true positives are previously-unknown and
have been confirmed by the developers. A stark contrast is
that Pinpoint generates very few reports in total as shown
by Table 1, whereas SVF reports nearly 10,000 (about 1,000X
more) warnings. Since we are unable to manually inspect
all of them, we randomly sample a hundred warnings for
inspection if a project has too many warnings. Unfortunately,
SVF did not find any true positive after the manual filter-
ing. While there is still subjectivity in this experiment as we
can still miss true bugs found by SVF during pre-screening,
we make the implementation of SVF-based use-after-free
checker available11 for interested readers to examine. Simply

11https://github.com/whichbug/SVF-UAF

speaking, Pinpoint is more precise because our approach
enables to build path-sensitive data dependence while SVF
cannot do so because of the łpointer trapž.
To measure if the scalability and precision of Pinpoint

are achieved by sacrificing the recall, we run Pinpoint on
the Juliet Test Suite, which contains 1421 use-after-free vul-
nerabilities, caused by 51 different types of flaws in the code.
The experimental results show that Pinpoint can detect all
of them.

5.2 Detected Real Vulnerabilities

Pinpoint can detect vulnerabilities of high complexity for
which the original developers have to use expensive meth-
ods such as the debugger to confirm. For example, Pinpoint
detected a use-after-free in MySQL (Bug #8720312), the most
popular open-source database engine, in a function of ap-
proximately 1,000 LoC. The control flow involved in the bug
spans across 36 functions over 11 compiling units. Conse-
quently, our communications with the developers met with
denial twice until the final confirmation as a true bug after
extensive manual code analyses.
Pinpoint also detected a use-after-free vulnerability in

the code of LibICU (Bug #1330113), a unicode manipulation li-
brary. This library is widely used by products from hundreds
of organizations and companies such as Microsoft, Apple,
Google, etc. Although this library is frequently checked by
mature error-detection tools such asCoverity SAVE, the bug
has been hidden for more than ten years. This vulnerability
is serious enough to deserve its CVE ID: CVE-2017-14952.
We have made an online list of all the vulnerabilities

confirmed by the original software developers.14 The list
contains more than 40 vulnerabilities from about a dozen
of open-source projects, including famous software systems
like MySQL, FireFox, Python, Apache and OpenSSL, as
well as fundamental libraries like LibSSH and LibICU.

5.3 Study of the Taint-Issue Checkers

As a general framework, Pinpoint should enable the same
performance characteristics for other types of bug finding
tasks that it can support. For this purpose, we also evaluated
two additional checkers for taint issues as described in Sec-
tion 4. The corresponding evaluation results are summarized
in the Table 2. Because of the page limits, we only present
the memory and time cost for checking MySQL (2 MLoC,
typical code size in industry). This cost is similar to that of
use-after-free. Like in the previous taint analysis work [2],
we have not modeled the sanitization operations in our anal-
ysis. Thus, a report is regarded as a false positive only if we
can manually identify an infeasible value-flow path, which
leads to a false positive rate of 23.6%.

12https://bugs.mysql.com/bug.php?id=87203
13http://bugs.icu-project.org/trac/ticket/13301
14https://whichbug.github.io/reports.html

703

https://github.com/whichbug/SVF-UAF
https://bugs.mysql.com/bug.php?id=87203
http://bugs.icu-project.org/trac/ticket/13301
https://whichbug.github.io/reports.html

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang

Table 2. Result Summary of the SEG-based Taint Analysis

Checkers Memory Time #FP/#Reports

Path Traversal Vuln. 43.1G 1.4hr 11/56

Data Transmission Vuln. 52.6G 1.5hr 24/92

Table 3. Results of Infer and CSA

Program
Size

(KLoC)
Infer CSA

Time (min) #FP/#Rep Time (min) #FP/#Rep
webassembly 23 0.1 0/0 0.5 0/0
darknet 24 2.5 0/0 1.4 0/0
html5-parser 31 NA 0.2 0/0
tmux 40 1.0 5/5 1.0 6/6
libssh 44 0.1 0/0 0.2 1/1
goaccess 48 0.5 4/4 0.3 0/1
shadowsocks 53

NA
NA

swoole 54 0.5 0/0
libuv 62 0.5 1/1 0.2 0/0
transmission 88 1.0 0/0 0.5 0/0
git 185 2.5 3/3 1.4 2/2
vim 333

NA
1.4 0/0

wrk 340 2.5 0/0
libicu 537 3.3 8/8 2.6 0/0
php 863 NA 6.9 4/4
ffmpeg 967 21.1 1/1 3.3 0/0
mysql 2030 42.6 13/13 15.8 6/7
firefox 7998 NA 54.0 5/5

Total 35/35 24/26
NA means we fail to run CSA or Infer on the benchmark programs.

5.4 Comparing with Other Static Bug Detectors

To better understand its performance in comparison to other
types of bug finding techniques, we run Pinpoint against
two prominent and mature open-source static bug detection
tools, Infer and CSA, on finding use-after-free vulnerabil-
ities. The results are reported in Table 3. Our evaluation
shows both CSA and Infer run faster compared to Pinpoint.
The primary reason is that both Infer and CSA confine their
activities within each compilation unit and do not fully track
path correlations. This is at the cost of generating more false
warnings and of the failure of finding bugs across multiple
compilation units. As Table 3 shows, if we allow the concur-
rent analysis of fifteen threads, both tools can finish checking
within one hour. However, all of the thirty-five use-after-free
reports of Infer are false positives. Only two of twenty-six
reports by CSA are true positives, which are also reported
by Pinpoint.

6 Related Work

Existing techniques for static bug finding can be classified
into two major categories by distinguishing the approach
to tracking the flow of values: the ones tracking the flow of
values via data dependence and the others via control flows.

To the best of our knowledge, all existing static bug-finding
techniques utilizing data dependence rely on a pre-computed
points-to analysis to build data dependence, which is referred
to as a łlayeredž design. Because a precise points-to analysis
is expensive [28], they usually adopt a flow-insensitive anal-
ysis to avoid getting stuck in the pre-computation phase [9,

13, 20, 35, 38, 43, 45, 47]. In contrast, the proposed łholis-
ticž design can build precise data dependence efficiently and
keep fully path-sensitive for bug finding.
In the other category, abstraction based approach like

SLAM [4], BLAST [27], and SATABS [11] adopt abstract
refinement to improve scalability. However, the scalability
degrades with the refinement of abstraction. CBMC [11, 12]
also suffers from the scalability issue because it feeds con-
straints to an SAT solver regardless of whether they are
relevant or not. Cheetah [19], which is built on the IFDS
framework [39], is similar to our approach as it does local
analysis first and then gradually extends to the whole project.
Magic [8], Saturn [17, 52, 53], Calysto [3], Compass [18],
and Blitz [10] are similar to our approach in terms of com-
positional analysis. However, these approaches have been
demonstrated to be inefficient in detecting bugs that can be
modeled as value-flow paths, because unnecessary data-flow
facts are tracked along control flows [9, 38, 47]. As a non-
sparse analysis, they do not suffer from the łpointer trapž
problem we attempt to address in this paper.
There are also techniques adopting client- or demand-

driven points-to analysis to reduce redundancy in static bug
finding techniques. Client-driven points-to analysis [24, 25,
37] only performs higher-precision analysis in some parts
of a program and cannot achieve the precision of inter-
procedural path-sensitivity. In contrast, we can compute
path-sensitive results in any part of the whole program.
Demand-driven points-to analysis [2, 26, 41, 44, 54, 55] is in
a fixed precision but computes only the necessary part of
the solution. Existing approaches are not path sensitive and
only aware of its immediate client. In contrast, the points-to
analysis in Pinpoint is aware of the whole process, thus re-
ferred to as a łholisticž design. P/Taint [23] also integrates
points-to analysis with value-flow analysis, but in a differ-
ent manner: the value-flow analysis is implemented as an
extension of points-to analysis while Pinpoint decomposes
the cost of points-to analysis for value-flow analysis.

7 Conclusion

We have described Pinpoint, embodying a holistic design
of sparse value-flow analysis that simultaneously achieves
precision and observed linear scalability for millions of lines
of code. Pinpoint has discovered over forty vulnerabilities,
confirmed by developers of about a dozen of well-known sys-
tems and code libraries. Pinpoint is promising in providing
industrial-strength capability in static bug finding.

Acknowledgments

We thank the anonymous reviewers for their insightful com-
ments and Yulei Sui for his help on the SVF implementation.
This work was partially funded by Hong Kong GRF16214515,
GRF16230716, and ITS/368/14 grants.

704

Pinpoint: Fast and Precise Sparse Value Flow Analysis... PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

References
[1] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hack-

ett, and Peter Hawkins. 2006. The Saturn Program Analysis System.

Stanford University.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick

McDaniel. 2014. Flowdroid: Precise context, flow, field, object-sensitive

and lifecycle-aware taint analysis for android apps. Acm Sigplan No-

tices 49, 6 (2014), 259ś269.

[3] D. Babic and A. Hu. 2008. Calysto: Scalable and Precise Extended Static

Checking. In 2008 ACM/IEEE 30th International Conference on Software

Engineering (ICSE 2008). IEEE, 211ś220.

[4] Thomas Ball and Sriram K. Rajamani. 2002. The SLAM Project: De-

bugging System Software via Static Analysis. In Proceedings of the

29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’02). ACM, 1ś3.

[5] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth

Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson

Engler. 2010. A few billion lines of code later: using static analysis to

find bugs in the real world. Commun. ACM 53, 2 (2010), 66ś75.

[6] Frederick E Boland Jr and Paul E Black. 2012. The Juliet 1.1 C/C++ and

Java Test Suite. Computer (IEEE Computer) 45, 10 (2012).

[7] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.

2012. Undangle: early detection of dangling pointers in use-after-free

and double-free vulnerabilities. In Proceedings of the 2012 International

Symposium on Software Testing and Analysis. ACM, 133ś143.

[8] Sagar Chaki, Edmund M Clarke, Alex Groce, Somesh Jha, and Helmut

Veith. 2004. Modular verification of software components in C. IEEE

Transactions on Software Engineering 30, 6 (2004), 388ś402.

[9] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practi-

cal Memory Leak Detection Using Guarded Value-flow Analysis. In

Proceedings of the 28th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’07). ACM, 480ś491.

[10] Chia Yuan Cho, Vijay D’Silva, and Dawn Song. 2013. Blitz: Composi-

tional bounded model checking for real-world programs. In Automated

Software Engineering (ASE), 2013 IEEE/ACM 28th International Confer-

ence on. IEEE, 136ś146.

[11] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.

2004. Predicate Abstraction of ANSI-C Programs Using SAT. Formal

Methods in System Design 25, 2 (2004), 105ś127.

[12] Edmund Clarke, Daniel Kroening, and Karen Yorav. 2003. Behavioral

consistency of C and Verilog programs using bounded model checking.

In Proceedings of the 40th annual Design Automation Conference. ACM,

368ś371.

[13] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-sensitive

Program Verification in Polynomial Time. In Proceedings of the ACM

SIGPLAN 2002 Conference on Programming Language Design and Im-

plementation (PLDI ’02). ACM, 57ś68.

[14] Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An efficient SMT

solver. In International conference on Tools and Algorithms for the Con-

struction and Analysis of Systems. Springer, 337ś340.

[15] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization

of object-oriented programs using static class hierarchy analysis. In

European Conference on Object-Oriented Programming. Springer, 77ś

101.

[16] David Dewey, Bradley Reaves, and Patrick Traynor. 2015. Uncovering

Use-After-Free Conditions in Compiled Code. InAvailability, Reliability

and Security (ARES), 2015 10th International Conference on. IEEE, 90ś99.

[17] Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, complete

and scalable path-sensitive analysis. In ACM SIGPLAN Notices, Vol. 43.

ACM, 270ś280.

[18] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. 2011. Precise

and compact modular procedure summaries for heap manipulating

programs. In ACM SIGPLAN Notices, Vol. 46. ACM, 567ś577.

[19] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden,

Justin Smith, and Emerson Murphy-Hill. 2017. Just-in-time static anal-

ysis. In Proceedings of the 26th ACM SIGSOFT International Symposium

on Software Testing and Analysis. ACM, 307ś317.

[20] N. Dor, S. Adams, M. Das, and Z. Yang. 2004. Software Validation

via scalable path-sensitive value flow analysis. In Proceedings of the

2004 ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’04). ACM, 12ś22.

[21] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. 2014. Statically

detecting use after free on binary code. Journal of Computer Virology

and Hacking Techniques 10, 3 (2014), 211ś217.

[22] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The

Program Dependence Graph and Its Use in Optimization. ACM Trans.

Program. Lang. Syst. 9, 3 (1987), 319ś349.

[23] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: Unified Points-

to and Taint Analysis. Proc. ACM Program. Lang. 1, OOPSLA (2017),

102:1ś102:28.

[24] Samuel Guyer and Calvin Lin. 2003. Client-driven pointer analysis.

Static Analysis (2003), 1073ś1073.

[25] Samuel Z Guyer and Calvin Lin. 2005. Error checking with client-

driven pointer analysis. Science of Computer Programming 58, 1-2

(2005), 83ś114.

[26] Nevin Heintze and Olivier Tardieu. 2001. Demand-driven pointer

analysis. In ACM SIGPLAN Notices, Vol. 36. ACM, 24ś34.

[27] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire

Sutre. 2002. Lazy Abstraction. In Proceedings of the 29th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL

’02). ACM, 58ś70.

[28] Michael Hind. 2001. Pointer analysis: Haven’t we solved this problem

yet?. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering. ACM, 54ś61.

[29] David Hovemeyer and William Pugh. 2007. Finding more null pointer

bugs, but not too many. In Proceedings of the 7th ACM SIGPLAN-

SIGSOFT workshop on Program analysis for software tools and engineer-

ing. ACM, 9ś14.

[30] David Hovemeyer, Jaime Spacco, and William Pugh. 2005. Evaluating

and tuning a static analysis to find null pointer bugs. In ACM SIGSOFT

Software Engineering Notes, Vol. 31. ACM, 13ś19.

[31] James C King. 1976. Symbolic execution and program testing. Commun.

ACM 19, 7 (1976), 385ś394.

[32] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-

work for lifelong program analysis & transformation. In Proceedings

of the international symposium on Code generation and optimization:

feedback-directed and runtime optimization. IEEE, 75.

[33] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making

context-sensitive points-to analysis with heap cloning practical for

the real world. ACM SIGPLAN Notices 42, 6 (2007), 278ś289.

[34] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej

Lhoták, J Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer,

Uday P Khedker, Anders Mùller, and Dimitrios Vardoulakis. 2015. In

defense of soundiness: a manifesto. Commun. ACM 58, 2 (2015), 44ś46.

[35] V Benjamin Livshits and Monica S Lam. 2003. Tracking pointers with

path and context sensitivity for bug detection in C programs. ACM

SIGSOFT Software Engineering Notes 28, 5 (2003), 317ś326.

[36] Scott McPeak, Charles-Henri Gros, and Murali Krishna Ramanathan.

2013. Scalable and incremental software bug detection. In Proceedings

of the 2013 9th Joint Meeting on Foundations of Software Engineering.

ACM, 554ś564.

[37] Nomair A Naeem and Ondrej Lhoták. 2011. Faster Alias Set Analysis

Using Summaries.. In CC. Springer, 82ś103.

[38] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun

Yi. 2012. Design and implementation of sparse global analyses for

C-like languages. In ACM SIGPLAN Notices, Vol. 47. ACM, 229ś238.

[39] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interpro-

cedural dataflow analysis via graph reachability. In Proceedings of the

705

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang

22nd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages. ACM, 49ś61.

[40] Wolf-Steffen Rödiger. 2011. Merging Static Analysis and model checking

for improved security vulnerability detection. Ph.D. Dissertation. Master

thesis, Dept. of Com. Sc. Augsburg University.

[41] Diptikalyan Saha and CR Ramakrishnan. 2005. Incremental and

demand-driven points-to analysis using logic programming. In Pro-

ceedings of the 7th ACM SIGPLAN international conference on Principles

and practice of declarative programming. ACM, 117ś128.

[42] LA Sandra. 1994. PHB Practical Handbook of Curve Fitting.

[43] G Snelting, T Robschink, and J Krinke. 2006. Efficient Path Conditions

in Dependence Graphs for Software Safety Analysis. ACM Transactions

on Software Engineering and Methodology (TOSEM) 15, 4 (2006), 410ś

457.

[44] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005.

Demand-driven points-to analysis for Java. In ACM SIGPLAN Notices,

Vol. 40. ACM, 59ś76.

[45] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural static value-flow

analysis in LLVM. In Proceedings of the 25th International Conference

on Compiler Construction. ACM, 265ś266.

[46] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-flow

Analysis in LLVM. In Proceedings of the 25th International Conference

on Compiler Construction (CC 2016). ACM, 265ś266.

[47] Y. Sui, D. Ye, and J. Xue. 2014. Detecting Memory Leaks Statically

with Full-Sparse Value-Flow Analysis. IEEE Transactions on Software

Engineering 40, 2 (2014), 107ś122.

[48] Peng Tu and David Padua. 1995. Efficient building and placing of

gating functions. ACM SIGPLAN Notices 30, 6 (1995), 47ś55.

[49] Mark N Wegman and F Kenneth Zadeck. 1991. Constant propaga-

tion with conditional branches. ACM Transactions on Programming

Languages and Systems (TOPLAS) 13, 2 (1991), 181ś210.

[50] JohnWhaley andMonica S Lam. 2004. Cloning-based context-sensitive

pointer alias analysis using binary decision diagrams. InACMSIGPLAN

Notices, Vol. 39. ACM, 131ś144.

[51] Robert P Wilson and Monica S Lam. 1995. Efficient context-sensitive

pointer analysis for C programs. Vol. 30. ACM.

[52] Yichen Xie and Alex Aiken. 2005. Context-and path-sensitive memory

leak detection. In ACM SIGSOFT Software Engineering Notes, Vol. 30.

ACM, 115ś125.

[53] Yichen Xie and Alex Aiken. 2005. Scalable Error Detection Us-

ing Boolean Satisfiability. In Proceedings of the 32nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL

’05). ACM, 351ś363.

[54] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-driven

context-sensitive alias analysis for Java. In Proceedings of the 2011

International Symposium on Software Testing and Analysis. ACM, 155ś

165.

[55] Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for

C. ACM SIGPLAN Notices 43, 1 (2008), 197ś208.

706

	Abstract
	1 Introduction
	2 Pinpoint in a Nutshell
	3 The Holistic Design in Pinpoint
	3.1 Decomposing the Cost of Data Dependence Analysis
	3.2 Symbolic Expression Graph
	3.3 Global Value Flow Analysis for Vulnerability Detection

	4 Implementation
	4.1 Checkers
	4.2 Soundness

	5 Evaluation
	5.1 Comparing with SVFA Techniques
	5.2 Detected Real Vulnerabilities
	5.3 Study of the Taint-Issue Checkers
	5.4 Comparing with Other Static Bug Detectors

	6 Related Work
	7 Conclusion
	References

