
Falcon: A Fused Approach to Path-Sensitive Sparse Data
Dependence Analysis

PEISEN YAO,The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China
JINGUO ZHOU, Ant Group, China
XIAO XIAO, Ant Group, China
QINGKAI SHI,The State Key Laboratory for Novel Software Technology, Nanjing University, China
RONGXINWU, Xiamen Key Laboratory of Intelligent Storage and Computing, Xiamen University, China
CHARLES ZHANG,The Hong Kong University of Science and Technology, China

This paper presents a scalable path- and context-sensitive data dependence analysis. The key is to address the
aliasing-path-explosion problem when enforcing a path-sensitive memory model. Specifically, our approach
decomposes the computational efforts of disjunctive reasoning into 1) a context- and semi-path-sensitive
analysis that concisely summarizes data dependence as the symbolic and storeless value-flow graphs, and
2) a demand-driven phase that resolves transitive data dependence over the graphs, piggybacking the com-
putation of fully path-sensitive pointer information with the resolution of data dependence of interest. We
have applied the approach to two clients, namely thin slicing and value-flow bug finding. Using a suite of 16
C/C++ programs ranging from 13 KLoC to 8 MLoC, we compare our techniques against a diverse group of
state-of-the-art analyses, illustrating the significant precision and scalability advantages of our approach.

CCS Concepts: • Theory of computation→ Program analysis.

Additional Key Words and Phrases: data dependence analysis, path-sensitive analysis

ACM Reference Format:
Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang. 2024. Falcon: A Fused
Approach to Path-Sensitive Sparse Data Dependence Analysis. Proc. ACM Program. Lang. 8, PLDI, Article 170
(June 2024), 26 pages. https://doi.org/10.1145/3656400

1 INTRODUCTION
Data dependence analysis identifies the def-use information in a program, which is critical for var-
ious analysis clients such as change-impact analysis [2, 66], program slicing [52, 80], and memory
disambiguation [1, 106]. However, the presence of pointers and references obscures this informa-
tion. The analysis must cut through the tangle of aliasing to reason about data dependence.

Path sensitivity is a common axis for pursuing precision but is stunningly challenging for data
dependence analysis. In particular, maintaining a path-sensitivememorymodel can suffer from the
“aliasing-path-explosion” problem. For example, at a load statement 𝑝 = ∗𝑥 , we need to track the
path condition of this statement and the path conditions under which 𝑥 points to different memory
objects. Each load or store statement may access hundreds of memory objects; eachmemory object

Authors’ addresses: Peisen Yao, The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China,
pyao@cse.ust.hk; Jinguo Zhou, Ant Group, China, jinguo.zjg@antfin.com; Xiao Xiao, Ant Group, China, xx@antgroup.
com; Qingkai Shi, The State Key Laboratory for Novel Software Technology, Nanjing University, China, qingkaishi@gmail.
com; Rongxin Wu, Xiamen Key Laboratory of Intelligent Storage and Computing, Xiamen University, China, wurongxin@
xmu.edu.cn; Charles Zhang, The Hong Kong University of Science and Technology, China, charlesz@cse.ust.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/6-ART170
https://doi.org/10.1145/3656400

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

https://doi.org/10.1145/3656400
https://doi.org/10.1145/3656400

170:2 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

may be accessed at hundreds or thousands of statements; and the number of program paths under
which the statements execute is exponential. Consequently, the number of disjunctive cases to
track becomes extremely large, far too many to enable a scalable analysis.

1.1 Existing Efforts
Existing solutions to building path-sensitive memory models can be classified into two major cat-
egories. The bootstrapped approach maintains a path-sensitive memory model without a priori
points-to analysis, such as symbolic execution [7] and shape analysis [70]. This approach uses var-
ious logic to generate formulas that encode the entire history of memory writes and reads, which
allows for establishing correlations between variables automatically. However, the approach of-
floads the aliasing-path-explosion problem to the constraint solvers and encodes constraints fol-
lowing control-flow paths, regardless of their relevance to the data dependence of interests. Such
“dense” analysis is known to have performance problems. For instance, Focal [43], a state-of-the-
art backward symbolic executor, takes approximately 230 hours to answer on-demand queries for
a program with nearly 33 KLoC.

Alternatively, the layered approach uses an independent, auxiliary points-to analysis to approx-
imate the def-use information, which is then used to guide the subsequent path-sensitive analy-
sis [6, 95, 99]. The idea of leveraging pre-computed points-to information has advanced flow- and
context-sensitive pointer and typestate analyses, via sparsification [30, 83], pruning [21], and par-
titioning [40]. For path-sensitive analysis, the use of auxiliary pointer analysis has also shown
promise in accelerating software model checking via partitioned model models [95], as well as
guiding the demand-driven, symbolic exploration of program paths [6, 99].

Unfortunately, the existing studies on the layered approach suffer from two limitations that
hinder scalability. First, they primarily rely on flow- and path-insensitive pointer analysis as the
auxiliary pre-analysis and attempt to recover a path-sensitive memory model in the subsequent
analysis. However, the imprecise pre-analysis can lead to spurious and redundant propagation
of pointer information in the subsequent analysis [99]. Second, they utilize an explicit points-
to abstraction in the auxiliary pre-analysis, requiring the subsequent analysis to perform cast-
splitting over the points-to sets while handling indirect loads/stores. This cast-splitting process
has been a major cause of disjunctive case explosion in previous path-sensitive analyses [6, 59, 99]
due to the potentially large size of points-to sets.

1.2 This Work
This paper presents Falcon, a fused approach to path-sensitive data dependence analysis. Our key
insight is two-fold. First, a data dependence relation induced by pointer expressions can be iden-
tified without knowing the concrete memory objects referenced by the pointers. Second, many
program paths qualifying data dependence relations are redundant and can be symbolically iden-
tified and merged while preserving precision.

Based on this insight, we first introduce an all-program-points pointer analysis that builds
guarded and storeless value-flow graphs of a program without computing exhaustive points-to
sets. First, it offers the key benefits of path sensitivity, state pruning, merging, and simplification,
by using lightweight semi-decision procedures over a propositional abstraction of the program.
Second, to achieve context sensitivity without expensive summary cloning, it selectively clones
access-path expressions that are rooted at a function parameter and incur side effects, thereby
enabling local reasoning of value flows instead of global reasoning about the entire heap.

Then, our client analysis can use the pre-computed value-flow graphs as “conduits” to track tran-
sitive data dependence on demand. Importantly, the guarded graph edges concisely merge value
flows induced by different memory objects and program paths, which offers two benefits. First,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:3

the client can sparsely track the dependence by following the edges, piggybacking the computa-
tion of fully path-sensitive pointer information and the resolution of data dependence of interest.
Second, the client does not need to perform explicit cast-splitting over the points-to sets when han-
dling indirect loads/stores, alleviating a major source of case explosion in previous (on-demand)
path-sensitive analyses [6, 59, 99].

In summary, we decompose the burden of aliasing-path-explosion into the client-independent
pre-analysis that builds value-flow graphs and the client-specific data dependence tracking. Cru-
cially, the guarded and storeless graphs enable a path-sensitive memory model upfront and allow
us to separate the reasoning task about “how the values flow through different memory objects”
from the task of answering queries about transitive dependence. Specifically, there are two novel
and critical features in our algorithm itself:
• The analysis for building value-flow graphs is both on-the-fly sparse and path-sensitive, in

that it computes the heap def-use chains incrementally along with the path-sensitive pointer
information discovered. The SPAS algorithm [88] is the only previous pointer analysis with
the same property, but they achieve incremental sparsity through the level-by-level analy-
sis [101] and, thus, is exhaustive.
• When answering demand data dependence queries, our analysis can stop as soon as enough

evidence is gathered, without trying to find all pointed-to by memory objects. The previous
analyses [77, 78, 98, 106] can answer demand alias queries via different storeless representa-
tions [41]. However, none of the techniques can introduce path sensitivity.

Although the dependence information is significantly more limited in providing complex heap
invariants than a full-blown shape analysis, it is sufficient for many interesting applications. One
such application is thin slicing [52, 80, 92], which aids in program debugging and understand-
ing using the statements that affect the value of a variable. Another example is value-flow bug
finding [74, 87, 99], which hunts memory safety bugs by tracking the flow of pointer values. Addi-
tionally, we have utilized Falcon to optimize container manipulation programs [94], guide directed
fuzzing [35], and infer status code specifications [91].

One thing that Falcon is not, at least in its current form, a sound verification framework for
unbounded programs. We unroll each loop and function call in the control flow graph and the
call graph twice and follow the assumption that distinct parameters are not aliases with each
other [54, 97]. We leave further investigation of unbounded programs as future work.

To sum up, we make the following key contributions in this paper:
• We identify and discuss the major challenges in scaling path-sensitive data dependence anal-

ysis, and particularly, in enforcing a path-sensitive memory abstraction.
• We introduce a precise and efficient approach to constructing value-flow graphs. Based on

the approach, we present a path-sensitive data dependence analysis that gracefully scales to
multi-million-line code bases with the precision of full path sensitivity.
• We demonstrate the utility of our techniques with two clients, thin slicing-based program

understanding and value-flow bug finding. We conduct experiments on 16 real-world C/C++
programs ranging from 13 KLoC to 8 MLoC, showcasing the significant precision and scal-
ability benefits of our approach.

2 OVERVIEW
We use the example in Fig. 1 to motivate the path-sensitive data dependence analysis, highlight its
challenges, and explain the essence of our approach.
Importance of Path-Sensitive Data Dependence. Suppose we need to detect double-free bugs
in the program shown in Fig. 1(a). In this program, there are two memory deallocation statements:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:4 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

①②

*x = a *x = b

d = *x

*y = d*y = c

e = *y

𝜑2 ¬𝜑2

𝜑2 ∧ ¬𝜑2 ≡ false(𝜑1 ∨ ¬𝜑1) ∧ (¬ 𝜑2)
≡ ¬ 𝜑2o1

e = *y

*y = c *y = d

d = *x

*x = a *x = b

o1
o2o2

o3 o3

int *foo(int **y) { //o3
int **x; *y = c;
if (𝜑1) { x = malloc(); } //o1
else { x = malloc(); } //o2
*x = a;
if (𝜑2) {

*x = b; free(a);
} else {

int *d = *x; *y = d;
}
int *e = *y;
if (𝜑2) { free(e); }

}

1
2
3
4
5
6
7
8
9

10
11
12
13

(a) Code snippet (b) Conventional value-flow graph (c) Our value-flow graph
Fig. 1. Comparing the conventional value-flow graph and our value-flow graph for answering demand de-
pendence queries. In (b), the label on an edge represents a memory object. In (c), the label on an edge is a
path condition.

free(a) and free(e). Observe that the value of 𝑎 can flow to 𝑒 only under the condition ¬𝜙2. Thus,
the program is safe, because the deallocations execute under the condition 𝜙2.

Assume we only approximate the data dependence information with a path-insensitive pointer
analysis, which leads to the conclusion that 𝑒 is data-dependent on 𝑎. Now, suppose that the bug-
finding phase only partially tracks path correlations of the deallocation statements and is unaware
of the path condition of the data dependence relation. Observe that the path conditions for the
two statements free(a) and free(e) are both 𝜑2, which do not conflict. Here, if taking 𝜑2 as the
path condition for a double-free vulnerability, our analysis would raise a false alarm because the
condition for 𝑒 to be data dependent on 𝑎 is ¬𝜑2. To summarize, the imprecise data dependence
information caused by the pointer analysis is passed on to the clients, hurting the precision.
Problem of Aliasing-Path-Explosion. However, obtaining path-sensitive data dependence in-
formation is far from trivial. The key challenge is maintaining a path-sensitive memory model,
which requires reasoning about numerous disjunctive cases when tracking path-sensitive pointer
information. For instance, at a load statement 𝑝 = ∗𝑥 or store statement ∗𝑥 = 𝑞, we need to
track the path condition of the statement and the conditions under which 𝑥 points to different
memory objects. The transfer function has to store and propagate an enormous amount of path-
sensitive information because (1) the number of pointers can be huge, each of which may access
hundreds of memory objects, (2) each memory object may be visited at hundreds or thousands
of program statements, and (3) the number of program paths (through different calling contexts
and control-flow paths) under which the statements execute is exponential. We refer to this prob-
lem as aliasing-path-explosion: analyzing path-sensitive data dependence information can require
reasoning about an excessive number of paths [6].
The State-of-the-Art. A recent analysis [99] has leveraged the idea of sparsity to refine flow-
insensitive results andmake them path-sensitive on demand. It first constructs the flow-insensitive
def-use chainswithAndersen analysis.These def-use chains then enable the subsequent on-demand
and path-sensitive analysis [99]. For instance, as shown in Fig. 1(b), the two edges between ∗𝑥 = 𝑎
and 𝑑 = ∗𝑥 state that the value of pointer 𝑎 can flow to the pointer 𝑑 via the memory objects 𝑜1 or
𝑜2, implying that 𝑑 may be data-dependent on 𝑎.

However, the flow-insensitive pre-analysis does not retain path information. Consequently,
when answering demand queries, the primary analysis still suffers from aliasing-path-explosion.
For example, if a client asks “what are the set of variables 𝑒 may be data-dependent on?”, we per-
form an on-demand backward traversal from 𝑒 = ∗𝑦 to ∗𝑥 = 𝑎, ∗𝑥 = 𝑏, ∗𝑦 = 𝑐 , respectively. In the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:5

worst case, this graph traversal requires searching five paths and solving five path constraints.This
number of paths exceeds the total number of paths in the program (which is four), meaning that
the aliasing-path-explosion can be even worse than the well-known scalability problem caused by
conditional branching in symbolic execution [6].

In essence, existing sparse analysis can use a pre-analysis to identify the relevant memory ob-
jects (as in Fig. 1(b)). However, the pre-analysis can only reduce the number of memory objects
to track, but not the number of value flow paths going through those relevant memory objects,
because it is unaware of the path conditions qualifying the value flows. When pursuing path sen-
sitivity, the primary analysis has to introduce sensitivity to all potentially polluting statements,
which can leave the overhead out of control. Consequently, the primary path-sensitive analysis
cannot avoid aliasing-path-explosion.
Our Approach. To mitigate the problem, our key insight is two-fold. First, we can identify a data
dependence relation induced by pointer expressions without knowledge of the specific memory
objects referenced by the pointers. Second, many program paths qualifying a dependence relation
are redundant and can be symbolically identified and merged while maintaining precision. For
example, intuitively, the variable 𝑑 may be data-dependent 𝑎, regardless of whether 𝑥 points to
𝑜1 or 𝑜2. Besides, only the branching condition 𝜑2 affects the dependence relation, and the truth
value of the branching condition 𝜑1 is irrelevant. However, previous work [6, 99] must separate
the two edges and label them with different memory objects to preserve the capability of precision
refinement based on the memory objects.

Based on the insight, we present a fused approach to path-sensitive data dependence analysis.
At a high level, our approach works in two phases.

In the first phase, we introduce awhole-program-point but lazy pointer analysis to build guarded
and storeless value-flow graphs (§ 4). The analysis operates over a propositional abstraction of the
program, taking advantage of lightweight, Boolean-level semi-decision procedures to effectively
prune false value-flow edges, merge duplicate edges, and simplify the guards. For example, as il-
lustrated in Fig. 1(c), our analysis achieves two significant benefits : ¬ efficiently pruning many
infeasible value flows, and effectively merging and simplifying path constraints when merging
value-flow edges. Additionally, to build interprocedural value-flow graphs, it only clones the mem-
ory access path expressions rooted at a function parameter and incurring side effects, avoiding the
computation of a whole-program image of the heap.

In the second phase, we can answer demand transitive data dependence queries over the graphs
(§ 5). Specifically, the client analysis can piggyback the computation of fully path-sensitive pointer
information with the resolution of transitive dependence. During this process, it can collect the
constraints and solve them using a full-featured SMT solver. For example, consider Fig. 1(c), where
the memory objects pointed-to by 𝑥 and 𝑦 are implicit. To determine the values that 𝑒 is data-
dependent on, we perform a backward graph traversal, only requiring to traverse two paths: from
𝑒 to 𝑐 and from 𝑒 to 𝑎. To detect double-free bugs, we perform a forward traverse from 𝑎 to 𝑒 ,
collecting the guard qualifying the edges (i.e., ¬𝜑2 ∧ ¬𝜑2). We also collect the path conditions of
the two statements free(a) and free(e) (i.e., 𝜑2 ∧ 𝜑2). As can be seen, we can eliminate the false
positive because ¬𝜑2 ∧ 𝜑2 is unsatisfiable.

Compared with the state-of-the-art that constructs value-flow graphs via a flow-insensitive
points-to analysis and labels each edge with a memory object [83, 99], our analysis has two major
benefits. First, it catches the path correlations amongmemory operations, thus pruningmore infea-
sible edges than path-insensitive analyses. Second, it concisely merges and simplifies the guards
of valu-flow edges, which can be induced by different memory objects and control-flow paths.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:6 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

Program 𝑃 := 𝐹+
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹 := 𝑓 (𝑣1, 𝑣2, ...) { 𝑆 ; }

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝑆 := 𝑣1 = &𝑣2 | 𝑣1 = 𝑣2 | 𝑣 = 𝜙 ((𝜑1, 𝑣1), (𝜑2, 𝑣2), . . .) | 𝑣1 = ∗𝑣2 | ∗ 𝑣1 = 𝑣2

| 𝑟 = call 𝑓 (𝑣1, 𝑣2, ...) | return 𝑣 | if (𝑣) { 𝑆1; } else { 𝑆2; } | 𝑆1; 𝑆2
Fig. 2. The syntax of the language.

𝐿𝑎𝑏𝑒𝑙𝑠 ℓ ∈ L 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑣 ∈ V 𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 𝑜 ∈ O 𝐺𝑢𝑎𝑟𝑑 𝜑 (𝑣1, . . .) ∈ Ψ
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 E := V → 2(Ψ,O) 𝑆𝑡𝑜𝑟𝑒 S := O → 2(Ψ,L,V)

Fig. 3. The abstract domains.

3 PROBLEM FORMULATION

Bounded Programs. We formalize our analysis with a simple language in Fig. 2. Programs are
in the static single assignment form. We use 𝑣𝑖 to denote a program variable. In the 𝜙-assignment,
𝜑𝑖 is the gated function for each 𝑣𝑖 , which means 𝑣 = 𝑣𝑖 if and only if 𝜑𝑖 is satisfied. These gated
functions can be computed in almost linear time [67]. Without loss of generality, we assume that
each function has only one return statement.

Our analysis targets bounded programs to aid in understanding and detecting bugs in large, real-
world software. We unroll each loop and function call in the control flow graph and the call graph
twice, bounding the heap size that can be accessed. We also follow the assumption in the prior
study [97] that distinct parameters are not aliases with each other (§ 4.2). Hence, in its current
form, our approach is a not sound verification framework for unbounded programs.
Abstract Domains. The symbols and abstract domains are listed in Fig. 3. A label ℓ ∈ L indicates
the position of a statement in the control flow graph. A guard condition 𝜑 (𝑣1, . . .) is a first-order
formula overV . In the rest of the paper, we omit the variables in 𝜑 for simplicity, which is aligned
with [17, 18]. We factor the abstract domain to the points-to environment E and abstract store S,
where E(𝑣) = {(𝜑, 𝑜)} means that the pointer 𝑣 points to the memory object 𝑜 under the condition
𝜑 , and S(𝑜) = {(𝜑, ℓ, 𝑣)} states that the memory object contains the value 𝑣 , which is stored in the
memory object at the program point ℓ on the condition 𝜑 . For simplicity, we define the operation
Π𝜑 to query E and S under a condition 𝜑 . Formally,

Π𝜑 (S(𝑜)) = {(𝜋 ∧ 𝜑, ℓ, 𝑣) | (𝜋, ℓ, 𝑣) ∈ S(𝑜)}
Π𝜑 (E(𝑣)) = {(𝜋 ∧ 𝜑, 𝑜) | (𝜋, 𝑜) ∈ E(𝑣)}

In addition, we also define a special set-union operator for E as below, i.e.,⊎, such that wemerge
points-to environment for the same memory object. That is, ∀(𝜋, 𝑜) ∈ E(𝑣) and (𝜋 ′, 𝑜) ∈ E′ (𝑣), we
merge the abstract values such that (𝜋 ∨ 𝜋 ′, 𝑜) ∈ E(𝑣) ⊎ E′ (𝑣). We abuse the union operators, i.e.,
E1 ⊎ E2 and S1 ∪ S2, to mean we merge the maps by applying ⊎ or ∪ to the values of each key.
Value-FlowGraph. Intuitively, a value𝑞 flows to 𝑝 if𝑞 is assigned to 𝑝 directly (via an assignment,
such as 𝑝 = 𝑞) or indirectly (via pointer dereferences, such as ∗𝑥 = 𝑞;𝑦 = 𝑥 ;𝑝 = ∗𝑦;). In this work,
we use value-flow graphs as below:

Definition 3.1. (Guarded and Storeless Value-Flow Graph) A guarded and storeless value-flow
graph is a directed graph G = (N , E, C), where N , E, and C are defined as following:
• N is a set of nodes, each denoted by 𝑣@ℓ , meaning that the variable 𝑣 is defined or used at

a program location ℓ .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:7

• E ⊆ V×V is a set of edges, each of which represents a value-flow relation. (𝑣1@ℓ1, 𝑣2@ℓ2) ∈
E means that the value 𝑣1@ℓ1 flows to 𝑣2@ℓ2.
• C maps each edge in the graph to a condition 𝜑 , meaning the value-flow relation holds only
when the condition is satisfied.

The graph is guarded because a value-flow edge is labeled with the condition 𝜑 qualifying the
edge. When establishing these edges, it is important to track the values stored at a store statement
and determine the values that can be loaded at a load statement. We will explain this process in
the following section. The graph is storeless because, unlike the def-use graph, memory SSA, or
SVFG in [30, 84, 88, 99, 101], we do not label the (indirectly) accessed memory objects at a load or
store, and the subsequent client analysis does not require case-splitting over the points-to sets.
Problem Statement. The central task in tracking path-sensitive data dependence is to enforce a
path-sensitive memorymodel, which suffers from the aliasing-path-explosion problem (§ 2). A cru-
cial question that drives this work is: what should be the relationship between the pointer analysis
(if any) and the path-sensitive memory model? Without an auxiliary pointer analysis, the boot-
strapped approach, such as symbolic execution, rests on purely symbolic encoding to capture the
correlations of statements but struggles to scale. When using an (exhaustive, path-insensitive) aux-
iliary points-to analysis, as in the layered approach, there is a discrepancy between the memory
abstraction established by the pointer analysis and the one enforced by the primary path-sensitive
analysis. Worse still, the primary analysis may have to regain precision for a vast number of pro-
gram statements and memory objects, resulting in unmanageable overhead.

To summarize, there is a tension in existing works between tracking path-sensitive pointer in-
formation too early (as in the bootstrapped approach)–which results in an overwhelming cost of
symbolic reasoning –and tracking it too late (as in the layered approach)–which limits the benefits
of path sensitivity because of spurious and redundant propagation of pointer information [6, 99].
To balance this tension, our fused approach builds a symbolic storeless representation for pointer
expressions (§ 4), which concisely summarizes how values flow in and out of thememory, enables a
path-sensitive memory model upfront, and boosts the subsequent on-demand, fully path-sensitive
tracking of transitive data dependence (§ 5).

4 BUILDING GUARDED AND STORELESS VFG
In this section, we discuss the details of our approach in three parts: the intra-procedural analysis
(§4.1), the inter-procedural analysis (§4.2), and the construction of the value-flow graph alongside
the analysis (§4.3).

4.1 Intraprocedural Analysis
This section presents our intraprocedural analysis to compute E and S so that we can establish
indirect value flows by querying what values can be loaded at a load statement. We first define the
abstract transformers, which enable a conventional data-flow analysis. At the end of § 4.1.1, we
summarize the challenges for optimization, which are addressed in § 4.1.2 and § 4.1.3.

4.1.1 Abstract Transformers. Fig. 4 lists the rules for analyzing the basic statements. Each rule is
of the form E, S ⊢ ℓ, 𝜑 : stmt : E′, S′, which states that given the current points-to environment
E, abstract store S, and path condition 𝜑 , the statement stmt at the program point ℓ produces
new points-to environment E′ and/or abstract store S′. In these rules, we use E[𝑝 ↦→ {. . . }] and
S[𝑜 ↦→ {. . . }] to mean that the maps are updated by binding the pointer 𝑝 and the memory object
𝑜 to new abstract values, respectively.

Rule addR creates memory objects at allocation sites. Rule copy updates the points-to environ-
ment E of one variable 𝑝 via the other 𝑞. Note that since we assume the code is in the SSA form,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:8 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

E′ = E[𝑝 ↦→ (𝜑, alloc𝑎)]
E, S ⊢ ℓ, 𝜑 : 𝑝 = &𝑎 : E′, S

addR
E′ = E[𝑝 ↦→ Π𝜑 (E(𝑞))]
E, S ⊢ ℓ, 𝜑 : 𝑝 = 𝑞 : E′, S

copy
E′ = E[𝑝 ↦→ ⊎𝑛

𝑖=1 Π𝜑𝑖 (E(𝑝𝑖))]
E, S ⊢ ℓ, 𝜑 : 𝑝 = 𝜙 ((𝜑1, 𝑝1), ..., (𝜑𝑛, 𝑝𝑛) : E′, S

phi

|Π𝜑 (E(𝑥)) | > 1⇒ S′ = S[𝑜 ↦→ { (𝜋, ℓ, 𝑞) | (𝜋,𝑜) ∈ Π𝜑 (E(𝑥)) } ∪ S(𝑜)]
|Π𝜑 (E(𝑥)) | = 1⇒ S′ = S[𝑜 ↦→ { (𝜋, ℓ, 𝑞) | (𝜋,𝑜) ∈ Π𝜑 (E(𝑥)) }]

E, S ⊢ ℓ, 𝜑 : ∗𝑥 = 𝑞 : E, S′
stoRe

E′ = E[𝑝 ↦→ ⊎
(𝜋,𝑜) ∈Π𝜑 (E(𝑦))

∪
(𝜑,ℓ ′,𝑣) ∈Π𝜋 (S(𝑜)) Π𝜑 (E(𝑣))]

E, S ⊢ ℓ, 𝜑 : 𝑝 = ∗𝑦 : E′, S
load E, S ⊢ 𝑆1 : E′, S′ E′, S′ ⊢ 𝑆2 : E′′, S′′

E, S ⊢ 𝑆1;𝑆2 : E′′, S′′
seencing

E, S ⊢ 𝑆1 : E′, S′ E, S ⊢ 𝑆2 : E′′, S′′

E, S ⊢ 𝑖 𝑓 (𝑣) { 𝑆1; } 𝑒𝑙𝑠𝑒 { 𝑆2; } : E′ ⊎ E′′, S′ ∪ S′′
bRanching

Fig. 4. Basic rules for updating E and S.

vflow(ℓ1, 𝜑1 : ∗𝑥 = 𝑞; · · · ; ℓ2, 𝜑2 : 𝑝 = ∗𝑦)

∀(𝜋𝑖 , 𝑜𝑖) ∈ Π𝜑2 (E(𝑦))
∀ (𝜑𝑖 , ℓ1, 𝑞) ∈ Π𝜋𝑖 (S(𝑜𝑖))

(𝑞@ℓ1, 𝑝@ℓ2) ∈ E, C((𝑞@ℓ1, 𝑝@ℓ2)) = ∨𝜑𝑖

Fig. 5. Building indirect value-flow edges.

every top-level variable has a single definition. Thus, Rule addR and Rule copy perform strong
updates. Rule phi merges the points-to environment at the joint point of multiple paths. Basically,
Rule copy and Rule phi are self-explanatory. Thus, we will focus on the stoRe and load rules.

Rule stoRe processes a store statement ∗𝑥 = 𝑞 under path condition 𝜑 , resulting in new con-
figurations of the abstract store S. We first query the memory objects 𝑥 may point-to, denoted as
Π𝜑 (E(𝑥)). For all guarded memory objects (𝜋, 𝑜) ∈ Π𝜑 (E(𝑥)), we update the abstract store S to
record the values that 𝑜 may hold. Following conventional singleton-based algorithms, if 𝑥 points
to at most one concrete memory object, we can perform an indirect strong update, which kills
other values held by the memory object 𝑜 [19, 29, 30, 45, 101].

Given a load statement 𝑝 = ∗𝑦 under path condition 𝜑 at program location ℓ , we apply Rule
load as follows. Similar to the stoRe rule, we query the memory objects that 𝑦 may point-to
under the condition 𝜑 , denoted Π𝜑 (E(𝑦)). We then fetch the values from each memory object
(𝜋, 𝑜) ∈ Π𝜑 (E(𝑦)), denoted as Π𝜋 (S(𝑜)). Finally, for every (𝜑, ℓ ′, 𝑣) ∈ Π𝜋 (S(𝑜)), we update E by
adding the points-to set of 𝑣 under condition 𝜑 as a subset of the points-to set of 𝑝 .

Rule seencing and Rule bRanching deal with compound statements. The former says that
we use the post-condition of a statement as the precondition of the immediate next statement. The
latter merges the abstract store and environment from multiple paths.
Merging Value-Flow Edges. As mentioned in § 3, our analysis computes a guarded and storeless
value-flow graph that summarizes value flows induced by the memory. We formalize the rule for
building indirect value-flow edges in Fig. 5. The vflow rule states that when 𝑞@ℓ1 and 𝑝@ℓ2 are
stored and loaded from the same memory object 𝑜 , 𝑝@ℓ2 may alias with 𝑞@ℓ1.

In the rule, suppose that Π𝜑2 (E(𝑦)) = {(𝜋1, 𝑜1), (𝜋2, 𝑜2)}, such that (𝜑1, ℓ1, 𝑞) ∈ Π𝜋1 (S(𝑜1)) and
(𝜑2, ℓ1, 𝑞) ∈ Π𝜋2 (S(𝑜2)). As illustrated in Fig. 1(b), conventional approaches build flow-insensitive
value-flow edges [84, 99]. Thus, they have to distinguish a value flow induced by different memory
objects, so that they can preserve the capability of precision refinement based on the memory
objects. However, these methods can still suffer from the aliasing-path-explosion problem, making
the analysis hard to scale (§ 2).

To address this problem, the vflow rule merges the value-flow edges, which not only reduces
the number of edges but also can normalize and simplify the conditions based on some simple
rewriting rules. For example, when merging two value-flow edges under the conditions 𝜑 ∧ 𝜋 and
¬𝜑 ∧ 𝜋 respectively, the condition can be simplified as 𝜋 after merging.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:9

Algorithm 1: Write a value to memory objects and propagate the value
Input: A store statement ℓ, 𝜑, ∗𝑥 = 𝑣
Output: Update the abstract store S

1 for (𝜋,𝑜) ∈ Π𝜑 (E(𝑥)) do
2 Sℓ (𝑜) ← Sℓ (𝑜) ∪ { (𝜋, ℓ, 𝑣) };
3 forall ℓ ′ is a dominance frontier of ℓ do
4 Sℓ ′ (𝑜) ← Sℓ ′ (𝑜) ∪ { (𝜋 ∧ 𝜑, ℓ, 𝑣) } ;

Algorithm 2: Read values from memory objects by walking up the dominator tree
Input: A load statement ℓ, 𝜑 : 𝑢 = ∗𝑥
Output: Values that can be loaded from ∗𝑥

1 𝑅 ← ∅;
2 for (𝛽, 𝑜) ∈ Π𝜑 (E(𝑥)) do
3 𝑅 ← 𝑅 ∪ ReadFromObject(𝛽 , 𝑜 , ℓ);
4 return 𝑅;
5 Function ReadFromObject(𝛽 , 𝑜 , ℓ):
6 𝜎 ← true, 𝑅𝑜 ← ∅;
7 while ℓ ≠ 𝑛𝑢𝑙𝑙 do
8 for (𝜋, ℓ ′, 𝑣) ∈ Sℓ (𝑜) do
9 𝜑 ← 𝜋 ∧ 𝜎 ∧ 𝛽 ;

10 if 𝜑 is satisfiable then
11 𝑅𝑜 ← 𝑅𝑜 ∪ { (𝜑, ℓ ′, 𝑣) };
12 if (𝜋, ℓ ′, 𝑣) is a strong update at ℓ then
13 return 𝑅𝑜 ;
14 𝜎 ← ¬𝜋 ∧ 𝜎 ;
15 ℓ ← the immediate dominator of ℓ ;
16 return 𝑅𝑜 ;

Challenges.However, a highly precise (e.g., flow- and path-sensitive) analysis that uses the above
rules to compute value-flow edges is notoriously expensive, due to the following challenges:

(1) Conservative propagation. Propagating data-flow facts along control flows is expensive [30].
To mitigate this problem, data-flow facts can be propagated along with def-use chains. How-
ever, the def-use information of memory objects is unavailable without a pointer analysis.
To resolve the paradox, most existing efforts [30, 83, 84, 99, 100] perform a lightweight but
imprecise pointer analysis to over-approximate the def-use chains. Due to the imprecision,
many false def-use relations are introduced, hurting performance.

(2) Constraints explosion. Our analysis needs to account for a large number of guard updates for
each statement, quickly causing the explosion of constraints. If we aim to design a demand-
driven and path-sensitive data dependence analysis, it is both intractable and unnecessary
to pay the full price of path-sensitive reasoning upfront.

To address these challenges, we use an on-the-fly sparse analysis that computes def-use re-
lations incrementally during the analysis, instead of relying on precomputed imprecise def-use
chains (§ 4.1.2), and design a semi-path-sensitive analysis that simplifies and partially solves the
constraints to merge and prune value-flow edges (§ 4.1.3).

4.1.2 On-the-Fly Sparse Analysis. To address the challenge of conservative propagation, we utilize
the idea of sparsity to skip unnecessary control flowswhen propagating data-flow facts. To this end,
instead of leveraging the imprecise def-use relations computed by a pre-analysis, we construct the
def-use relations incrementally during the analysis, along with the precise pointer information
discovered. To formally present the idea, we maintain the abstract store S as a set of Sℓ , which
describes the abstract store at the program point ℓ .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:10 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

ThestoReRule. We follow the idea in SSA formwhere a variable defined at a program point ℓ can
only be used at a program point dominated by ℓ or in the dominance frontier where the definition is
merged with other definitions [13]. Suppose at program point ℓ , a store statement writes a guarded
value (𝜑, ℓ, 𝑣) to the memory object 𝑜 . As shown in Alg. 1, it takes two steps to update the abstract
store. First, we write (𝜑, ℓ, 𝑣) into the local store Sℓ (𝑜) (Line 3). Second, we propagate the abstract
value to the dominance frontiers of ℓ . We update the guard for the propagated abstract value,
which is the conjunction of 𝜑 and the path condition of ℓ (Lines 4-5). Note that it is unnecessary
to propagate the abstract value to program points dominated by ℓ , because at the load time, we
can walk up the dominance tree to find the corresponding definitions (see the next paragraph).

: x = &m
: y = &n
: *x = c

ℓ6 : f = *x

ℓ4 : *x = d ℓ5 : *y = d

𝕊 (allocm) = { (true, ℓ3, c) }

𝜑 ¬𝜑

𝕊 (allocm) = { (𝜑, ℓ4, d) } 𝕊 (allocn) = { (¬𝜑, ℓ5, d) }

ℓ1
ℓ2
ℓ3

𝕊 (allocm) = { (𝜑, ℓ4, d) }
𝕊 (allocn) = { (¬𝜑, ℓ5, d) }

ℓ3

ℓ4 ℓ5

ℓ6

ℓ6

Fig. 6. An example of sparse analysis.

Example 4.1. Consider the program in Fig. 6.
After the program point ℓ1 and the program
point ℓ2, the pointer 𝑥 and the pointer 𝑦 point
to the memory objects alloc𝑚 , alloc𝑛 , respec-
tively. Suppose that we are analyzing the store
statement ∗𝑥 = 𝑑 at the program point ℓ4.
The abstract value (𝜑, ℓ4, 𝑑) is stored into the
memory object alloc𝑚 and then propagated to
the abstract store of ℓ4’s dominance frontier,
i.e., the program point ℓ6. Therefore, we have
Sℓ4 (alloc𝑚) = {(𝜑, ℓ4, 𝑑)} and Sℓ6 (alloc𝑚) =
{(𝜑, ℓ4, 𝑑)}. Similarly, after analyzing the store
statement ∗𝑦 = 𝑑 at the program point ℓ5, we have Sℓ5 (alloc𝑛) = {(¬𝜑, ℓ5, 𝑑)}, which is then propa-
gated to the dominance frontier of the program point ℓ5, i.e., the program point ℓ6. Hence, we have
Sℓ6 (alloc𝑛) = {(¬𝜑, ℓ5, 𝑑)}.

The load Rule. As shown in Alg. 2, for a load statement 𝑢 = ∗𝑥 at the program point ℓ , we track
the values that can be read from the memory objects pointed-to by 𝑥 . For each memory object 𝑜 , it
suffices to walk up the dominance tree (Lines 6-15) to gather abstract values until a strong update
is found. The basic idea behind the approach is that the definition of a variable must dominate its
uses. This is a linear search in the dominance tree.

Example 4.2. Consider the program in Fig. 6. When analyzing the load statement 𝑓 = ∗𝑥 at the
program point ℓ6, we need to read values from the memory objects pointed-to by 𝑥 . To this end,
we gather abstract values stored into alloc𝑚 that is pointed-to by 𝑥 . To do this, the sub-procedure
ReadFromObject walks up the dominator tree from the program point ℓ6. From the dominator ℓ6,
we can read the value (𝜑, ℓ4, 𝑑), which is written into alloc𝑚 at b2 and propagated to b4. From the
dominator ℓ3, we can read the value (𝜑, ℓ3, 𝑐), which is written into alloc𝑚 at b1 that dominates b4.
4.1.3 Semi-Path-Sensitive Analysis. Path sensitivity comes in many flavors, depending on the in-
formation encoded as constraints. Previous research on path-sensitive pointer/heap analysis has
either (1) adopted relatively coarse abstractions in which Boolean variables abstract the control
flow, ignoring the actual predicate of the branching condition and the computations in each basic
block [88], or (2) used expensive abstractions with first-order formulas to encode the entire history
of memory writes and reads, resulting in significant overhead [18, 28, 54].1

To build the guarded and storeless value-flow graph, we explore a sweet spot in the space that is
semi-path-sensitivewith the following characteristics. First, wework on a propositional abstraction
1Livshits and Lam [54] invoke a computer algebra system. Hackett and Aiken [28] implement a procedure similar to bit-
blasting that translates arithmetic constraints to SAT constraints. Dillig et al. [18] use the Mistral SMT solver.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:11

*x = a

d = *x

*x = b

𝜑1 ∧ ¬ 𝜑2 𝜑1 ∧ 𝜑2 ∧ ¬𝜑2

*x = a *x = b

d = *x
¬𝜑1 ∧ ¬ 𝜑2 ¬𝜑1 ∧ 𝜑2 ∧ ¬𝜑2

(a) Value flow through memory object 𝑜1 (b) Value flow through memory object 𝑜2

*x = a *x = b

d = *x
(𝜑1 ∨ ¬𝜑1) ∧ (¬ 𝜑2)

≡ ¬ 𝜑2

𝜑2 ∧ ¬𝜑2

(c) Merging value flows through 𝑜1 and 𝑜2
Fig. 7. Pruning and merging value-flow graph edges for the program in Fig. 1(a).

of the program, where program statements are abstracted as Boolean skeletons, as in CDCL(𝑇)-
based SMT solving. For instance, we abstract the branching conditions 𝑥 > 2 and 𝑥 ≤ 2 as well as
the assignment t𝑦 = 100/2, to fresh Boolean literals 𝑝 ,¬𝑝 , and𝑞, respectively.This encoding allows
for some degrees of branch correlation tracking while also preserving the capability to recover the
full path condition in the subsequent transitive dependence tracking phase. Second, instead of
applying a full-featured SAT solver, we adopt several linear time semi-decision procedures such
as unit-propagation [102] for identifying “easy” unsatisfiable constraints, as well as performing
lightweight logical simplifications such as tautology elimination.

In our experiment, we discovered that approximately 70% of the path conditions generated by
the analysis are satisfiable. For the remaining ones, 80% of them are easy constraints and can be
solved with the semi-decision procedures. We found that many infeasible path-sensitive facts can
be filtered because programmers tend to maintain implicit and simple correlation of conditional
points-to relations, which helps ensure some logical properties (e.g., cross-platform compatibility)
and improves human readability. This correlation is made explicit by our analysis.

Example 4.3. Consider the program in Fig. 1(a). Observe that the variable 𝑥 may point to 𝑜1 or 𝑜2.
A path-insensitive algorithm will conclude that 𝑑 may alias with {𝑎,𝑏}, where 𝑏 is a false positive.
We now explain intuitively how our algorithmworks and prunes the false positive. Let us consider
the two cases where 𝑥 points to 𝑜1 or 𝑜2, respectively. First, if 𝑥 points to 𝑜1, as in Fig. 7(a), our
analysis will conclude that (1) (𝜑1 ∧ ¬𝜑2, 𝑎) and (2) (𝜑1 ∧ 𝜑2 ∧ ¬𝜑2, 𝑏) may flow to 𝑑@𝑑 = ∗𝑥 . The
semi-path-sensitive analysis can decide that the guard of the second item is unsatisfiable. Hence,
the value 𝑏 is pruned. Second, if 𝑥 points to 𝑜2, as in Fig. 7(b), the analysis can also prune the value
𝑏. Finally, after merging the two graphs induced by 𝑜1 and 𝑜2, we obtain the graph in Fig. 7(c).
Summary. The on-the-fly sparse analysis and the semi-path-sensitive analysis conspire to address
the challenges of conservative propagation and constraints explosion (§ 4.1.1). When propagating
data-flow facts, sparse analysis skips unnecessary control flows, improving analysis efficiency.The
semi-path-sensitive analysis removes false points-to-facts and merges and simplifies redundant
ones, which not only improves precision but also benefits efficiency because smaller points-to sets
lead to less work [46, 76]. Note that abstracting relations as Boolean variables is conservative. Our
semi-decision procedure can soundly prune unsatisfiable ones but is incomplete, i.e., unsatisfiable
ones may be classified as satisfiable but not vice versa.

4.2 Interprocedural Analysis
For building interprocedural value-flow graphs, we perform a bottom-up and summary-based anal-
ysis, which breaks down the entire abstraction into smaller components to enable the on-demand
resolution of data dependency.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:12 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

Algorithm 3: Summarize an interface variable
Input: An interface variable (parameter or return) 𝑥
Output: Updated E, S with auxiliary variables

1 𝑊𝐿 ← {𝑥 };
2 while𝑊𝐿 is not empty do
3 𝑥 ← pop an element from𝑊𝐿;
4 𝑅,𝑜𝑥 ← create an auxiliary variable and a memory object;
5 for (𝜋,𝑜) ∈ E(𝑥) do
6 for (𝜑, ℓ ′, 𝑣) ∈ Π𝜋 (S(𝑜)) do
7 E(𝑅) ← E(𝑅) ∪ Π𝜑 (E(𝑣)) ;
8 E(𝑥) ← { (true, 𝑜𝑥) }, S(𝑜𝑥) ← { (true, _, 𝑅) };
9 if 𝑅 is a pointer then
10 𝑊𝐿 ←𝑊𝐿 ∪ {𝑅}

int *qux(int **x) {
foo(x); //cs1
int* m = *x;
return m;

}

void *bar(int **z) {
foo(z); //cs2
int* n = *z;
if (𝜑) { free(n); }

}

void foo(int **y) {
int *c = &j, *a = &k;
if (𝜑) { *y = c; free(a); }
else { *y = a; }

}

ℓ1
ℓ2
ℓ3

*y = a

*x = L1 *z = L2

m = *x n = *z

*y = c

R = *y foo

qux bar

𝜑 ¬𝜑

c = &j a = &k

ℓ1
ℓ2
ℓ3
ℓ4

int *qux(int **x) {
int *L1 = foo(x);
*x = L1;
int* m = *x;
return m;

}
void bar(int **z) {

int *L2 = foo(z);
*z = L 2;
int* n = *z;
if (𝜑) { free(n); }

}
int* foo(int **y) {

int *c = &j, *a = &k;
if (𝜑) { *y = c; free(a); }
else { *y = a; }
int *R = *y; return R;

}

(a) Code snippet (b) Transformed code (c) The value-flow graph
Fig. 8. An example of using a concise summary and performing the on-demand search.

4.2.1 Prerequisite and Assumption. We first discuss a few design choices for our approach, which
are important to make path-sensitive analysis practical.
Call Graph. A pointer analysis often faces the “chicken-and-egg” problem: performing the analy-
sis requires a call graph, which in turn requires reasoning about function pointers [25]. To obtain
a sound call graph, we use a Steensgaard-style, flow- and context-insensitive analysis [103]. Previ-
ous studies [30, 63] have shown that a precise call graph for C-like programs can be constructed
using only flow-insensitive analysis. In our pointer analysis for building value-flow graphs, we do
not refine the call graph on the fly. Applying on-the-fly call graph construction in a precise anal-
ysis, which is both flow- and semi-path-sensitive, can be computationally expensive. This design
follows [54] but differs from the common practices of the Java pointer analysis community, and
can be a source of imprecision in our approach.
Entry Aliasing. The handling of possible alias relations among function parameters in the ab-
sence of caller information is an important design choice in bottom-up summary-based pointer
analysis [18]. The relevant context inference (RCI) [11] approach eagerly constructs one trans-
fer function by assuming the presence of all possible entry aliasing, whereas the partial transfer
function (PTF) [96] lazily constructs multiple transfer functions based on different aliasing at call
sites. We notice that these approaches can be prohibitively expensive in a flow-, context- and semi-
path-sensitive analysis. Hence, to trade soundness for scalability, we assume that there is no entry
aliasing, following [97].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:13

4.2.2 Summary Generation and Application. We present several important optimizations for im-
proving the scalability of the analysis.
Concise Size-Effects Summaries. To achieve context sensitivity, conventional summary-based
analyses conservatively identify the side effects of a function, which are then cloned at every call
site of the summarized function in the upper-level callers [18, 97]. However, the size of the side-
effect summary can quickly explode, becoming a significant obstacle to scalability. To illustrate,
consider the program in Fig. 8(a). In conventional approaches, the summary of foo is the points-to
information, E and S, of the interface variable 𝑦 at the exit point of foo:

E(𝑦) = {(true, 𝑜)}; S(𝑜) = {(𝜑, ℓ2, 𝑐), (¬𝜑, ℓ3, 𝑎)};

The two variables 𝑎 and 𝑐 are cloned twice by cloning the summary to the two call sites in qux
and bar. When the summaries of qux and bar are cloned to their upper-level callers, 𝑎 and 𝑐 will
continue to be cloned. As a result, the size of the summary will increase exponentially.

To mitigate the problem, our basic idea is to introduce symbolic auxiliary variables, each of
which stands for a class of variables to clone. Then, we can only clone a single auxiliary variable
during interprocedural analysis, reducing the burden of cloning. For the above example, we in-
troduce an extra value 𝑅 for the function foo to represent all values (e.g., 𝑎 and 𝑐) stored in the
memory object pointed to by 𝑦. As a result, the function summary gets smaller as the following,
and we only need to clone a single variable 𝑅 to the callers during the interprocedural analysis.

E(𝑦) = {(true, 𝑜)}; S(𝑜) = {(true, ℓ4, 𝑅)};
𝑅 ↦→ {(𝜑, ℓ2, 𝑐), (¬𝜑, ℓ3, 𝑎)}

Intuitively, this summarization process entails adding an extra return value to the function foo,
as depicted in Fig. 8(b). Formally, the process is illustrated in Alg. 3, where the points-to results are
merged into a single auxiliary variable, to alleviate the burden imposed by the cloning processes.
Each auxiliary variable represents a modified non-local memory object accessed via an access path
rooted at an interface variable. In summary, the process facilitates local reasoning concerning the
value flows, as opposed to global reasoning encompassing the entire heap.
Summary Application.When a caller may invoke a summarized function, we apply the function
summary at the call site, as shown with the rule in Fig. 9. In the rule, we use E𝑓 and S𝑓 to denote
the points-to environment and abstract store of the callee 𝑓 respectively and use E and S for those
of the caller. The rule consists of two major steps.
• Step (1) instantiates the summary of the callee 𝑓 by replacing symbols in callee with those in

the caller, which results in the (potentially) updated E𝑓 and S𝑓 using context-specific map-
pings.Themapping of formal parameters/returns is straightforward (Note that 𝑟 uses strong
updates due to SSA), so we focus on the auxiliary variables. Assume we have𝐴𝑃 (𝐹) = ∗𝑝𝑎𝑟𝑎,
where 𝑝𝑎𝑟𝑎 and 𝐹 are the formal parameter and auxiliary variable respectively. We can in-
stantiate 𝐹 by querying the values that can be loaded from ∗𝑢 (𝑢 is the actual parameter),
using the points-to environment and abstract store of the caller.
• Step (2) applies the instantiated summary of the callee, which simulates the memory behav-

iors of the function call by merging the environment and stores of callee into the caller, i.e.,
performing the summary cloning. Particular, if a memory object is allocated at the callee 𝑓
(or its transitive callees) and can escape to the caller, we clone the escaped object to distin-
guish allocations made at different call sites [44, 53].

Memorizing Instantiation Results. When processing a function with many (transitive) callees
(e.g., functions near the root of the call graph), the above procedure can be time-consuming. To
accelerate the process, we use a memorization strategy as follows. In real-world C/C++ programs,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:14 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

(1) E′
𝑓
= E𝑓 [𝑢/𝑝𝑎𝑟𝑎;𝐴/𝐹 ; 𝑟/𝑟𝑒𝑡] S′

𝑓
= S𝑓 [𝑢/𝑝𝑎𝑟𝑎;𝐴/𝐹 ; 𝑟/𝑟𝑒𝑡]

(2) E′ = E ⊎ Π𝜑 (E′𝑓) S′ = S ∪ Π𝜑 (S′𝑓)

E, S ⊢ ℓ, 𝜑 : 𝑟 = call 𝑓 (𝑢) : E′, S′
call

Fig. 9. Apply the summary of a callee 𝑓 (𝑝𝑎𝑟𝑎) → 𝑟𝑒𝑡 , where 𝑝𝑎𝑟𝑎 and 𝑟𝑒𝑡 are formal parameter and return,
respectively. We assume that 𝑢 and 𝑟 are actual parameter and return, respectively; 𝐴 and 𝐹 are auxiliary
actual/formal parameters, respectively.

it is common that different callee of a function share the same structure pointer parameter. As
a result, certain access paths need to be instantiated multiple times. Meanwhile, we observe that
many structure fields are seldom changed once initialized [93], although not declared as “static”.
Consequently, the instantiation results tend to be the same across different call sites within a
function, except for the path conditions. Hence, to reduce redundant querying and updating of
the abstract store S and points-to environment E, we maintain a cache of summary instantiation
results within each function.

4.3 Constructing the Value-Flow Graphs
Alongside the analysis, we can construct the value-flow graph (§ 3) for each function. The graph
has two types of edges representing value-flow relations: (1) the direct edge connects a store to a
load (following the rule in Fig. 5), which merges indirect value flows through the relevant memory
objects and program paths; and (2) the summary edge connects 𝑠 to 𝑡 if 𝑠 can transitively flow to
𝑡 , which summarizes transitive dependencies in a certain program scope. Currently, our analysis
eagerly connects the summary edges between a formal argument (formal-in) at the function entry
and the return value (formal-out) at the function exit. As shown in Fig. 8(c), in the subsequent
client analysis, the local value-flow graphs are stitched together by matching formal and actual
parameters as well as the return value and its receivers.

RemaRK 1. The edges in our value-flow graphs connecting stores and loads bear similarities to
several previous works. For example, the “match edges” in [79] are based solely on filed types, without
checking whether they access a common object. The match edges are used in CFL reachability-based
points-to analysis. Another example is TAJ [92], which connects stores to loads via Andersen analysis.
These edges are utilized by the subsequent context-sensitive hybrid thin slicing. In our approach, the
edges are computed via a flow- and semi-path-sensitive pointer analysis, which forms the foundation
of our path-sensitive memory model.

5 ANSWERING DEMAND DATA DEPENDENCE QUERIES
By forward or backward graph traversals, the guarded and storeless value-flow graphs can be
adopted in various applications.
Thin Slicing for Program Understanding. The first typical application is thin slicing [52, 80],
which can be implemented via a backward traversal on the value-flow graph. Thin slicing is in-
troduced by Sridharan et al. [80] to facilitate program debugging and understanding. A thin slice
for a program variable, a.k.a., the slicing seed, includes only the producer statements that directly
affect the values of the variable. In contrast to conventional slicing, control dependence and the
data dependence of the variable’s base pointer are excluded. Hence, thin slices are typically much
smaller than conventional program slices.

Example 5.1. Consider the program in Fig. 8. To build the thin slice for the slicing seed𝑚 at func-
tion qux, we traverse the value-flow graphs from𝑚 in a reversed direction, collecting all program

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:15

statements that need to be included in the slice. For instance, the statements ∗𝑦 = 𝑎 and ∗𝑦 = 𝑏
will be visited and included in the result as they are the producer statements of𝑚.

Value-flow Bug Finding. The second typical application is to find value-flow bugs [12, 87]. The
analysis of value flows underpins the inspection of a broad range of software bugs, such as the
violations of memory safety (e.g., null dereference, double free, etc.), the violations of resource
usage (e.g., memory leak, socket leak, etc.), and security problems (e.g., the use of tainted data).
It is vital to precisely resolve value flows caused by pointer aliasing, which is the key problem
we address in the paper. Value-flow bug finding can be implemented via a forward traversal on
the graphs, during which the alias constraints and property-specific constraints can be gathered
together and handed to an SMT solver.

Example 5.2. Suppose we need to detect double-free bugs for the program in Fig. 8(a). We tra-
verse its value-flow graphs (Fig. 8(c)) starting from 𝑎 and obtain one path from 𝑎 to 𝑛. We then
stitch together the path condition under which 𝑛 is data-dependent on 𝑎 (i.e., ¬𝜑), and the path
conditions of the two statements free(a) and free(n) (i.e., 𝜑 ∧ 𝜑). Observe that we do not compute
the interprocedural data dependence between (𝑎,𝑚) or (𝑐, 𝑛).

Summary of Our Approach. When constructing the value-flow graphs, our analysis operates
over a propositional abstraction of the program,which prunesmany false value-flow edges, merges
duplicate ones, and simplifies the data dependence guards, enabling a path-sensitive memory
model upfront. When resolving transitive data dependence over the graphs, the client can pig-
gyback the computation of fully path-sensitive pointer information with the resolution of client-
specific dependences, during which it (1) can sparsely track value flows by following the pre-
cise edges on demand; and (2) does not need to perform explicit cast-splitting over the points-to
sets when handling indirect loads/stores, alleviating a major source of case explosion in previ-
ous work [6, 59, 99]. Consequently, the client concentrates computational effort on the path- and
context-sensitive pointer information only when it matters to the data dependence of interest.

RemaRK 2. Our analysis for building the VFGs is flow-sensitive, context-sensitive, and semi-path-
sensitive, requiring a whole program but “non-aggressive” Boolean reasoning to resolve memory de-
pendencies. Thanks to the guarded graphs, the client analyses can compute the path- and context-
sensitive conditions on demand. However, there are sources of imprecision, such as the handling of
function pointers § 4.2.1, which can result in a loss of precision.

6 EVALUATION
To demonstrate the utility of Falcon, we examine its scalability in constructing the value-flow
graphs (§ 6.2) and apply it to two practical clients, namely semi-path-sensitive thing slicing (§ 6.3),
and fully path-sensitive bug hunting (§ 6.4).

6.1 Experimental Setup
Implementation. We implemented Falcon on top of LLVM and Z3 SMT solver. While the lan-
guage in § 3 has restricted language constructs, Falcon supports most features of C/C++, such as
unions, arrays, and classes. Our algorithm’s bottom-up and compositional nature lends itself well
to parallelism, i.e., functions without dependence can be analyzed in parallel. We mainly report
sequential analysis results in this section for a fair comparison.
Baselines. In this section, we compare Falcon against three groups of existing analyzers.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:16 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

• First, we compare it with the following analyses for constructing the value-flow graphs:
(1) SVF [85], the Andersen analysis implemented in SVF,2 (2) SFS [30], an inclusion-based,
flow-sensitive, context-insensitive pointer analysis,3 (3) DSA [44], a unification-based, flow-
insensitive, context-sensitive pointer analysis;4 (4) SUPA-FS [84, 86], a demand-driven, flow-
sensitive, context-insensitive pointer analysis, and (5) SUPA-FSCS [84, 86], a demand-driven,
flow- and context-sensitive pointer analysis. Note that both SUPA-FS and SUPA-FSCS rely
on SVF to build the VFGs, based on which they answer demand points-to queries.
• Second, for the thin slicing client, we compare with SUPA-FSCS [84, 86], the state-of-the-art

demand-driven flow- and context-sensitive pointer analysis for C/C++.
• Finally, for the value-flow bug finding client, we compare with (1) CRED [99], which is a

state-of-the-art path-sensitive pointer analysis using the layered approach,5 and (2) Clang
Static Analyzer (CSA), which is a state-of-the-art, industry-strength symbolic executor.

We cannot compare with the pointer analyses in [27, 48, 49, 88, 89, 101, 105] because they are not
publicly available. For bug finding, we tried our best to compare with Saturn [28] and Compass [16,
18], but they are not runnable on the experimental environment that we can set up.
Subjects. Table 1 shows the benchmarks. Six of them are taken from SPEC CINT2000 and ten are
from open-source projects. These programs cover various applications such as text editors and
database engines, with sizes ranging from 13 KLoC to 8 MLoC. It is important to note that, as
Falcon unrolls loops on the control flow graph and the call graph, we feed the same transformed
code to other tools.
Environment. All experiments are conducted on a 64-bit machine with 40 Intel Xeon E5-2698
CPUs@2.20 GHz and 256 GB of RAM. The reported data represents the medians of three runs.

6.2 Value-flow Graph Construction
First, we examine the scalability of Falcon for constructing value-flow graphs. The cutoff time per
tool per program is 12 hours.
Comparing with SVF, SFS, and DSA. Table 1 and Fig. 10 show the results of the four analyses.
In terms of runtime overhead, they perform similarly in small-sized programs. However, on pro-
grams with more than 500 KLoC, SVF and SFS get derailed and become orders-of-magnitude more
expensive and fail to analyze mysql, rethinkdb, and firefoxwithin 12 hours. DSA is comparable
to Falcon on vim and php, but much slower on other large programs (git, wrk, libicu, and mysql).
Also, DSA cannot finish the analysis of rethinkdb and firefox. To sum up, Falcon is on average
17×, 25×, and 4.4× faster than SVF, SFS, and DSA, respectively. In terms of memory consumption,
on average, Falcon takes 1.4×, 1.9×, and 4.2× less memory than SVF, SFS, and DSA, respectively.

We attribute the graceful scalability of Falcon to two factors. First, combining on-the-fly sparsity
and semi-path-sensitivity translates into significant gains in precision and performance (§ 4.1).
Second, instead of cloning the full points-to information to achieve context sensitivity, we utilize a
concise summary to avoid computing a whole-program image of the heap (§ 4.2). We acknowledge
that a drawback of the design is that we cannot use the computed VFG to answer points-to queries
in 𝑂 (1) time, as our analysis is not an exhaustive points-to analysis.
Comparing with SUPA-FS and SUPA-FSCS. The two state-of-the-art, demand-driven pointer
analyses (§ 6.1) rely on SVF to build flow-insensitive VFGs for answering demand queries. We
2The authors of https://github.com/SVF-tools/SVF have implemented several optimizations for improving the performance
of Andersen analysis, such as HCD and wave propagation. We use its default configuration for the evaluation.
3We use the implementation maintained by the SVF team, which is also available at https://github.com/SVF-tools/SVF.
4We use the implementation maintained by the Seahorn team named sea-dsa, i.e., https://github.com/seahorn/sea-dsa
5The tool is not open-source. We implement the algorithm on top of SVF.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

https://github.com/SVF-tools/SVF
https://github.com/SVF-tools/SVF
https://github.com/seahorn/sea-dsa

170:17

Table 1. Benchmark size (KLoC) and runtime (in minutes) of building value-flow graphs.

Program Size SVF SFS DSA Falcon Falcon(PI) Falcon(SAT)
crafty 13 <0.1 <0.1 <0.1 <0.1 0.2 1.9
eon 22 0.3 0.7 0.2 0.3 0.4 2.1
gap 36 0.4 1.7 0.9 0.5 0.7 13
vortex 49 0.1 0.2 <0.1 0.3 0.3 26
perlbmk 73 0.7 2.7 2.1 2.1 3.2 125
gcc 135 0.7 7.4 8.6 7.8 8.1 145
git 185 121 243 21 10 16 393
vim 333 186 221 17 14 23 484
wrk 340 85 115 131 6 15 537
libicu 537 454 570 37 5 6 OOT
php 863 519 614 12 12 41 OOT
ffmpeg 967 43 122 113 13 36 OOT
ppsspp 1648 34 94 92 8 25 OOT
mysql 2030 OOT OOT 113 46 64 OOT
rethinkdb 3776 OOT OOT OOT 90 113 OOT
firefox 7998 OOT OOT OOT 167 273 OOT
OOT means the analysis runs out of the time budget (12 hours).

Ti
m

e(
m

in
)

Subjects ordered by size Subjects ordered by size

M
em

or
y(

G
B)

SVF FalconSFS DSA

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13
0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 10. Comparing the time and memory cost of SVF, SFS, DSA, and Falcon for VFG construction. We
present the results of the 13 programs analyzed by all tools within the time budget.

attempted to run them to refine the flow-insensitive VFGs, i.e., using the “VFG refinement client”
to generate demand queries. However, the number of queries is huge as we need to refine the
results for all functions. And for the demand-driven search, computing reachability between two
nodes may resort to a graph traversal among all nodes in the worst. In practice, we found that
SUPA-FS and SUPA-FSCS only finished analyzing crafty and econ, running out of the time budget
for the remaining programs.
The Effects of Semi-Decision Procedures. To understand the effects of constraint solving, we
set up two additional configurations of Falcon for constructing value-flow graphs. Specifically,
Falcon-PI is path-insensitive, while Falcon-SAT uses a full-featured SAT solver. The last three
columns of Table 1 compare the three configurations. Falcon is usually more–and occasionally
much more–efficient than Falcon-PI, due to the increased precision. However, Falcon-SAT is not
a good choice in practice: its precision is offset by unbearable runtime overhead. In particular,
Falcon-SAT runs out of the time budget for all programs of more than 500 KLoC.

The results indicate that solving constraints when building value-flow graphs pays off, which
naturally raises the question: could we do better by tuning the semi-decision procedure more ag-
gressively? However, we find that being “too aggressive” can lead to performance overhead that
overwhelms the benefits. For instance, we attempted the𝑂 (𝑛3) Gaussian elimination algorithm for
solving linear constraints, leaving the analysis hard to scale to millions of lines of code. Adapting
the decision procedures defines a sophisticated design space that deserves further optimizations.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:18 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

0

5

10

15

20

25

30

35

N
u
m

.
o
f
co

n
st

ra
in

ts
 (
M

)

107

Fig. 11. Number of constraints Falcon deals with when building value-flow graphs.

To provide insight into the nature of constraints explosion, in Fig. 11, we report the number
of constraints Falcon deals with. Even when unrolling all loops in the control-flow graphs and
callgraph, we can see that it is not unusual to have over 107 constraints.

6.3 Thin Slicing for Program Understanding
We aim to measure the precision of Falcon’s semi-path-sensitive value-flow graphs (§ 4.1.3) in this
experiment. So, for this client, we do not invoke an SMT solver to achieve full path sensitivity,
To generate realistic queries, we use the bug reports issued by a third-party typestate analysis.
The slicers start from the problematic variables and program locations, and the results can assist
developers in understanding these reports. The following experimental results exclude the time
required for building the value-flow graphs.
Speed. Our results show that Falcon scales gracefully for the thin-slicing client, with each demand
query taking less than 240 milliseconds. In summary, it achieves up to 302× speedups than SUPA-
FSCS and 54× on average.This performance improvement is attributed to the more compact value-
flow graphs generated by Falcon compared to SUPA-FSCS. On one hand, SUPA-FSCS constructs
the graphs using flow-insensitive analysis, while Falcon employs flow-sensitive analysis. On the
other hand, SUPA-FSCS has to explicate a memory object on an edge so that it can answer demand
queries, where many edges are redundant.
Precision. Besides, Falcon is more precise for answering the queries. Fig. 12 compares the pre-
cision of Falcon against SVF, SFS, DSA, and SUPA-FSCS on the 13 programs got analyzed by all
tools. The results were manually verified by two authors of the paper.The data for each program is
normalized based on the results of SVF, where a higher bar corresponds to a more precise analysis.
We make the following observations:
• The average size of slices produced by Falcon is 5.5×, 1.9×, 2.6×, and 1.3× smaller than that

of SVF, SFS, DSA, and SUPA-FSCS, respectively.
• Comparing SFS and SVF, we see that flow sensitivity can substantially improve the precision

of Andersen’s analysis in some programs, such as php and ffmpeg.
• DSA is comparable to SVF in some cases, andmuchmore precise than SVF inmany programs
(e.g., vim, libicu, ffmpeg).The combination of context sensitivity and unificationmay bring
better precision than the flow- and context-insensitive Andersen’s analysis.

In summary, Falcon offers a visibly improved precision. An important reason is that Falcon’s flow-
and semi-path-sensitive analysis (§ 4.1) can prune awaymore spurious value flows, compared with
the demand-driven flow- and context-sensitive analysis in SUPA-FSCS.
Recall. Falcon’s unsound assumption that function parameters are alias-free does not affect the
soundness for >90% of the queries, validated by manually checking the results. Similar to our
observation, two previous studies [23, 89] also show that the function parameters of real-world
C/C++ programs tend to have few aliasing relations.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:19

0

2

4

6

8

crafty eon gap vortex perlbmk gcc git vim wrk libicu php ffmpeg ppsspp

SVF SFS DSA Falcon SUPASUPA-FSCS

Fig. 12. Improvement in average slice size compared with the baseline SVF.

Table 2. Results of use-after-free bug detection.

Program
CRED CSA Falcon

Time(m) #FP/#Rep Time(m) #FP/#Rep Time(m) #FP/#Rep
crafty 0.3 0/0 715 0/0 0.1 0/0
eon 1.4 0/0 397 0/0 0.9 0/0
gap 3.7 0/0 OOT 0/0 1.9 0/0
vortex 1.2 1/1 642 0/0 1.3 0/0
perlbmk 97 0/0 285 0/0 81 0/0
gcc 31 0/0 398 0/0 26 0/0
git 218 0/3 OOT 1/1 41 1/4
vim 1852 0/0 OOT - 137 0/0
wrk 247 0/0 FAIL - 9 0/0
libicu 932 4/7 OOT 0/0 16 1/3
php OOT - OOT 0/0 50 2/9
ffmpeg 383 3/11 OOT 0/0 52 2/10
ppsspp 176 2/3 OOT - 75 1/3
mysql OOT - OOT - 214 1/4
rethinkdb OOT - OOT 0/2 179 0/0
firefox OOT - OOT - 483 0/2
%FP 40.0% (10/25) 33.3% (1/3) 27.8% (11/36)
“OOT” means out of the time budget. “FAIL” means the tool crashed abnormally.

6.4 Path-Sensitive Value-Flow Bug Finding
In this study, we investigate the efficiency and effectiveness of Falcon for use-after-free detection,
by comparing it against CRED [99] and Clang Static Analyzer (CSA).We use the CSA configuration
that employs Z3 [15] for path-sensitivity, which is align with CRED and Falcon. We impose a 15-
second time limit for each SMT query sent to Z3. Each analyzer is run in single-thread mode with
a cutoff time of 24 hours per program.

Table 2 presents the time overhead of the tools, the number of reported warnings, and the num-
ber and rate of false positives. As can be seen, Falcon surpasses the performance of CRED and CSA
for most large-scale programs, achieving up to 10.3× and 1620.8× speedups on average (measured
using the projects finished by the tools). Although not shown in the table, we remark that, if allow-
ing the concurrent analysis of 10 threads, Falcon can finish the checking of each program within
two hours. The false-positive rates of Falcon, CRED, and CSA are 40.0%, 33.3%, and 27.8%, respec-
tively. We notice that CSA reports much fewer warnings than CRED and Falcon, due partly to the
frequent timeouts and its limited capability in analyzing paths across compilation units. Falcon
aligns with the common industrial requirement of 30% false positives [5, 62].

Overall, our findings conclude that the ideas behind Falcon have considerably practical value.
The tool shows promise in providing an industrial-strength capability of hunting use-after-free
bugs, considering scaling efforts, precision, and recall.

7 RELATEDWORK

Path-Sensitive Analysis. Table 3 gives key properties of several existing path-sensitive algo-
rithms. Here we summarize some of the approaches with a focus on pointer reasoning.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:20 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

Table 3. A comparison of key properties of several existing typical analyses. The “Inter-PS” column repre-
sents interprocedural path-sensitive. The “PS-Heap” and “Sparse” columns respectively indicate whether
the analysis uses path-sensitive heap abstraction and is sparse. Finally, the “Shown to Scale” column indi-
cates whether the algorithm has been shown to scale to large programs with multi-million lines of code.

Algorithm Inter-PS PS-Heap Sparse Shown to Scale
Das et al. [14] X X
Ball and Rajamani [4] X
Livshits and Lam [54] X X
Hackett and Aiken [28] X X
Babic and Hu [3] X X
Chandra et al. [9] X X
Dillig et al. [18] X X
Sui et al. [88] X X X
Blackshear et al. [6] X X
Li et al. [47] X X
Yan et al. [99] X X X
Kim et al. [43] X X
Smaragdakis et al. [75] X X
Current paper X X X X

Livshits and Lam [54] introduce a flow-, path-, and context-sensitive pointer analysis, which
only scales to programs up to 13KLoC. The pointer analyses in [28, 88] are only intraprocedurally
path-sensitive. Dillig et al. [16, 18] present a path- and context-sensitive heap analysis that scales
to program with 128KLoC. Blackshear et al. [6] introduce a symbolic-explicit representation that
incorporates the pre-computed flow-insensitive points-to facts to guide the backward symbolic
execution. Similar to the index variables in [16, 18] and symbolic variables in [6], we use guards
qualifying value-flow graph edges to mitigate the issue of case splitting over points-to sets. How-
ever, their approaches are either not demand-driven or non-sparse. Smaragdakis et al. [75] present
a symbolic analysis for Ethereum smart contracts. They use a (lightweight) symbolic solver to col-
laborate with the flow computation of the analysis, similar to our first phase of value-flow graph
construction. In comparison, we use space analysis to accelerate the first phase and an SMT solver
in the second phase, which (in general) allows for more sophisticated constraint reasoning.

Our work follows a long line of research on path-sensitive dataflow analysis. ESP [14] encodes a
typestate property into a finite state automaton, which is used as a criterion for merging program
paths. ESP is similar to trace partition [60] and elaborations [72] that control the trade-off between
performing joining operations or logical disjunctions at control flow merge points. By contrast,
Falcon uses logical disjunction to precisely merge value-flow guards.

Shape analysis [70] proves data-structure invariants and has had a major impact on the verifica-
tion community. Precise shape analyses [47, 70] that are capable of path-sensitive heap reasoning
do not readily scale to large programs [22]. There have been scalable solutions such as composi-
tional shape analysis based on bi-abduction [8, 26], yet they do not guarantee precision.
Data Dependence Analysis. There is a huge amount of literature on context-sensitive data de-
pendence analysis via CFL reachability [10, 34, 69, 77, 79], or other language reachability prob-
lems [90, 104]. P/taint [24] unifies points-to and taint analysis by extending the Datalog rules
of the underlying pointer analysis and then computing the information all together. Our second
phase bears similarities with P/taint in that it can combine aliasing information and client-specific
constraints. However, we use a pre-analysis to enable a path-sensitive memory abstraction. In the
compiler community, there have been several solutions to path-sensitive array dependence anal-
ysis [61], using SMT solving [64], quantifier elimination [65], among others [68]. Typically, they
focus on array-manipulating loops and do not handle complicated pointer operations.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:21

Sparse Pointer Analysis. The idea of sparse analysis stems from the static single assignment
(SSA) form that encodes def-use chains explicitly. By leveraging the partial SSA form in LLVM,
Hardekopf and Lin [29] propose an inclusion-based and semi-sparse flow-sensitive pointer analysis.
It is semi-sparse since it only utilizes the def-use chains of the top-level pointers.

To achieve full sparsity, the def-use information of address-taken variables is needed. There are
two classes of full-sparse analysis. First, the staged sparse approach [30, 83, 84, 99] exploits a light-
weight and exhaustive pointer analysis to approximate the def-use relations, such as Andersen
analysis. Because of the imprecision, spurious value flows will be introduced, harming the perfor-
mance of the subsequent analysis. Second, the on-the-fly sparse approach [48, 88, 101] constructs
the def-use chains alongside the pointer analysis. Specifically, SPAS [88] is the only previous anal-
ysis that is both path-sensitive and on-the-fly sparse. However, it achieves incremental sparsity
by extending the level-by-level analysis [101], which is exhaustive. Falcon belongs to the on-they-
fly sparse approach and the crux is to avoid an exhaustive but imprecise pre-analysis. Our use of
domination relation is similar to Madsen and Møller [58]’s sparse dataflow analysis, which does
not address path sensitivity. Besides, while they compute dataflow facts together with pointer in-
formation, we use a client-independent analysis for VFG construction and resolve client-specific
dependence in the subsequent phase.
Demand-Driven Pointer Analysis. Demand-driven program analyses only analyze parts of the
program that are relevant for answering a given query. To date, most existing demand-driven
pointer analyses for C/C++ [33, 71, 106] and Java [20, 57, 73, 79, 81, 82, 98] are flow-insensitive.
Their underlying data structures, such as the pointer expression graph [106], entirely or partially
lose the control flow information and, thus, are not easy to extend for path sensitivity. Recently,
there has been a resurgence of interest in demand-driven flow- or path-sensitive pointer analy-
sis [77, 78, 84, 99]. Some of these approaches are not sparse [77, 78]. Some of them are sparse but
suffer from the aliasing-path-explosion problem [84, 99].

Over the last decade, there has been a large body of work on hybrid pointer analyses [42] that
resemble demand-driven approaches. By contrast, they are not query-driven, but schedule analysis
strategies such as selective context sensitivity for different pointers. Introspective analysis [76]
tunes context sensitivity per function based on a pre-analysis that computes heuristics such as
“total points-to information”. Since then, several follow-up works have been conducted [31, 32, 36–
39, 50, 51, 55, 56], which have significantly advanced context-sensitive pointer analysis for Java.
Our work focuses on C/C++ programs.We employ a flow-insensitive analysis for function pointers
and a precise path- and context-sensitive analysis for other pointers of interest.

8 CONCLUSION
We presented Falcon, our approach to path-sensitive sparse data dependence analysis. Its grace-
ful scalability and high precision rest on our solution to the aliasing-path-explosion problem. Our
work provides strong evidence that employing path-sensitive data-dependence analysis is a rea-
sonable choice for millions of lines of real-world code.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their valuable comments. We also appreciate Dr. Cheng-
pengWang for insightful discussions.This work is supported by the National Key R&D Program of
China (2023YFB3106000), the National Natural Science Foundation of China (62302434, 62272400),
ITS/440/18FP grant from the Hong Kong Innovation and Technology Commission, and research
grants from Huawei, Microsoft, and TCL. This work was mostly completed at The Hong Kong
University of Science and Technology. Qingkai Shi is the corresponding author.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:22 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

REFERENCES
[1] Péricles Alves, Fabian Gruber, Johannes Doerfert, Alexandros Lamprineas, Tobias Grosser, Fabrice Rastello, and

Fernando Magno Quintão Pereira. 2015. Runtime pointer disambiguation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2015). New
York, NY, USA.

[2] Robert S Arnold. 1996. Software Change Impact Analysis. (1996).
[3] Domagoj Babic and Alan J Hu. 2008. Calysto: scalable and precise extended static checking. In Proceedings of the

30th International Conference on Software Engineering (ICSE ’08). New York, NY, USA.
[4] Thomas Ball and Sriram K Rajamani. 2002. The SLAM project: debugging system software via static analysis. In

Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’02). New
York, NY, USA.

[5] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott
McPeak, and Dawson Engler. 2010. A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real
World. Commun. ACM 53, 2 (Feb. 2010).

[6] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2013. Thresher: Precise refutations for heap reachability.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13).
New York, NY, USA.

[7] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs.. In Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI’08). Berkeley, CA, USA.

[8] Cristiano Calcagno, Dino Distefano, Peter W O’hearn, and Hongseok Yang. 2011. Compositional shape analysis by
means of bi-abduction. J. ACM 58, 6, Article 26 (Dec. 2011).

[9] Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snugglebug: A Powerful Approach to Weakest Precon-
ditions. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’09). New York, NY, USA.

[10] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2017. Optimal Dyck Reachability for Data-
dependence and Alias Analysis. Proc. ACM Program. Lang. 2, POPL, Article 30 (Dec. 2017).

[11] Ramkrishna Chatterjee, Barbara G Ryder, and William A Landi. 1999. Relevant context inference. In Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’99). New York, NY,
USA.

[12] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical memory leak detection using guarded
value-flow analysis. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’07). New York, NY, USA.

[13] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1991. Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13, 4 (Oct. 1991).

[14] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-sensitive Program Verification in Polynomial Time. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation (PLDI ’02).
New York, NY, USA.

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the Theory and Prac-
tice of Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08/ETAPS’08). Berlin, Heidelberg.

[16] Isil Dillig, Thomas Dillig, and Alex Aiken. 2010. Fluid Updates: Beyond Strong vs. Weak Updates. In Proceedings of
the 19th European Conference on Programming Languages and Systems (ESOP’10). Berlin, Heidelberg.

[17] Isil Dillig, Thomas Dillig, and Alex Aiken. 2011. Precise reasoning for programs using containers. In Proceedings of
the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM.

[18] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. 2011. Precise and compact modular procedure summaries
for heap manipulating programs. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’11). New York, NY, USA.

[19] Maryam Emami, Rakesh Ghiya, and Laurie J Hendren. 1994. Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation (PLDI ’94). New York, NY, USA.

[20] Yu Feng, XinyuWang, Isil Dillig, andCalvin Lin. 2015. EXPLORER: query-and demand-driven exploration of interpro-
cedural control flow properties. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2015). New York, NY, USA.

[21] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2006. Effective Typestate Verification in
the Presence of Aliasing. In Proceedings of the 2006 International Symposium on Software Testing and Analysis (ISSTA
’06). New York, NY, USA.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:23

[22] Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. 2008. Effective typestate verification in
the presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17, 2, Article 9 (May 2008).

[23] Pritam M. Gharat, Uday P. Khedker, and Alan Mycroft. 2016. Flow- and Context-Sensitive Points-To Analysis Using
Generalized Points-To Graphs. In Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK, September
8-10, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9837), Xavier Rival (Ed.).

[24] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: Unified Points-to and Taint Analysis. Proc. ACM Program.
Lang. 1, OOPSLA, Article 102 (Oct. 2017).

[25] David Grove and Craig Chambers. 2001. A framework for call graph construction algorithms. ACM Trans. Program.
Lang. Syst. 23, 6 (Nov. 2001).

[26] Bhargav S. Gulavani, Supratik Chakraborty, Ganesan Ramalingam, and Aditya V. Nori. 2009. Bottom-Up Shape Anal-
ysis. In Static Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings
(Lecture Notes in Computer Science, Vol. 5673), Jens Palsberg and Zhendong Su (Eds.).

[27] Samuel Z Guyer and Calvin Lin. 2005. Error checking with client-driven pointer analysis. Sci. Comput. Program. 58,
1-2 (Oct. 2005).

[28] Brian Hackett and Alex Aiken. 2006. How is aliasing used in systems software?. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT ’06/FSE-14). New York, NY, USA.

[29] Ben Hardekopf and Calvin Lin. 2009. Semi-sparse flow-sensitive pointer analysis. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-
23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.).

[30] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive pointer analysis for millions of lines of code. In Proceedings of
the CGO 2011, The 9th International Symposium on Code Generation and Optimization, Chamonix, France, April 2-6,
2011.

[31] Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan, Bernhard Scholz, and Yi Lu. 2017.
An efficient tunable selective points-to analysis for large codebases. In Proceedings of the 6th ACM SIGPLAN Interna-
tional Workshop on State Of the Art in Program Analysis (SOAP 2017). New York, NY, USA.

[32] Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue. 2023. Selecting Context-Sensitivity Modularly for Accelerat-
ing Object-Sensitive Pointer Analysis. IEEE Trans. Software Eng. 49, 2 (2023).

[33] Nevin Heintze and Olivier Tardieu. 2001. Demand-driven pointer analysis. In Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation (PLDI ’01). New York, NY, USA.

[34] Susan Horwitz, Thomas Reps, and David Binkley. 1990. Interprocedural slicing using dependence graphs. ACM
Trans. Program. Lang. Syst. 12, 1 (Jan. 1990).

[35] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang. 2022. BEACON: Directed
Grey-Box Fuzzingwith Provable Path Pruning. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco,
CA, USA, May 22-26, 2022. IEEE, 36–50.

[36] Minseok Jeon, Sehun Jeong, Sung Deok Cha, and Hakjoo Oh. 2019. AMachine-Learning Algorithmwith Disjunctive
Model for Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 41, 2 (2019).

[37] Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and scalable points-to analysis via data-driven context
tunneling. Proc. ACM Program. Lang. 2, OOPSLA, Article 140 (Oct. 2018).

[38] Minseok Jeon, Myungho Lee, and Hakjoo Oh. 2020. Learning graph-based heuristics for pointer analysis without
handcrafting application-specific features. Proc. ACM Program. Lang. 4, OOPSLA (2020).

[39] Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. 2017. Data-driven context-sensitivity for points-to
analysis. Proc. ACM Program. Lang. 1, OOPSLA, Article 100 (Oct. 2017).

[40] Vineet Kahlon. 2008. Bootstrapping: a technique for scalable flow and context-sensitive pointer alias analysis. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’08).
New York, NY, USA.

[41] Vini Kanvar and Uday P Khedker. 2016. Heap abstractions for static analysis. ACM Comput. Surv. 49, 2, Article 29
(June 2016).

[42] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for points-to analysis. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). New York, NY,
USA.

[43] Yunho Kim, Shin Hong, and Moonzoo Kim. 2019. Target-driven Compositional Concolic Testing with Function
Summary Refinement for Effective Bug Detection. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019). New
York, NY, USA.

[44] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making context-sensitive points-to analysis with heap
cloning practical for the real world. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’07). New York, NY, USA.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:24 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

[45] Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to analysis with efficient strong updates. In Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). New
York, NY, USA.

[46] Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the benefits of context-sensitive points-to analysis using a
BDD-based implementation. ACM Trans. Softw. Eng. Methodol. 18, 1, Article 3 (Oct. 2008).

[47] Huisong Li, Francois Berenger, Bor-Yuh Evan Chang, and Xavier Rival. 2017. Semantic-directed clumping of disjunc-
tive abstract states. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2017). New York, NY, USA.

[48] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the performance of flow-sensitive points-to anal-
ysis using value flow. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering (ESEC/FSE ’11). New York, NY, USA.

[49] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2013. Precise and scalable context-sensitive pointer analysis via
value flow graph. In Proceedings of the 2013 International Symposium on Memory Management (ISMM ’13). New York,
NY, USA.

[50] Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Precision-guided context sensitivity for pointer
analysis. Proc. ACM Program. Lang. 2, OOPSLA, Article 141 (Oct. 2018).

[51] Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2018. Scalability-First Pointer Analysis with Self-Tuning
Context-Sensitivity. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). New York, NY, USA.

[52] Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program tailoring: Slicing by sequential criteria. In 30th
European Conference on Object-Oriented Programming (ECOOP 2016) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.). Dagstuhl, Germany.

[53] Donglin Liang and Mary Jean Harrold. 2001. Efficient computation of parameterized pointer information for in-
terprocedural analyses. In Proceedings of the 8th International Symposium on Static Analysis (SAS ’01). London, UK,
UK.

[54] V Benjamin Livshits andMonica S Lam. 2003. Tracking pointers with path and context sensitivity for bug detection in
C programs. In Proceedings of the 9th European Software Engineering Conference Held Jointly with 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE-11). New York, NY, USA.

[55] Jingbo Lu, Dongjie He, and Jingling Xue. 2021. Selective Context-Sensitivity for k-CFA with CFL-Reachability. In
Static Analysis - 28th International Symposium, SAS 2021, Chicago, IL, USA, October 17-19, 2021, Proceedings (Lecture
Notes in Computer Science, Vol. 12913), Cezara Dragoi, Suvam Mukherjee, and Kedar S. Namjoshi (Eds.).

[56] Jingbo Lu and Jingling Xue. 2019. Precision-Preserving yet Fast Object-Sensitive Pointer Analysis with Partial Con-
text Sensitivity. Proc. ACM Program. Lang. 3, OOPSLA, Article 148 (Oct. 2019).

[57] Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. 2013. An incremental points-to analysis with CFL-reachability. In
Proceedings of the 22Nd International Conference on Compiler Construction (CC’13). Berlin, Heidelberg.

[58] Magnus Madsen and Anders Møller. 2014. Sparse dataflow analysis with pointers and reachability. In International
Static Analysis Symposium (SAS ’14). Springer.

[59] Roman Manevich, Manu Sridharan, Stephen Adams, Manuvir Das, and Zhe Yang. 2004. PSE: explaining program
failures via postmortem static analysis. In Proceedings of the 12th ACM SIGSOFT Twelfth International Symposium on
Foundations of Software Engineering (SIGSOFT ’04/FSE-12). New York, NY, USA.

[60] Laurent Mauborgne and Xavier Rival. 2005. Trace partitioning in abstract interpretation based static analyzers. In
Proceedings of the 14th European Conference on Programming Languages and Systems (ESOP’05). Berlin, Heidelberg.

[61] Dror E Maydan, John L Hennessy, and Monica S Lam. 1991. Efficient and exact data dependence analysis. In Pro-
ceedings of the ACM SIGPLAN 1991 Conference on Programming Language Design and Implementation (PLDI ’91). New
York, NY, USA.

[62] Scott McPeak, Charles-Henri Gros, and Murali Krishna Ramanathan. 2013. Scalable and Incremental Software Bug
Detection. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013). New
York, NY, USA.

[63] AnaMilanova, Atanas Rountev, and Barbara G Ryder. 2004. Precise call graphs for C programswith function pointers.
Automated Software Engg. 11, 1 (Jan. 2004).

[64] Mahdi Soltan Mohammadi, Kazem Cheshmi, Maryam Mehri Dehnavi, Anand Venkat, Tomofumi Yuki, and
Michelle Mills Strout. 2018. Extending Index-Array Properties for Data Dependence Analysis (LCPC ’14).

[65] Mahdi Soltan Mohammadi, Tomofumi Yuki, Kazem Cheshmi, Eddie C. Davis, Mary Hall, Maryam Mehri Dehnavi,
Payal Nandy, Catherine Olschanowsky, Anand Venkat, and Michelle Mills Strout. 2019. Sparse Computation Data
Dependence Simplification for Efficient Compiler-generated Inspectors. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2019). New York, NY, USA.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:25

[66] Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg Rothermel, and Mary Jean Harrold. 2004. An Em-
pirical Comparison of Dynamic Impact Analysis Algorithms. In Proceedings of the 26th International Conference on
Software Engineering (ICSE ’04). Washington, DC, USA.

[67] Karl J Ottenstein, Robert A Ballance, and Arthur B MacCabe. 1990. The program dependence web: a representation
supporting control-, data-, and demand-driven interpretation of imperative languages. In Proceedings of the ACM
SIGPLAN 1990 Conference on Programming Language Design and Implementation (PLDI ’90). New York, NY, USA.

[68] Alex Pothen and Sivan Toledo. 2004. Elimination Structures in Scientific Computing.
[69] Thomas Reps. 1998. Program analysis via graph reachability. Information and software technology 40, 11 (1998).
[70] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. 2002. Parametric shape analysis via 3-valued logic. ACM Trans.

Program. Lang. Syst. 24, 3 (May 2002).
[71] Diptikalyan Saha and CR Ramakrishnan. 2005. Incremental and demand-driven points-to analysis using logic pro-

gramming. In Proceedings of the 7th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP ’05). New York, NY, USA.

[72] Sriram Sankaranarayanan, Franjo Ivančić, Ilya Shlyakhter, and Aarti Gupta. 2006. Static analysis in disjunctive
numerical domains. In Proceedings of the 13th International Conference on Static Analysis (SAS’06). Berlin, Heidelberg.

[73] Lei Shang, Xinwei Xie, and Jingling Xue. 2012. On-demand dynamic summary-based points-to analysis. In Proceed-
ings of the Tenth International Symposium on Code Generation and Optimization (CGO ’12). New York, NY, USA.

[74] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: fast and precise
sparse value flow analysis for million lines of code. In Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2018). New York, NY, USA.

[75] Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris. 2021. Symbolic
value-flow static analysis: deep, precise, complete modeling of Ethereum smart contracts. Proc. ACM Program. Lang.
5, OOPSLA (2021).

[76] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective analysis: context-sensitivity,
across the board. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’14). New York, NY, USA.

[77] Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, flow-, and field-sensitive data-flow analysis using
synchronized Pushdown systems. Proc. ACM Program. Lang. 3, POPL, Article 48 (Jan. 2019).

[78] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and
Context-Sensitive Pointer Analysis for Java. In 30th European Conference on Object-Oriented Programming, ECOOP
2016, July 18-22, 2016, Rome, Italy (LIPIcs, Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.).

[79] Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-sensitive points-to analysis for Java. In Pro-
ceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’06). New
York, NY, USA.

[80] Manu Sridharan, Stephen J Fink, and Rastislav Bodik. 2007. Thin slicing. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’07). New York, NY, USA.

[81] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-driven points-to analysis for Java. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA ’05). New York, NY, USA.

[82] Yu Su, Ding Ye, and Jingling Xue. 2014. Parallel Pointer Analysis with CFL-Reachability. In Proceedings of the 2014
Brazilian Conference on Intelligent Systems (BRACIS ’14). Washington, DC, USA.

[83] Yulei Sui, Peng Di, and Jingling Xue. 2016. Sparse flow-sensitive pointer analysis for multithreaded programs. In
Proceedings of the 2016 International Symposium on Code Generation and Optimization (CGO ’16). New York, NY, USA.

[84] Yulei Sui and Jingling Xue. 2016. On-demand strong update analysis via value-flow refinement. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE 2016). New York, NY,
USA.

[85] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th
International Conference on Compiler Construction (CC 2016). New York, NY, USA.

[86] Y. Sui and J. Xue. 2018. Value-Flow-Based Demand-Driven Pointer Analysis for C and C++. IEEE Transactions on
Software Engineering (2018).

[87] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using full-sparse value-flow analysis. In
International Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012, Mats
Per Erik Heimdahl and Zhendong Su (Eds.).

[88] Yulei Sui, Sen Ye, Jingling Xue, and Pen-Chung Yew. 2011. SPAS: scalable path-sensitive pointer analysis on full-
sparse SSA. In Proceedings of the 9th Asian Conference on Programming Languages and Systems (APLAS’11). Berlin,
Heidelberg.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

170:26 Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, Rongxin Wu, and Charles Zhang

[89] Yulei Sui, Sen Ye, Jingling Xue, and Jie Zhang. 2014. Making context-sensitive inclusion-based pointer analysis
practical for compilers using parameterised summarisation. Softw. Pract. Exper. 44, 12 (Dec. 2014).

[90] Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei. 2015. Summary-Based Context-
Sensitive Data-Dependence Analysis in Presence of Callbacks. In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’15). New York, NY, USA.

[91] Wensheng Tang, Yikun Hu, Gang Fan, Peisen Yao, Rongxin Wu, Guangyuan Bai, Pengcheng Wang, and Charles
Zhang. 2021. Transcode: Detecting Status Code Mapping Errors in Large-Scale Systems. In 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021. IEEE,
829–841.

[92] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman. 2009. TAJ: effective taint analysis
of web applications. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’09). New York, NY, USA.

[93] Christopher Unkel and Monica S Lam. 2008. Automatic inference of stationary fields: a generalization of java’s final
fields. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’08). New York, NY, USA.

[94] ChengpengWang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang. 2022. Complexity-guided container
replacement synthesis. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1–31.

[95] Wei Wang, Clark W. Barrett, and Thomas Wies. 2017. Partitioned Memory Models for Program Analysis. In Verifica-
tion, Model Checking, and Abstract Interpretation - 18th International Conference, VMCAI 2017, Paris, France, January
15-17, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10145), Ahmed Bouajjani and David Monniaux (Eds.).

[96] Robert P Wilson and Monica S Lam. 1995. Efficient context-sensitive pointer analysis for C programs. In Proceedings
of the ACM SIGPLAN 1995 Conference on Programming Language Design and Implementation (PLDI ’95). New York,
NY, USA.

[97] Yichen Xie and Alex Aiken. 2005. Scalable error detection using boolean satisfiability. In Proceedings of the 32Nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’05). New York, NY, USA.

[98] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-driven context-sensitive alias analysis for Java. In
Proceedings of the 2011 International Symposium on Software Testing and Analysis (ISSTA ’11). New York, NY, USA.

[99] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-temporal context reduction: a pointer-analysis-
based static approach for detecting use-after-free vulnerabilities. In Proceedings of the 40th International Conference
on Software Engineering (ICSE ’18). New York, NY, USA.

[100] Sen Ye, Yulei Sui, and Jingling Xue. 2014. Region-Based Selective Flow-Sensitive Pointer Analysis. In Static Analysis
- 21st International Symposium, SAS 2014, Munich, Germany, September 11-13, 2014. Proceedings (Lecture Notes in
Computer Science, Vol. 8723), Markus Müller-Olm and Helmut Seidl (Eds.).

[101] Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. 2010. Level by level: making flow-and
context-sensitive pointer analysis scalable for millions of lines of code. In Proceedings of the 8th Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO ’10). New York, NY, USA.

[102] Hantao Zhang and Mark E Stickely. 1996. An Efficient Algorithm for Unit Propagation. Proc. of AI-MATH 96 (1996).
[103] Qirun Zhang, Michael R Lyu, Hao Yuan, and Zhendong Su. 2013. Fast algorithms for Dyck-CFL-reachability with

applications to alias analysis. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). New York, NY, USA.

[104] Qirun Zhang and Zhendong Su. 2017. Context-sensitive Data-dependence Analysis via Linear Conjunctive Language
Reachability. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL
2017). New York, NY, USA.

[105] Jisheng Zhao, Michael G Burke, and Vivek Sarkar. 2018. Parallel sparse flow-sensitive points-to analysis. In Proceed-
ings of the 27th International Conference on Compiler Construction (CC 2018). New York, NY, USA.

[106] Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for C. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’08). New York, NY, USA.

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 170. Publication date: June 2024.

	Abstract
	1 Introduction
	1.1 Existing Efforts
	1.2 This Work

	2 Overview
	3 Problem Formulation
	4 Building Guarded and Storeless VFG
	4.1 Intraprocedural Analysis
	4.2 Interprocedural Analysis
	4.3 Constructing the Value-Flow Graphs

	5 Answering Demand Data Dependence Queries
	6 Evaluation
	6.1 Experimental Setup
	6.2 Value-flow Graph Construction
	6.3 Thin Slicing for Program Understanding
	6.4 Path-Sensitive Value-Flow Bug Finding

	7 Related Work
	8 Conclusion
	References

