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Abstract
Reverse engineering of protocol message formats is crit-

ical for many security applications. Mainstream techniques
use dynamic analysis and inherit its low-coverage problem
— the inferred message formats only reflect the features of
their inputs. To achieve high coverage, we choose to use static
program analysis to infer message formats from the imple-
mentation of protocol parsers. In this work, we focus on a
class of extremely challenging protocols whose formats can
be described through constraint-enhanced regular expressions
and are parsed via finite state machines. Such state machines
are often implemented as complicated parsing loops, which
are inherently difficult to analyze via conventional static anal-
ysis. Our new technique extracts a sound state machine by
regarding each loop iteration as a state and the dependency be-
tween loop iterations as state transitions. To achieve high, i.e.,
path-sensitive, precision but avoid path explosion, the analysis
is controlled to merge as many paths as possible based on
carefully-designed rules. The evaluation results show that we
can infer a state machine and, thus, the message formats, in
five minutes with over 90% precision and recall, far better
than state of the art. We have also applied the state machines
to enhance protocol fuzzers, which are improved by 20% to
230% in terms of coverage and detect ten more zero-days
compared to baselines.

1 Introduction

In the era of the internet of things, any vulnerability in net-
work protocols may lead to devastating consequences for
countless devices that are inter-connected and spread world-
wide. For instance, in 2020, a protocol vulnerability led to the
largest ever DDoS attack that targeted Amazon Web Service,
affecting millions of active users [16]. To ensure protocol
security by automated analyses including fuzzing [39, 50],
model checking [30, 79], verification [31], and many others,
a key prerequisite is to acquire a formal specification of the
message formats. However, this is a hard challenge.

There have been many works on automatically inferring
the formats of network messages [49, 69, 80, 93]. However,
almost all existing works are in a fashion of dynamic analysis
— either network trace analysis [42, 63, 64, 74, 97, 98, 105]
or dynamic program analysis [34, 35, 44, 54, 58, 71–73, 100].
The former captures online network traces and uses statisti-
cal methods including machine learning to cluster the traces

into different categories and then perform message alignment
and field identification. The latter runs the captured network
traces against the protocol implementation and leverages the
runtime control or data flows to infer message formats. De-
spite being useful in many applications, as dynamic analyses,
they cannot infer message formats not captured by the input
network traces. For instance, a recent work reported a highly
precise technique but with coverage lower than 0.1 [105]. This
means that it may miss message formats that are important
for downstream security analysis.

To infer message formats with high coverage, we use static
analysis, which does not rely on any input network traces but
can thoroughly analyze a protocol parser. We target open pro-
tocols that have publicly available source code. While these
protocols often have available specifications, they are usually
documented in a natural language that is not machine-readable
and contains inconsistencies, ambiguities, and even vulnera-
bilities [76]. Hence, inferring formal specifications for open
protocols deserve dedicated studies. Particularly, we target a
category of extremely challenging protocols, namely regular
protocols, which have two main features. First, the format of a
regular protocol can be specified by a constraint-enhanced reg-
ular expression (ce-regex), such as (a|b)+c where a, b, and c
are respectively one-, two-, and four-byte variables satisfying
the constraints a mod 10 = 4, b > 3, and (c� 16)+c > 100.
Compared to a common regular expression (com-regex), the
constraints in a ce-regex allow us to specify rich semantics in
a network protocol. Note that a com-regex can be regarded
as a simple instance of ce-regex. For instance, a com-regex
(a|b)+c can be viewed as a ce-regex with the constraints
a = ‘a’, b = ‘b’, and c = ‘c’. Second, the messages of a reg-
ular protocol are parsed via a finite state machine. This is
common in performance-sensitive and embedded systems for
the benefit of low latency [56]. That is, with a state machine,
we can parse a protocol without waiting for the entire mes-
sage — whenever receiving a byte, we parse it and record the
current state; the recorded state allows us to continue parsing
once we receive the next byte.

It is inherently challenging for static program analysis to
infer the formats of a regular protocol from its parser. This
is because a state machine for parsing is often implemented
as a multi-path loop1 that involves complex path interleaving
that mimics the state transitions, but conventional static anal-

1A single-path loop contains only a single path in its loop body. A multi-
path loop contains multiple paths in its loop body.
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Figure 1: Example to illustrate the insight of our approach.

ysis — loop unwinding, loop invariant inference, and loop
summarization — cannot handle such loops well. First, loop
unwinding unrolls a loop with a limited number of iterations
and, hence, will miss program behaviors beyond the unrolling
times. Second, loop invariant techniques compute properties
that always hold in each loop iteration. They rely on abstract
interpretation for fixed point computation and, to ensure the
termination, use the widening operators that often lead to
significant loss of precision [20, 52, 53, 57, 60, 65, 78, 81, 86].
Third, loop summarization techniques precisely infer the in-
put and output relations of a loop by induction. They are good
at handling single-path loops [51, 84] or some simple multi-
path loops [95, 103]. When used to analyze a multi-path loop
that implements a state machine, they either fail to work or
have to enumerate all paths in the loop body [101, 102], thus
suffering from path explosion. The path explosion problem
not only significantly slows down the static analysis but also
leads to the explosion of states and state transitions, making
the output state machine not operable.

To infer state machines from a parsing loop, our static anal-
ysis regards each loop iteration as a state and the dependency
between loop iterations as state transitions. It mitigates the
path explosion problem with the key insight that a state ma-
chine can be significantly compressed by merging states and
state transitions. For instance, both state machines in Figure 1
represent the com-regex (a|b)+c, but the one in Figure 1(b)
is notably compressed. This observation guides us to design
a static analysis that merges as many program paths as pos-
sible when analyzing an iteration of the parsing loop. As a
result, we produce a super state, e.g., F , for a set of program
paths, instead of many small states, e.g., B and C, for indi-
vidual program paths. Hence, our analysis notably alleviates
the path explosion problem and can infer highly compressed
state machines, e.g., Figure 1(b), even from the implemen-
tation of complex state machines, e.g., Figure 1(a). As for
state transitions, we record the pre- and post-condition of
each loop iteration. These conditions allow us to compute the
dependency between two consecutive loop iterations and are
regarded as state-transition constraints. As a whole, an in-
ferred state machine represents the message formats and can
drive many security analyses.

There are three key differences between our approach and
the state of the art. First, we do not assume the availability of

network traces which, however, are required by existing works
but could be hard to obtain [80]. Hence, our approach could
be a promising alternative when high-quality network traces
are not available. Second, different from many existing works
that understand message formats by segmenting a message
into multiple fields, we understand message formats via the
parsing state machine. Such state machines allow us to specify
message formats with both high precision and high coverage.
As will be illustrated in §3, existing works are ineffective
when handling state-machine-based parsers, thus exhibiting
low precision and recall. Third, our work is also different from
many previous works [23,38,39,43,46,66,68,75,87,99,105]
that infer system state machines such as the one describing
TCP’s handshake mechanism. In this work, state machines
are used to specify message formats. In summary, we make
the following contributions.

• We developed a novel static analysis that mitigates the
path-explosion problem in conventional approaches and
can infer highly compressed state machines from code.

• We applied the static analysis to reverse engineering
message formats. The analysis is highly precise and fast
with high coverage. To the best of our knowledge, this
is the first static analysis that formulates the problem of
message format inference as extracting state machines.

• We implemented our approach, namely STATELIFTER,
and evaluated it on ten protocols from different domains.
STATELIFTER is highly efficient as it can infer a state
machine or, equivalently, the message formats, in five
minutes. STATELIFTER is also highly precise with a high
recall as its inferred state machine can uncover ≥ 90%
protocol formats with≤ 10% false ones. By contrast, the
baselines often miss≥ 50% of possible formats and may
produce ≥ 40% false ones. We use the inferred finite
state machines to improve two state-of-the-art protocol
fuzzers. The results demonstrate that, with the inferred
state machines, the fuzzers can be improved by 20% to
230% in terms of coverage. We have discovered 12 zero-
day vulnerabilities but the baseline fuzzers only find two
of them. We also provide case studies of applying our
approach to domains beyond network protocols.

2 Problem Scope

We target regular protocols, of which (1) the message formats
can be described as constraint-enhanced regular expressions
and (2) the messages are parsed via finite state machines
(FSM). Formally, considering the equivalence of regular ex-
pression and FSM, we define a regular protocol in Defini-
tion 2.1 as an FSM enhanced by first-order logic constraints.
The problem we address is to infer the FSM from the parser of
a regular protocol. An FSM can be either deterministic or not.
Since any non-deterministic FSM can be converted to a de-
terministic one, for simplicity, FSM means non-deterministic



FSM by default in this paper. Note that a non-deterministic
FSM may contain multiple start states and a state may transi-
tion to multiple successor states with the same inputs.

Definition 2.1. An FSM is a quintuple (Σ,S,S0,F,δ) where

• Σ is a set of first-order logic constraints over a byte
sequence σn of length n. We use σn

i and σn
i.. j to represent

the (i+1)th byte and a subsequence of σn, respectively.
A typical constraint could be σ2

1σ2
0 > 10, which means

that the value of a two-byte integer with σ2
1 the most

significant byte and σ2
0 the least is larger than ten. We

write σ as a shorthand of σ1
0 and σ1.

• S is a non-empty set of states; S0 ⊆ S is a non-empty set
of start states; F⊆ S is a non-empty set of final states.

• δ : S×Σ 7→ 2S is the transition function, meaning that
when obtaining a byte sequence satisfying a constraint
at a state, we will proceed to some possible states.

By definition, a sequence of transitions from a start state to
a final state defines a possible message format. For instance,
δ(A ∈ S0,σ

2
1σ2

0 > 10) = {B} and δ(B,σ = 5) = {C ∈ F} are
two transitions — one from a start state A to the state B with
the constraint σ2

1σ2
0 > 10 and the other from the state B to a

final state C with the constraint σ = 5. It implies a message
format where the first two bytes satisfy σ2

1σ2
0 > 10 and the

third byte must be 5. Such an FSM allows us to generate valid
messages following the state-transition constraints.

Why Regular Protocols? In practice, the formats of a wide
range of network protocols, such as HTTP and UDP, can
be specified via ce-regex. This is acknowledged by many
existing works, such as LeapFrog [48] that verifies protocol
equivalence via FSMs, and P4 [33], a domain-specific lan-
guage developed by the open networking foundation, which
allows us to specify protocols via FSMs. As an example, we
can specify an HTTP request using the following ce-regex:
Method Space URI Space Version CRLF ((General-Header

| Request-Header | Entity-Header) CRLF)* CRLF Body?,
where each field, e.g., Method, satisfies certain constraints
such as Method = ‘Get’ ∨Method = ‘Post’ ∨·· · .

A protocol that can be specified by ce-regex is unneces-
sary to be parsed by an FSM. However, an FSM parser can
greatly improve the performance. Graham and Johnson [56]
reported that an FSM parser can achieve over an order of mag-
nitude performance improvement, and a hand-written FSM
parser could scale better than widely-used implementations
such as the Nginx and Apache web servers. The key factor
contributing to this improvement is that an FSM parser can
parse each byte of a network message as soon as the byte is
received, without having to wait for the entire message. As
an illustration, consider the FSM parser in Figure 2(a) that
parses (a|b)∗c. Each iteration of the parser processes one byte
received by the function read_next_msg_byte(). The parser’s

state, tracked by the variable state, allows it to continue pars-
ing once the next byte is received. Hence, we can perform
important business logic, such as preparing responses and
updating system status, before a full message is received.

Due to this performance merit, regular protocols are fre-
quently utilized in performance-critical systems, particularly
in embedded systems that cannot tolerate latency. Typical
examples include Mavlink [11] and MQTT [18], both of
which are well-established in their respective fields. Mavlink
is a standard messaging protocol for communicating with un-
manned vehicles and is used in popular robotic systems such
as Ardupilot [2] and PX4 [12]. MQTT, on the other hand, is
a standard messaging protocol for the internet of things and
is employed across various industries, such as automotive,
manufacturing, and telecommunications, to name a few. In
our evaluation, we include ten regular protocols designed for
edge computing, musical devices, amateur radio, and others.

3 Limitation of Existing Works

Network Protocol Reverse Engineering. Conventional tech-
niques for format inference are either network trace analysis
or dynamic program analysis. They only capture the features
in input messages and are not effective for regular protocols.

(1) Network Trace Analysis (NTA). NTA does not analyze the
implementation of protocols [23, 42, 63, 64, 74, 97, 98, 105].
Given a set of messages, they use statistical methods including
machine learning to identify fields in a message or infer an
FSM to represent message formats. The formats inferred by
them strongly depend on the shape of input messages. For
instance, assume that a valid message format satisfies the
regular expression (a|b)+c, meaning that a message can start
with any combination of ‘a’ and ‘b’. If all messages input to a
typical NTA, such as REVERX [23] and NEMESYS [63, 64],
start with ‘aaa’, it is very likely to infer an incorrect format
starting with ‘aaa’. In more complex cases where the format
is a ce-regex, NTA cannot precisely infer constraints in the
ce-regex, e.g., a mod 10 = 4, b > 3, and (c� 16)+ c > 100.
This motivates us to use program analysis so that we can
precisely infer the constraints by tracking path conditions.

(2) Dynamic Program Analysis (DPA). DPA is more precise
than NTA as it tracks data flows in protocols’ implementa-
tion [34, 35, 44, 54, 58, 71–73, 100]. However, it shares the
same limitation with NTA as the inferred formats also only
capture the features of input messages. Typically, techniques
like AUTOFORMAT [71] infer neither repetitive fields nor
field constraints. For instance, given a set of messages such as
{ ‘aaac’, ‘abac’, ... } that satisfy the ce-regex (a|b)+c where
a = ‘a’, b = ‘b’, and c≥ ‘c’, while AUTOFORMAT will run
these messages against the protocol’s implementation, it does
not extract conditions like c ≥ ‘c’ from the code and may
produce a com-regex a(a|b)ac as the format. The FSM of
the com-regex is shown in Figure 2(c), which is not correct,



void read_message_and_parse() {
char state = ‘A’;
while (1) {

switch(state) {
case ‘A’: char in = read_next_msg_byte(); 

if (in == ‘a’) { state = ‘B’; } 
else { assert(in == ‘b’); state = ‘C’; }
break;

case ‘B’: char in = read_next_msg_byte();
if (in == ‘a’) { /*do nothing*/ }
else if (in == ‘b’) { state = ‘C’; }
else { assert(in == ‘c’); state = ‘D’; } 
break;

case ‘C’: char in = read_next_msg_byte();
if (in == ‘a’) { state = ‘B’; }
else if (in == ‘b’) { /*do nothing*/ }
else { assert(in == ‘c’); state = ‘D’;}
break;

case ‘D’:  exit(0);
}}}
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Figure 2: (a) Implementation of the FSM in Figure 1(a). (b) The FSM inferred by the state-of-the-art static analysis, i.e., PROTEUS.
(c) The FSM that represents the message format inferred by AUTOFORMAT. (d) The FSM that represents the message format
inferred by TUPNI. (e) The FSM inferred by our approach, which is exactly the same as the compressed FSM in Figure 1(b).

inasmuch as it cannot parse messages with repetitive fields
and the last transition is not labeled by the correct constraint
σ≥ ‘c’ and, thus, is considered to be a false transition.

TUPNI [44] handles parsing loops with the assumption that
loops are used to parse repetitive fields in a network message.
However, this is not true for regular protocols. For example,
Figure 2 shows the implementation of the FSM in Figure 1(a).
We can observe that the loop parses all fields in a message,
no matter a field is repetitive, e.g., a and b, or just a single
byte, e.g., c. Hence, TUPNI will produce a format like (a|b|c)+
as the byte c is also handled in the loop and regarded as a
repetitive field. Figure 2(d) shows the corresponding FSM,
which does not represent a correct format. For example, in the
inferred FSM, the incoming transitions of the final state may
have the constraint σ = ‘a’, but in the correct FSM shown in
Figure 1, the incoming transitions of the final state are only
constrained by σ = ‘c’.

Static Loop Analysis. Unlike NTA and DPA which only cap-
ture formats in their input messages, we propose to use static
analysis to infer all possible formats in the form of FSM.
However, we fail to find any practical static analysis that can
infer such formats with high precision, recall, and speed.

(1) Loop Unwinding and Loop Invariant. Loop unwinding
limits the number of loop iterations to a constant k [25, 88,
90, 104]. When analyzing the parser in Figure 2(a), it will
only produce the formats of the first k bytes as each iteration
analyzes one byte. Loop invariant techniques [20, 52, 53, 57,
60, 65, 78, 81, 86] do not infer FSMs, either. They compute
constraints that always hold after every loop iteration. For
instance, a possible invariant of the loop in Figure 2(a) could
be ‘a’ < in < ‘c’. This is far from our goal of FSM inference.

(2) Loop Summarization for FSM Inference. Chen et al.’s ap-
proach [37] assumes that an FSM parsing loop follows a
simple pattern and, thus, is impractical for real-world proto-

col parsers. For instance, they regard a program variable as a
state variable iff it is both modified in a loop iteration and ref-
erenced in future iterations. They assume such state variables
have a limited number of values, e.g., the variable state in Fig-
ure 2 only has four possible values. This assumption is often
violated in practice. A typical example is in Figure 4 where
the variable tok satisfies their definition of state variables, but
its value is not enumerable. In addition, this approach suf-
fers from two explosion problems. First, they regard every
possible combination of the state variables as a state, but the
number of combinations could be explosive. For instance, if
we have five state variables and each has five possible values,
the resulting FSM will contain 55 > 3000 states. Second, they
depend on symbolic execution, which is well-known to suf-
fer from path explosion. Such explosion problems not only
make a static analysis not scalable but also significantly blow
up an FSM with unnecessary states and transitions. Other
approaches, e.g., [61, 91], have similar problems.

To the best of our knowledge, PROTEUS [101, 102] is the
most recent and systematic approach to FSM inference. It re-
gards every path within the body of a parsing loop as an FSM
state and the dependency between two paths executed in two
consecutive loop iterations as a state transition. Figure 2(b)
shows the FSM inferred by PROTEUS, where si represents a
state and also a path that goes through Line i. Each transition
from si to s j is labeled by the path condition of si. It means
that if the parser executes the path si with its path condition,
the next iteration may execute the path s j. For instance, the
state transitions from s6 to s10, s11, and s12 are labeled by
the condition σ = ‘a’. It means that if the loop executes the
path s6, of which the path condition is σ = ‘a’, the loop may
execute the path s10, s11, or s12 in the next iteration.

While the FSM is non-deterministic, it is absolutely correct
to represent the format (a|b)+c. For instance, the string ‘abbc’
can be parsed via the transitions s6s11s16s17s19. However, the
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Figure 3: Basic steps of our approach.

FSM is too complex compared to the one we intend to imple-
ment, i.e., Figure 1(a). We observe that the core problem is
that it enumerates all paths in the loop body as a priori but the
number of paths is notoriously explosive. Thus, the resulting
FSM contains an overwhelming number of states and transi-
tions, and PROTEUS is impractical due to path explosion.

4 Technical Overview

At a high level, we follow a similar idea in terms of regarding
a loop iteration as an FSM state and dependency between
loop iterations as state transitions. However, unlike PROTEUS,
we do not enumerate all individual paths in the loop but put
as many paths as possible into a path set which, as a whole,
is regarded as a single FSM state. This design simplifies the
output FSM, significantly mitigates path explosion, but incurs
new challenges. In what follows, we discuss two examples,
one for our basic idea and the other for the detailed designs.

Basic Idea: Path Set as State. We perform a precise abstract
interpretation over each iteration of the parsing loop. The
basic steps of analyzing the code in Figure 2 are shown in
Figure 3. In the first iteration of the parsing loop, due to the
initial value of the variable state, we analyze the paths s6
and s7, depending on the condition: ΦE ≡ σ = ‘a’∨σ = ‘b’.
Thus, we create the state E to represent the path set {s6,s7}
and label the outgoing edge of E with the condition ΦE .

After the first iteration, the value of the variable state is ei-
ther ‘B‘ or ‘C’. Thus, in the second iteration, the abstract inter-
pretation analyzes all paths in F = {s10,s11,s12,s15,s16,s17}
with the path condition ΦF ≡ σ = ‘a’∨σ = ‘b’∨σ = ‘c’.
Hence, we create the state F with the outgoing condition ΦF .

After the second iteration, the value of the variable state
could be ‘B‘, ‘C’, or ‘D’. Thus, in the third iteration, we
analyze the paths in H = F ∪G,G = {s19} with the path
condition ΦH ≡ σ = ‘a’∨σ = ‘b’∨σ = ‘c’. Hence, we create
the state H with the outgoing condition ΦH .

Since the state H overlaps the state F , we split H into F
and G, just as in the last graph in Figure 3. Since the state H
is split, the original edge from F to H is also split accordingly.
For instance, the condition from F to G is σ = ‘c’ because,
only when we go through the paths s12,s17 ∈ F , of which the
path condition is σ = ‘c’, we can reach the path s19 ∈ G. The
state G is a final state because it stands for the path s19 that
leaves the parsing loop. Finally, we merge the two F states,
forming a self-cycle as illustrated in Figure 2(e).

Algorithm 1: State Machine Inference.
1 Procedure infer_state_machine(Einit)
2 (S,ES) = abstract_interpretation (Einit);
3 Worklist = {(S,ES)}; FSM = /0;
4 while Worklist not empty do
5 (S,ES) = Worklist.pop();
6 (S′,ES′ ) = abstract_interpretation (ES);
7 add (S,ES,S′) into FSM;

/* splitting operations */
8 foreach state X that should be split do
9 split X into X1,X2, . . . ;

10 replace (X ,EX ,Y ) ∈ FSM with (Xi,EXi ,Y );
11 replace (Y,EY ,X) ∈ FSM with (Y,EY ,Xi);

12 assume S′ is split into S′i, or S′ ≡ S′i if S′ is not split;
13 if 6 ∃(S′i,ES′i

,∗) ∈ FSM, where ∗ means any state then
14 add (S′i,ES′i

) into Worklist;

/* merging operations */
15 merge states that represent the same path set into one state;
16 foreach pair of states (X ,Y ) such that there are multiple

transitions (X ,EX1,Y ),(X ,EX2,Y ), · · · ∈ FSM do
17 EX = merge(EX1,EX2, . . .);
18 replace all (X ,EXi,Y ) with (X ,EX ,Y ) in FSM;
19 if ∀EXi.EX 6≡ EXi then add (X ,EX ) into Worklist;

20 return FSM;

Algorithm Framework. Algorithm 1 sketches out our ap-
proach. Its parameter is the initial program environment Einit,
which provides necessary program information such as the
initial path condition and the initial value of every program
variable before entering a parsing loop. Line 2 analyzes the
first iteration of the parsing loop and outputs the analyzed
path set as well as the resulting program environment, i.e.,
(S,ES). Line 3 initializes the FSM and a worklist.

The FSM is represented by a set of state transitions. Each
transition is a triple (S,ES,S′) and describes the analyses of
two consecutive iterations of the parsing loop — one analyzes
the path set S and outputs ES; the other uses ES as the precon-
dition, which lets us analyze the path set S′. Each item in the
worklist is the analysis result from an iteration of the parsing
loop, i.e., (S,ES). We use the worklist to perform a fixed-point
computation. That is, whenever we get a new pair (S,ES) that
has not been included in the FSM, we add it to the worklist,
because using a new ES as the initial program environment
may result in new analysis results from the parsing loop.

Lines 5-7 continue the analysis of the next loop iteration
and add the new state transition to the FSM. Lines 8-11 split
a state into multiple sub-states, just like we split the state H in



Figure 3. Lines 12-14 update the worklist by adding (S′i,ES′i
)

if the pair has not been included in the FSM. Line 15 merges
the states that represent the same path set, just like that we
merge the two states F in the last example. If the procedure
above yields multiple but non-equivalent transitions between a
pair of states, e.g., (X ,EXi≥1,Y ), Lines 16-19 merge them into
one, (X ,EX ,Y ). If EX ≡ EXi, we do not need to add (X ,EX )
to the worklist, because the resulting transition (X ,EXi,Y )
has been in the FSM. Otherwise, (X ,EX ) should be added to
the worklist for further computation.

The details of the merging operation will be discussed later
in §5, but it is sound and also guarantees the convergence of
a fixed-point computation. That is, while we keep merging
transitions from X to Y whenever a new transition between
the two states is produced, the merging operation ensures that
we will not endlessly generate new transitions from X to Y .
Instead, it will converge, i.e., reach a fixed point.
Controlled State Splitting and Merging. The previous ex-
ample shows the power of regarding multiple paths as a single
state, which mitigates the path explosion problem and pro-
duces compressed FSMs. However, we observe that we cannot
arbitrarily put all possible paths in a single state. Otherwise,
invalid FSMs may be generated or the algorithm performance
may be seriously degraded. Thus, we establish dedicated rules
to control state splitting and merging. They are implemented
into two key operations in Algorithm 1, namely split and
merge. Next, we informally discuss them in three parts: (1)
we list the rules of splitting and merging states; (2) we use a
detailed example to show how these rules are used; and (3)
we briefly justify the rationale behind the rules.
(1) Splitting and Merging Rules. We establish the following
rules to split a state or merge multiple states.

• Splitting Rule (SR1): If two states represent overlapping
path sets, we split them into multiple disjoint path sets.
This rule has been illustrated in Figure 3 where the state
H is split into F and G, so that we can reuse the state F .

• Splitting Rule (SR2): If a state represents a path set that
includes both loop-exiting paths and paths that go back to
the loop entry, we split it into a final state containing the
exiting paths and a state containing the others. Otherwise,
it will be hard to decide if an FSM terminates.

• Splitting Rule (SR3): If a state represents a path set
where a variable is defined recursively in some paths,
these paths should be isolated from others. For example,
the paths s12 and s13 in Figure 4 define the variable tok
in two manners. The path s13 defines the variable tok
recursively based on its previous value. Hence, we put
the two paths s12 and s13 in different path sets.

• Merging Rule (MR1): Given a set of states that repre-
sent the same path set with the same path conditions,
we merge them into a single state. This rule has been
illustrated in Figure 3 where we merge the two states F .

• Merging Rule (MR2): Given a sequence of transitions
between a pair of states, we merge them into a single
transition either by induction or, if induction fails, via
a widening operator from classic abstract interpretation.
Let us use the following examples to illustrate.

– Given multiple transitions between a pair of states
where the transition constraints form a sequence
such as σ = 1, σ = 2, σ = 3, . . . , we can apply
inductive inference [22] to merge them into a single
state transition with the constraint σ = k, meaning
the kth transition constraint.

– If the transition constraints are σ = 0, σ = 3, σ = 1,
. . . , we cannot inductively merge them as before.
Instead, we merge them into 0≤ σ≤ 3 using the
classic widening operator from interval-domain
abstract interpretation [40]. This merging operation
is sound but may lose precision.

• Merging Rule (MR3): To ensure the validity, i.e., a state
transition does not refer to inputs consumed by previ-
ous transitions, we perform this rule after Algorithm 1
terminates. That is, given two consecutive transitions,
e.g., δ(A,ΦA) = {B} and δ(B,ΦB) = {C}, they are valid
by definition iff ΦA and ΦB respectively constrain two
consecutive but disjoint parts of an input stream. If the
inputs constrained by ΦA and ΦB overlap, we either (1)
replace the transition constraints with Φ′A and Φ′B such
that Φ′A∧Φ′B ≡ ΦA∧ΦB and neither Φ′A nor Φ′B refers
to previous inputs, or (2) merge the transitions, yielding
δ(A,ΦA∧ΦB) = {C} if Φ′A and Φ′B cannot be computed.

Theorem 1 (Convergence). The splitting and merging rules
guarantee the convergence of Algorithm 1.

Proof. Given a parsing loop that contains n program paths in
the loop body, SR1 ensures that we split these paths into at
most n disjoint path sets. Thus, Algorithm 1 generates at most
n states. While we may generate different transitions between
a pair of states, Algorithm 1 leverages MR1-2 to merge them
by conventional inductive inference [22] or interval-domain
abstract interpretation [40], until a fixed point is reached. Thus,
we compute at most one fixed-point transition between each
pair of states. Since both the inductive inference and abstract
interpretation converge, Algorithm 1 converges after generat-
ing at most n states and n2 fixed-point state transitions.

(2) Detailed Example. Figure 4 shows a common but com-
plex case in protocol parsers. It looks for a nonempty token
between the symbol ‘^’ and the symbol ‘:’. The token tok is
initialized to be an empty string and is reset when the input is
‘^’ (Line 12). If the input character is a letter, the character is
appended to tok (Line 13). If the input character is ‘:’, it will
check if the token tok is a nonempty keyword (Line 10).

Figure 4(a). Since the variable state and the variable tok
are respectively initialized as TOK and an empty string, in the
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enum State { TOK, OK, ERR };
void parse(char *msg) {

State state = TOK;
string tok = “”;
while (1) {

switch(state) {
case TOK: 

char in = read_next_byte(msg); 
if (in == ‘:’)

if (iskey(tok)) state = OK; 
else state = ERR;

else if (in == ‘^’) { tok = “”; } 
else { assert(‘a’≤in≤‘z’); tok+=in; }
break;

case OK: exit(0);
case ERR: exit(1);
}}}
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Figure 4: A detailed example. (a)-(h) The steps of FSM inference.

first iteration, we analyze the paths s11, s12, and s13 as other
paths are infeasible. By SR3, the paths s12 and s13 cannot be
in the same state. Thus, we create the states A0 = {s11,s13}
and B = {s12}. The outgoing constraint of each state is the
path constraint, where we use the symbol τn to represent the
input byte stream of length n before the current loop iteration.
In the first iteration, tok is an empty string and denoted as τ0.

Figure 4(b). The first iteration creates two states, A0 =
{s11,s13} and B = {s12}. If we follow the state B, i.e., the first
iteration runs the path s12, the code only resets the variable tok
and, after the reset, it is like we never enter the loop. Hence,
in the second iteration, we analyze the paths in A0∪B again
just as in the first iteration. By MR1, we reuse the state A0
and the state B. That is, we add a self-cycle on the state B and
a transition from the state B to the state A0.

Figure 4(c). If we follow the state A0, i.e., the first iteration
runs the paths in A0 = {s11,s13}, the second iteration will an-

alyze the paths in C = {s10,s11,s12,s13,s16}. Thus, we create
the state C and add the transition from A0 to C. The outgoing
transition of C is the path condition of all paths in C.

Figure 4(d). By SR1 and SR2, we split the state C into four
sub-states A1, B, D= {s16}, and E = {s10}. We reuse the state
B but create a new state A1 because the states A0 and A1 have
different post-conditions. We then replace the state C with the
four sub-states. The transition constraint from the state A0 to
each sub-state is the original constraint from the state A0 to
the state C. The outgoing constraint of each sub-state is the
constraint of paths represented by the sub-state. For instance,
for the sub-state D = {s16}, its path condition is state = ERR
where the value of state is ite(τ1 = ‘:’,ERR,TOK), meaning
that if the previous input is ‘:’, state = ERR and, otherwise,
state = TOK. Thus, the outgoing constraint of D is τ1 = ‘:’.

The incoming and outgoing constraints of a state can be
cross-simplified. For instance, the outgoing constraint of E
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Figure 5: Violation of SR3.

includes τ1 6= ‘:’. This means that the incoming constraint of
E satisfies σ 6= ‘:’, and thus, can be simplified to ‘a’≤ σ≤ ‘z’.

Figure 4(e). We continue a similar analysis of the next
iteration from the states D, E, or A1 because they have un-
determined target states. From the state D = {s16}, since the
path s16 exits the loop, we stop the analysis and mark the state
D as a final state. Similarly, we can find the final state F .

Figure 4(f) and Figure 4(g). If we continue the analysis
from the state A1, we will find a repetitive state sequence,
i.e., A0, A1, A2, and so on. We use MR2 to inductively merge
them into Ak as shown in Figure 4(g). The merged state Ak
means the (k+1)th state A. Thus, the self-cycle on Ak loops
k times and each time consumes an input satisfying ‘a’≤ σ≤
‘b’. For state transitions, e.g. the one from E to F , since the
constraints between them in Figure 4(f) form the sequence:
σ = ‘:’∧ iskey(τ1), σ = ‘:’∧ iskey(τ2), σ = ‘:’∧ iskey(τ3)
and so on, the transition constraint from E to F in Figure 4(g)
is summarized as σ = ‘:’∧ iskey(τk+1).

Figure 4(h). To ensure that a state transition does not refer
to symbols in previous transitions, we merge the incoming and
outgoing constraints of the state Ak and E by MR3, yielding
the final FSM in Figure 4(h). The inferred FSM is correct.
For instance, given a string “^^^abcd:” where we assume
“abcd” is a keyword, the FSM can parse it by the transitions
BBBAkEF . That is, the transitions BBBAk consumes the prefix
“^^^” and the transition from Ak to E consumes the keyword
“abcd” by instantiating the induction variable k = 4. Finally,
the transition from E to F consumes the colon.

(3) Consequences of Violating Rules. As stated in the proof
of Theorem 1, SR1, MR1, and MR2 contribute to the conver-
gence of the algorithm. Violating these rules may make the
algorithm not terminating. SR2 and MR3 ensure the validity
of an FSM by definition. That is, SR2 distinguishes final states
from other states, and MR3 ensures that a state transition does
not refer to symbols in previous transitions.

Particularly, SR3 facilitates the use of induction in MR2.
Figure 5 shows the case where we do not use SR3 and, thus,
merge the states A and B. In this case, after each iteration,
the variable tok may be either reset or recursively defined,
depending on if the previous input is ‘^’. In result, the value
sequence of the variable tok, as shown in Figure 5, cannot be
summarized as an expression parameterized by an induction

variable k. According to MR2, to merge such repetitive states,
we have to rely on widening operators, which are sound but
imprecise [40]. Recall that, in Figure 4(f) where SR3 is used,
the value of tok is a sequence of τ1, τ2, τ3, and so on. Thus,
we can precisely summarize its value as τk+1 via MR2.

5 Formalizing the Approach

In this section, the notation a[b/c] returns the expression a
after using b to replace all occurrences of c in a. We use sat(φ)
and unsat(φ) to mean that the constraint φ is satisfiable and
not. An ite(v1,v2,v3) formula returns v2 and v3 if the condition
v1 is true and false, respectively. We use a simplification
procedure [47], φ′1 = simplify(φ1,φ2), to simplify φ1 but keep
the equivalence of φ1 and φ′1 in terms of φ2⇒ (φ1 ≡ φ′1).

Abstract Language. For clarity, we use a C-like language in
Figure 6 to model a parser that implements an FSM via a do-
while loop. We use a do-while loop as it is a general form of
loops with initialization, i.e., S ;while(1){S ;}. The statements
could be assignments, binary operations, read statements that
read the next byte of a message to parse, exit statements that
exit the loop, and branching statements that are uniquely iden-
tified by the identifier κ. To use our approach, users manually
annotate the statement reading the inputs, e.g., the read func-
tion. The rest is fully automated. Although we do not include
function calls or returns for simplicity, our system is inter-
procedural as a call statement is equivalent to assignments
from the actual parameters to the formals, and a return state-
ment is an assignment from the return value to its receiver.
The language abstracts away pointer operations because the
pointer analysis is not our technical contribution and, in the
implementation, we follow existing works to resolve pointer
relations [104]. We do not assume nested loops for simplic-
ity as we focus on the outermost loop that implements the
FSM. In practice, we observe that inner loops often serve
for parsing repetitive fields in a network message rather than
implementing the FSM. Hence, in the implementation, we
follow traditional techniques to analyze inner loops [51, 84].

Abstract Domain. An abstract value of a variable represents
all possible concrete values that may be assigned to the vari-
able during program execution. The abstract domain specifies
the limited forms of an abstract value. In our analysis, the
abstract value of a variable v is denoted as ṽ and defined in
Figure 7. An abstract value could be a constant value c and
a byte stream of length k, i.e., σk and τk, which respectively
represent the input byte stream read in the current loop itera-
tion and the previous iterations. The symbols τn

i , τn
i.. j, and τ

are defined similarly as σn
i , σn

i.. j, and σ. An abstract value can
also be a first-order logic formula over other abstract values.
To ease the explanation, we only support binary and ite for-
mulas. Especially, we also include an interval abstract value
to mean a value between two constants. As discussed later in
Algorithm 3, such interval abstract values allow our analysis



Parser P := do { S ; } while(1);
Statement S := v1← v2 ::assign

| v1← v2⊕ v3 ::binary
| v1← read() ::read
| exit() ::exit
| ifκ (v) {S1;} else {S2;} ::branching
| S1;S2 ::sequencing

⊕ ∈ {∧,∨,+,−,>,<,=, 6=, . . .}

Figure 6: Language of target programs.

Abstract Value ṽ := c ::constant value
| σk ::current input of length k
| τk ::previous input of length k
| ṽ1⊕ ṽ2 ::binary formula
| ite(ṽ1, ṽ2, ṽ3) ::if-then-else formula
| int(c1,c2) ::interval

Figure 7: Abstract values.

to fall back to conventional interval-domain abstract interpre-
tation [40], in order to guarantee convergence and soundness.

Abstract Interpretation. The abstract interpretation is de-
scribed as transfer functions of each program statement. Each
transfer function updates the program environment E= (I,φ).
Given the set V of program variables and the set Ṽ of abstract
values, I : V 7→ Ṽ maps a variable to its abstract value. The
constraint φ captures the skeletal path constraint, which stands
for a path set executed in a single loop iteration. We say φ is a
skeletal path constraint because it is in a form of conjunction
or disjunction over the symbols κ or ¬κ, e.g., κ1∧(κ2∨¬κ2),
where each symbol κ uniquely identifies a branch and is not
evaluated to its branching condition. The real path constraint
is denoted by the uppercase Greek letter Φ = φ[I(κ)/κ] where
each κ is replaced by its abstract value. We list the transfer
functions in Figure 8, which describe how we analyze a loop
iteration, i.e., the procedure abstract_interpretation in
Algorithm 1. In these transfer functions, we use E ` S : E′ to
describe the environment before and after a statement.

To initialize the analysis of a loop iteration, we set the
initial environment to E= (I,φ), which is obtained from the
previous iteration, and assume that abstract values in I use
the symbols τk

i and σk′
i′ . This means that the previous iteration

depends on an input stream of length k+ k′, in which k bytes
from iterations before the last iteration and k′ bytes from the
last iteration. For the current iteration, all k+k′ bytes are from
previous iterations. Hence, we rewrite all σ to τ.

The rules for assignment, binary operation, read, and exit
are straightforward, which update the abstract value of a vari-
able. The sequencing rule says that, for two consecutive state-
ments, we analyze them in order. The branching rule states
how we handle conditional statements. In the branching rule,
(I,φ) represents the environment before a branching state-
ment. (I1,φ∧φ1) and (I2,φ∧φ2) are program environments
we respectively infer from the two branches. At the join-
ing point, we either use the analysis results of one branch
if the other branch is infeasible, or merge program environ-

Algorithm 2: Splitting Rules (SR1-3).
1 Procedure split((S1,ES1 ,S2),(S2,ES2 ,S3))
2 assume ES1 = (IS1 ,φS1 ) and ES2 = (IS2 ,φS2 );
3 assume S2 is split into two sub-states S21, S22, . . . ;
4 let ΦS2i = φS2i [IS2 (κ)/κ];
5 let IS2i = IS2 [simplify(ṽ,ΦS2i )/ṽ];
6 let ES2i = (IS2i ,φS2i );
7 replace input transitionswith (S1,ES1 ,S2i),(S2i,ES2i ,S3);

ments from both branches. When merging results from both
branches, variables assigned different values from the two
branches are merged via the ite operator. Path constraints are
merged via disjunction with the common prefix pulled out.
Abstract Finite State Machine. We use a graph structure to
represent an FSM. That is, an FSM is a set of labeled edges.
Each edge is a triple (S,ES,S′) where ES = (IS,φS), meaning
a transition from the state S to the state S′ with the transi-
tion constraint φS[IS(κ)/κ]. In the triple, ES is the resulting
program environment after analyzing the path set S in a loop
iteration. Next, we formally describe the other two key proce-
dures, i.e., split and merge, in Algorithm 1.
(1) Splitting Rules (SR1-3). Splitting a state consists of two
steps — splitting the path set the state represents and recom-
puting its outgoing program environment.

SR1 splits two overlapping path sets S1 and S2 into at most
three subsets, respectively represented by φS1 ∧ ¬φS2 that
means paths in the first set but not in the second, φS1 ∧φS2 that
means paths shared by the two sets, and ¬φS1 ∧φS2 that means
paths not in the first set but in the second. We create a state for
each of the three skeletal constraints if it is satisfiable. SR2
and SR3 isolate some special paths from a path set. Given the
path set S1 and the paths S2 to isolate, we create two states
represented by φS1 ∧¬φS2 and φS∧φS2 , respectively.

After a state is split into multiple sub-states, we recompute
the outgoing program environment for each sub-state. Algo-
rithm 2 and Figure 9 show the splitting procedure, where we
assume we split the state S2 into multiple sub-states S2i and
split its outgoing transition (S2,ES2 ,S3) into (S2i,ES2i ,S3).
The splitting procedure consists of two steps. First, Line 4 in
Algorithm 2 computes the real path constraint according to
the skeletal path constraint of each sub-state. Second, Line 5
recomputes each abstract value under the new path constraint.
Basically, this step is to remove values from unreachable
branches. For instance, assume IS2(v) = ite(ṽ1, ṽ2, ṽ3), mean-
ing that after analyzing the path set S2, the abstract value of
the variable v is either ṽ2 or ṽ3, depending on if the branch-
ing condition ṽ1 is true. If paths in the subset S21 ensures
ṽ1 = true, we then rewrite the abstract value as IS21(v) = ṽ2.
(2) Merging Rules (MR1). MR1 merges two equivalent states.
Lines 13-14 of Algorithm 1 implements this rule. We show the
idea in Figure 10, where we assume S′1 ≡ S1 and ES′1

≡ ES1 .
In this case, we merge S1 and S′1, but do not compute the next
states using ES′1

because we have already computed them
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i ]∪{(v1,σ
k+1
k )},φ

Read
I,φ ` exit() : I,φ

Exit
I1,φ1 ` S1 : I2,φ2 I2,φ2 ` S2 : I3,φ3

I1,φ1 ` S1;S2 : I3,φ3
Sequencing

I(v) = ṽ I∪{(κ, ṽ)},φ∧κ ` S1 : I1,φ∧φ1 I∪{(κ, ṽ)},φ∧¬κ ` S2 : I2,φ∧φ2

I,φ ` ifκ (v) {S1;} else {S2;} :

 I1,φ∧φ1 unsat(φ[I(κ′)/κ′]∧¬ṽ)
I2,φ∧φ2 unsat(φ[I(κ′)/κ′]∧ ṽ)
{(u, ite(ṽ, ũ1, ũ2) : (u, ũ1) ∈ I1 ∧ (u, ũ2) ∈ I2)},φ∧ (φ1 ∨φ2) otherwise

Branching

Figure 8: Transfer functions as inference rules for analyzing a loop iteration.

		𝑆! 		𝑆" 		𝑆#
𝔼$! 𝔼$"

(a)

		𝑆! 		𝑆#

𝔼$! 		𝑆"!

		𝑆""

𝔼$"!

𝔼$""
(b)

𝔼$!

Figure 9: SR1-3. (a) Before splitting. (b) After splitting.
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Figure 10: MR1. (a) Before merging. (b) After merging.

using its equivalent counterpart ES1 . Thus, Algorithm 1 does
not add (S′1,ES′1

) to the worklist at Lines 13-14.

(3) Merging Rules (MR2). MR2 merges two states that rep-
resent the same path sets but have non-equivalent outgoing
program environments. Let us consider the example in Fig-
ure 11 to understand how Algorithm 1 deals with this case.
Figure 11(a) is the same as Figure 10(b) except that we assume
ES′1
6≡ ES1 . In this situation, we add (S1,ES′1

) to the worklist
(see Lines 13-14 in Algorithm 1). When (S1,ES′1

) is popped
out, we will perform abstract interpretation using ES′1

as the
initial program environment (see Lines 5-6 in Algorithm 1).
Assume the abstract interpretation produces (S′2,ES′2

) where
S′2 ≡ S2 as illustrated in Figure 11(b). In Figure 11(c), we
merge S2 and S′2, yielding multiple non-equivalent transi-
tions between S1 and S2. Lines 16-19 in Algorithm 1 merge
such transitions, yielding Figure 11(d). If the merged envi-
ronment, i.e., merge(ES1 ,ES′1

) equals ES1 or ES′1
, we do not

add (S1,merge(ES1 ,ES′1
)) to the worklist because it has been

in the FSM. Otherwise, the pair (S1,merge(ES1 ,ES′1
)) will be

added to the worklist for further computation.
A naïve merging procedure is shown in Algorithm 3, which

utilizes the traditional interval abstract domain to guarantee
soundness and convergence. Lines 3-4 convert each abstract
value to an interval, int(cmin, cmax), by solving two optimiza-
tion problems via an SMT solver. Basically, solving the opti-
mization problems respectively produces the minimum and
maximum solutions, cmin and cmax, of the abstract value ṽ with

𝔼!!𝔼!"		𝑆" 		𝑆#

𝔼!!

…

𝔼!"# add into worklist if 𝔼!" ≢ 𝔼!"#

		𝑆#

(a)

𝔼!"#

𝔼!!𝔼!"		𝑆" 		𝑆#

𝔼!!

…		𝑆#

𝔼!!#

(c)

𝔼!!

merge(𝔼!" , 𝔼!"# )

		𝑆" 		𝑆#

𝔼!!

…		𝑆#

𝔼!!#

(d)

𝔼!"# 		𝑆#$

𝔼!!𝔼!"		𝑆" 		𝑆#

𝔼!!

…		𝑆#
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Figure 11: MR2. (a) Add (S1,ES′1
) into worklist if ES′1

6≡
ES1 . (b) Generate (S′2,ES′2

) using ES′1
as the precondition. (c)

Merge S2 and S′2. (d) Merge transitions between S1 and S2.

respect to the path constraint. Lines 5-6 merge the interval
values via the traditional widening operator [40]. As proved
by Cousot and Cousot [40], the widening operator ensures
convergence and soundness, which, in our context, means that
it ensures the convergence and soundness of computing a
fixed-point transition between two states. Nonetheless, the
naïve merging procedure could result in a significant loss of
precision because both the computation of intervals (Lines 3-
4) and the merging of intervals (Lines 5-6) over-approximate
each abstract value. Thus, before using the interval abstract do-
main to merge transitions, we always try an induction-based
solution, which is discussed below.

The induction-based solution is sound and does not lose
precision [22]. In the solution, we delay the transition merg-
ing operation until the number of transitions between a pair
of states reaches a predefined constant. For instance, in Fig-
ure 12(a), we do not merge transitions until the number of
transitions between each pair reaches 3. Given a list of tran-
sitions between a pair of states, we can then perform the
inductive inference in two steps – guess and check. For in-
stance, in Figure 12(a), assume I11(v) = σ+1, I12(v) = σ+2
and I13(v) = σ+ 3. As shown in Figure 12(b), we then in-
ductively “guess” the kth abstract value of the variable v as
I1k(v) = σ+k. To check the correctness of I1k(v) = σ+k, as
shown in Figure 12(c), we rerun the abstract interpretation us-
ing ESnk as the initial program environment, if in the resulting



Algorithm 3: Merging Rules (MR2).
1 Procedure merge(E1, E2)
2 assumeE1 = (I1,φ)andE2 = (I2,φ);
3 let ΦS1 = φS1 [IS1 (κ)/κ]; I1 = I1[interval(ṽ,ΦS1 )/ṽ];
4 let ΦS2 = φS2 [IS2 (κ)/κ]; I2 = I2[interval(ṽ,ΦS2 )/ṽ];
5 foreach v such that I1(v) = ṽ1 ∧ I2(v) = ṽ2 do
6 let I(v) = widen(ṽ1, ṽ2);

7 return (I,φ);

8 Procedure interval(ṽ, Φ)
9 let cmin =minimize ṽ with respect toΦbySMTsolver;

10 let cmax =maximize ṽ with respect toΦbySMTsolver;
11 return int(cmin,cmax);

12 Procedure widen(int(a1, b1), int(a2, b2))
13 let c1 = ite(a1 > a2,−∞, a1); let c2 = ite(b1 < b2,+∞, b1);
14 return int(c1, c2);

Algorithm 4: Merging Rules (MR3).
1 Proceduremerge((S1,ES1 ,S2),(S2,ES2 ,S3))
2 assumeES1 = (IS1 ,φS1 )andES2 = (IS2 ,φS2 );
3 let ΦS1 = φS1 [IS1 (κ)/κ]; ΦS2 = φS2 [IS2 (κ)/κ];
4 let ΦS1 = simplify(ΦS1 ,ΦS2 ); ΦS2 = simplify(ΦS2 ,ΦS1 );
5 if ΦS2 doesnotuseanysymbolτ thenreturn;
6 assumeΦS1 = f (σk);
7 ifΦS2 = g(σl)∧h(τm) then
8 letΦS1 = f (σk)∧h(τm)[σk

i−m+k/τm
i≥m−k][τ

m−k
i /τm

i<m−k];
9 letΦS2 = g(σl);

10 else ifΦS2 = g(σl)∨h(τm) then
11 split the stateS2 as shown inFigure13(c-d) and recursively

call thisprocedure.

12 else
13 letΦS1 = f (σk)[σk+l

i /σk
i ]; ΦS2 = g(σl ,τm)[σk+l

k+i/σl
i ];

14 ifm≥ k then
15 let Φ = ΦS1 ∧ΦS2 [σ

k+l
i−m+k/τm

i≥m−k][τ
m−k
i /τm

i<m−k];

16 else letΦ = ΦS1 ∧ΦS2 [σ
k+l
k−m+i/τm

i ];
17 merge transitions intoone fromS1 to S3 constrainedbyΦ;

program environment, the abstract value of v is σ+(k+1), it
means the summarized value I1k(v) = σ+ k is correct. This
guess-and-check procedure follows the procedure of mathe-
matical induction [85] and, thus, is correct.

(4) Merging Rules (MR3). MR3 ensures the validity of FSM
by eliminating state transitions that refer to inputs consumed
by previous transitions. It is performed after an FSM is pro-
duced by Algorithm 1. Algorithm 4 and Figure 13 demon-
strate how it works on two transitions, one is from the state
S1 to the state S2 and consumes k bytes, i.e., σk; the other
is from the state S2 to the state S3, consumes l bytes, i.e.,
σl , and, meanwhile, constrains m bytes consumed by pre-
vious transitions, i.e., τm. First, for conjunctive constraints,
e.g., g(σl)∧ h(τm) in Figure 13(a), we only need to move
the constraint h(τm) to the previous transition and perform
constraint rewriting. Such rewriting does not change the se-
mantics of the transition constraint but just lets it follow the
definitions of σ and τ. Second, for disjunctive constraints, e.g.,

	𝑆! 𝑆" 𝑆#…

𝔼$!! , 𝔼$!" , 𝔼$!# , …
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(a)
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𝔼$!%

𝔼$$%

(b)

	𝑆! 𝑆" 𝑆#…
𝔼$!%

𝔼$$%

(c)

𝔼$!%&! If we get 𝔼$!%&!, we reach the fixed point.

Figure 12: MR2 via induction. ESi j = (ISi j ,φSi). (a) Delay
merging. (b) Guess. (c) Fixed-point computation.
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(f)

Figure 13: MR3. Eliminating τ in (a-b) conjunctive con-
straints, (c-d) disjunctive constraints, and (e-f) constraints
where τ cannot be isolated by disjunction or conjunction.

g(σl)∨h(τm) in Figure 13(c), we split the state S2 to eliminate
the disjunctive operator as shown in Figure 13(d) and then
use the method for conjunction discussed above. Third, for
constraints that cannot isolate τ-related sub-formulas via dis-
junction or conjunction, as shown in Figure 13(f), we merge
the transitions into one.

Theorem 2 (Soundness and Completeness). Given a program
in the language defined in Figure 6, Algorithm 1 is sound us-
ing the aforestated splitting and merging rules. It is complete
if the interval domain is never used during the analysis.

Proof. The full proof can be found in the appendix. We sketch
out the proof in what follows. Algorithm 1 computes a state
transition (S,E,S′) in three ways. First, it computes a transi-
tion based on the inference rules in Figure 8. The inference
rules model the exact semantics of each program statement
and, thus, do not introduce any approximation into E. Sec-
ond, a transition may be split by Algorithm 2, which applies
a sound and complete simplification procedure [47]. Third,
when multiple transitions exist between a pair of states, we
merge them into one by either inductive inference or the
widening operator of the interval domain. The inductive infer-
ence is sound and complete [22] and the widening operator is
sound but not complete [40].



Discussion. We propose a static analysis that can infer an
FSM from a parsing loop. While it is undecidable to check
if an input loop intends to implement an FSM, as discussed
in Theorem 2, given any loop in our abstract language, our
approach guarantees to output a sound result. Nevertheless,
the implementation in practice shares some common limi-
tations with general static analysis. For instance, our static
analysis is currently implemented for C programs and does
not handle virtual tables in C++. We focus on source code and
do not handle inline assembly. For libraries without available
source code, e.g., crc16() and md5(), which are widely used to
compute checksums or encrypt messages, we manually model
these APIs. A common limitation shared with the state of the
art is that, if the code implements a wrong FSM, the FSM we
infer will be incorrect, either. Nevertheless, we will show that
our approach is promising via a set of experiments.

6 Evaluation

On top of the LLVM compiler framework [67] and the Z3 the-
orem prover [45], we have implemented STATELIFTER for
regular protocols written in C. The source code of a protocol
is compiled into the LLVM bitcode and sent to STATELIFTER
for FSM inference. In STATELIFTER, LLVM provides facili-
ties to manipulate the code and Z3 is used to represent abstract
values as symbolic expressions and solve path constraints.
Research Questions. First, we compare our approach to the
state-of-the-art static analysis, i.e., PROTEUS [101, 102]. Sec-
ond, we compare STATELIFTER to dynamic techniques, in-
cluding REVERX [23], AUTOFORMAT [71], and TUPNI [44].
Third, to show the security impacts, we apply STATELIFTER
to fuzzing and applications beyond protocols.
Benchmarks. Our approach is designed to work on the C
code that implements the FSM parsing loop for regular proto-
cols. We do not find any existing test suite that contains such
C code. Thus, we build the test suite. To this end, we search
the Github for regular protocols implemented in C language
via the keywords, “protocol parser”, “command parser”, and
“message parser”, until we found the ten in Table 1. These
protocols include text protocols such as ORP and binary pro-
tocols such as MAVLINK. They are widely used in different
domains in the era of the internet of things. For example, ORP
allows a customer asset to interact with Octave edge devices.
MAVLINK is a lightweight messaging protocol for commu-
nicating with drones. TINY specifies the data frames sent
over serial interfaces such as UART and telnet. SML defines
the message formats for smart meters. RDB is a protocol for
communicating with Redis databases. MQTT is an OASIS
standard messaging protocol for IoT devices. MIDI is for
musical devices and KISS is for amateur radio.
Environment. All experiments are conducted on a Macbook
Pro (16-inch, 2019) equipped with an 8-core 16-thread Intel
Core i9 CPU with 2.30GHz speed and 32GB of memory.

Table 1: Sizes of the Inferred State Machines

Protocols STATELIFTER PROTEUS
#states # transitions #states # transitions

ORP[10] 5 8 42 92
MAVLINK[11] 42 197 - -

IHEX[4] 15 63 - -
BITSTR[7] 22 75 - -
TINY[15] 14 54 151 872
SML[6] 32 89 - -

MIDI [17] 19 81 765 3812
MQTT[19] 28 87 105 581
RDB[14] 22 57 - -
KISS[5] 6 12 24 142
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Figure 14: Time cost. The X-axis lists the ten protocols.

6.1 Against Static Inference Techniques
Our key contribution is a static analysis that fends off the
path-explosion problem when inferring an FSM. To show the
impacts of our design, we run both STATELIFTER and the
state-of-the-art technique, PROTEUS [101, 102], against the
benchmark programs on a 3-hour budget per program. The
time cost of each analysis is shown in Figure 14. As illustrated,
PROTEUS cannot complete many analyses within the time
limit due to path explosion. By contrast, all our analyses finish
in five minutes, exhibiting at least 70× speedup. Since both
PROTEUS and STATELIFTER perform path-sensitive analysis,
they have the same precision and recall when both of them
succeed in inferring the FSM for a protocol, e.g., ORP. We
detail the results of precision and recall in §6.2.

Table 1 shows the size of the inferred FSMs. Observe
that the FSMs inferred by our approach are much (4×-40×)
smaller than those inferred by PROTEUS. It demonstrates that
our design not only significantly mitigates the path explosion
problem but also infers highly compressed FSMs, which are
expected to be easier to use in practice.

6.2 Against Dynamic Inference Techniques
Dynamic analysis is orthogonal to static analysis. Thus, in gen-
eral, they are not comparable. Nevertheless, for the purpose of
reference rather than comparison, we evaluate three dynamic
analyses, including REVERX [23], AUTOFORMAT [71], and
TUPNI [44]. REVERX is a black-box approach that learns an
FSM from input messages without analyzing the code. It in-
stantiates general automata induction techniques like L* [21]
and is specially designed for protocol format inference. AUT-
OFORMAT and TUPNI are white-box methods that rely on
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dynamic dataflow analysis. They generate message formats in
BNF, which can be easily converted to FSMs. Given that all
analyses complete within a few minutes, our focus is primarily
on examining their precision and recall. In an extended ver-
sion of this paper [89], we detail how we compute precision
and recall. Intuitively, the precision is the ratio of correct state
transitions to all inferred transitions; and the recall is the ratio
of correct transitions to all transitions in the ground truth.

To drive the dynamic analyses, we randomly generate
one thousand valid messages as their inputs. By contrast,
STATELIFTER does not need any inputs and, thus, provides a
promising alternative to state of the art especially when the
input quality cannot be guaranteed. The precision and recall
of the inferred FSMs are plotted in Figure 15. It shows that
we achieve over 90% precision and recall while the others
often generate over 40% false or miss 50% true transitions.
This is because they depend on input messages and cannot
handle FSM parsing loops well. STATELIFTER also reports
a few false transitions or misses some true ones as it inherits
some general limitations of static analysis (see §5).

6.3 Security Applications
Protocol Fuzzing. AFLNET [82] accepts a corpus of valid
messages as the seeds and employs a lightweight mutation
method. Thus, we create a corpus, where each message is
generated by solving the transition constraints. BOOFUZZ [9]
directly accepts the message formats as its input and automat-
ically generates messages. Thus, we respectively input the
formats inferred by STATELIFTER, REVERX, AUTOFORMAT,
and TUPNI to BOOFUZZ. The experiments are performed on a
3-hour budget and repeated 20 times to avoid random factors.
As shown in Figure 16, since we can provide more precise and
complete formats, fuzzers enhanced by STATELIFTER achieve
1.2×-3.3× coverage. Meanwhile, we detect twelve zero-day
bugs while the others detected only two of them. We provide
an example of these bugs in an extended version of this pa-
per [89]. All bugs are exploitable as they can be triggered via
crafted messages. Thus, they may pose notable threats to soft-
ware security. For example, we identified four vulnerabilities
in the official implementation of ORP [10], which is used for
connecting Octave edge devices to the cloud [1].
Beyond Protocols. FSMs are widely used in other domains.
In an extended version of this paper [89], we provide a case
study of applying STATELIFTER to autopilot systems.
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Figure 16: The X-axes list the protocols. The Y-axes denote
the coverage normalized to 1 with a 95% confidence interval.

7 Related Work

Static Analysis for Protocol Reverse Engineering. While
almost all existing works for inferring formats use dynamic
analysis, Lim et al. [70] proposed a static analysis that is dif-
ferent from STATELIFTER in two aspects. First, it infers the
formats of output messages whereas we focus on received
messages. Second, it cannot handle loops that implement
complex state machines and all loops are assumed to process
repetitive fields in a message. STATELIFTER does not assume
this. Rabkin and Katz [83] statically infer input formats in
key-value forms, particularly for program configuration rather
than networks. Shoham et al. [92] infer valid API sequences
rather than message formats as state machines. Existing static
analysis for reverse engineering focuses on security proto-
cols, which, different from message formats, infers an agreed
sequence of actions performed by multiple entities [24].
Applications of Protocol Reverse Engineering. Formal mes-
sage formats are important for protocol fuzzing. Mutation-
based fuzzers use formats to generate the seed corpus [36, 50,
55, 59, 82, 94]. Generation-based fuzzers directly use the for-
mats to generate messages for testing [3,8,9,13,26]. Protocol
model checking and verification also need formal protocol
specifications [27–32,41,77,79,96]. Blanchet [32] specifies a
protocol by Horn clauses and applies their technique to verify
TLS models [29]. Beurdouche et al. [28] use Frama-C [62]
to verify TLS implementations. Tamarin [77] uses a domain-
specific language to establish proofs for security protocols
and applies to 5G AKA protocols [27,41]. Some works verify
TCP components via symbolic analysis [30, 31, 79]. Udrea et
al. [96] use a rule-based static analysis to identify problems
in protocols. All these works assume the existence of for-
mal specifications or manually build them. We push forward
the study of automatic specification inference and can infer
message formats with high precision, recall, and speed.

8 Conclusion

We present a static analysis that infers an FSM to represent the
format of regular protocols. We significantly mitigate the path-
explosion problem via carefully designed path merging and
splitting rules. Evaluation shows that our approach achieves
high precision, recall, and speed. Fuzzers supported by our
work can achieve high coverage and discover zero-day bugs.
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A Soundness and Completeness

Algorithm 1 uses a worklist for fixed-point computation. The
worklist is a set of (S,ES) where S is a path set that we an-
alyze in a loop iteration and ES = (IS,φS) is the resulting
program environment. In the algorithm, whenever we cre-
ate a new (S,ES) (Line 14), or (S,ES) in the FSM does not
reach the fixed point (Line 19), we add it to the worklist.
Given each item (S,ES) popped from the worklist, we cre-
ate a state transition (S,ES,S′). Hence, in what follows, we
prove Theorem 2 in three steps, respectively discussing (1)
the soundness and completeness of items in the worklist, i.e.,
(S,ES), (2) the soundness and completeness of state transi-
tions, i.e., (S,ES,S′), and (3) the soundness and completeness
of the FSM, which is a set of state transitions.

Lemma 1 (Soundness of (S,ES)). For each variable v, IS(v)
returns a sound abstract value that over-approximates all
possible concrete values of the variable v.

Proof. In Algorithm 1, the pair (S,ES) in the worklist may
come from three places: ¶ the ones produced by the abstract
interpretation (Line 14 if we have S′ ≡ S′i, meaning that we ac-
tually do not split the state); · the ones produced by splitting
(Line 14); and ¸ the ones produced by merging (Line 19).
Next, we explain that in each case, any abstract value IS(v) in
the program environment is sound.

¶ Figure 8 shows a standard dataflow analysis for our
abstract language model, i.e., Figure 6. The analysis models



the exact semantics of each program statement. For instance,
if the abstract values of the variables v1 and v2 are respectively
v]1 and v]2, the result of v1⊕ v2 will be v]1⊕ v]2. Hence, each
inference rule in Figure 8 is sound and complete. Given that
each inference rule is sound and complete, the analysis of
each loop iteration is also sound and complete. Therefore,
the resulting program environment is sound and complete,
meaning that the abstract interpretation does not introduce any
over- and under-approximation into the program environment.

· As shown in Algorithm 2, when splitting a state S to
multiple states Si, we rewrite each abstract value in IS via
a simplification procedure to build ISi . This simplification
procedure [47] only rewrites a formula by removing abstract
values from unreachable paths and, thus, does not introduce
any over- and under-approximation into the program environ-
ment. For instance, assume IS(v) = ite(ṽ1, ṽ2, ṽ3), meaning
that after analyzing the path set S, the abstract value of the
variable v is either ṽ2 or ṽ3, depending on if the branching con-
dition ṽ1 is true. If paths in the subset Si ⊆ S ensures ṽ1 = true,
we then rewrite the abstract value as ISi(v) = ṽ2.

¸ As shown in Algorithm 3, when merging two program
environments, we first convert them into constant intervals
and then use the widening operator to merge them. Both the
conversion and widening operations are sound [40]. However,
they are not complete because the two operations may intro-
duce over-approximation into the abstract values. For instance,
we may widen two intervals [1,3] and [8,10] to [1,+∞] which
includes a large number of values, e.g., 5, not in the original
intervals.

In the worklist algorithm, an FSM is a set of transitions,
(S,ES,S′), which is actually (S,ES) together with the the path
set S′ analyzed in the next loop iteration. Intuitively, if we have
state transitions (S,ES,S′1),(S,ES,S′2),(S,ES,S′3), · · · ∈ FSM,
it means that after executing a path s ∈ S in a loop iteration,
we will execute a path s′ ∈

⋃
S′i in the next loop iteration.

Next, we discuss the soundness of (S,ES,S′) as follows.

Lemma 2 (Soundness of (S,ES,S′)). If in a concrete execu-
tion, two consecutive loop iterations respectively execute two
paths in the loop body, e.g., s and s′, there must exist a state
transition (S,ES,S′) ∈ FSM such that s ∈ S and s′ ∈ S′.

Proof. By Lemma 1, the output environment of analyzing the
path set s ∈ S is sound, meaning that each abstract value in IS
over-approximates values in the concrete path s. Due to the
over-approximation, using ES as the initial environment, the
next loop iteration must analyze a path set S′ that includes s′.
If S and S′ are not further split into sub-states in Algorithm 1,
we have (S,ES,S′) ∈ FSM. Hence, the lemma is proved.

If S and S′ are split into smaller sub-states, e.g., s ∈ Si and
s′ ∈ S′i, Lines 9-11 in Algorithm 1 say that we still preserve the
connections between Si and S′i. Hence, we have (Si,ESi ,S

′
i) ∈

FSM. The lemma is also proved.

Given that the transitions inferred by Algorithm 1 is sound,
we discuss the soundness of the whole FSM below.

Lemma 3 (Soundness of FSM). If a network message can be
accepted by the loop under analysis, it can also be accepted
by our inferred FSM.

Proof. If the original program can accept an input message,
then the input message will execute a sequence of paths, e.g.,
(s1,s2, . . . ,sn), such that si is a path in the loop body and is
executed in the ith loop iteration, and sn is a path ending with
an exit statement. Assuming that the exact path constraint
(i.e., path constraint without over- and under-approximation)
of each path si is Γsi , we can write the exact path constraint
of the whole input message as

∧n
i=1 Γsi .

By Lemma 2, for each pair of path (si,si+1), we can find a
state transition (Si,ESi ,Si+1) such that si ∈ Si and si+1 ∈ Si+1.
By Lemma 1, ESi is sound, meaning that the state transition
from Si to Si+1 is constrained by a sound path constraint ΦSi

such that Γsi ⇒ ΦSi . Therefore,
∧n

i=1 Γsi ⇒
∧n

i=1 ΦSi . This
means that the input message also satisfies

∧n
i=1 ΦSi . Thus, the

state transitions from the state S1 to the state Sn can consume
the whole input message.

Finally, due to SR2, Sn is a final state. Hence, our inferred
FSM also accepts the input message.

The completeness of our inferred FSMs can be discussed
in a similar manner as below.

Lemma 4 (Completeness of FSM). Assuming we do not use
any interval domain during our analysis, the inferred FSM
is complete — if a message can be accepted by our inferred
FSM, it can also be accepted by the loop under analysis.

Proof. As discussed in the proof of Lemma 1, we only intro-
duce over-approximation into the program environment in the
third case when the interval domain is used. Hence, (S,ES)
is complete if the interval domain is never used. In this case,
each state transition in the FSM, i.e., (S,ES,S′), is constrained
by the exact path constraint. That is, we have ∀s ∈ S,Φs⇔ Γs
where Φs and Γs respectively denote the inferred and the ex-
act path constraints of the path s. The transition constraint is
denoted by ΦS =

∨
s∈S Φs.

If our inferred FSM can accept a message, then there is a
sequence of state transitions (S1,S2, . . . ,Sn) that can consume
the message. That is, the message satisfies

∧
ΦSi , i.e.,∨

s1∈S1

Φs1 ∧
∨

s2∈S2

Φs2 ∧
∨

s3∈S3

Φs3 ∧·· ·∧
∨

sn∈Sn

Φsn .

We can then pick one path si from each path set Si such
that the network message satisfies

∧
Φsi . Since Φs⇔ Γs as

discussed before, the network message also satisfies
∧

Γsi .
This means the loop under analysis can consume the network
message via the path sequence (s1,s2, . . . ,sn).

Finally, since Sn is a final state, SR2 ensures that sn ∈ Sn
ends with a loop-exiting statement, meaning that the loop
under analysis accepts the network message.
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