
Nyx: Detecting Exploitable Front-Running Vulnerabilities in Smart Contracts

Wuqi Zhang†, Zhuo Zhang‡, Qingkai Shi‡, Lu Liu†, Lili Wei¶, Yepang Liu||, Xiangyu Zhang‡, Shing-Chi Cheung†*

† The Hong Kong University of Science and Technology, {wuqi.zhang, lliubf}@connect.ust.hk, scc@cse.ust.hk
‡ Purdue University, {zhan3299, shi553}@purdue.edu, xyzhang@cs.purdue.edu

¶ McGill University, lili.wei@mcgill.ca
|| Southern University of Science and Technology, liuyp1@sustech.edu.cn

Abstract—Smart contracts are susceptible to front-running
attacks, in which malicious users leverage prior knowledge
of upcoming transactions to execute attack transactions in
advance and benefit their own portfolios. Existing contract
analysis techniques raise a number of false positives and false
negatives in that they simplistically treat data races in a
contract as front-running vulnerabilities and can only analyze
contracts in isolation. In this work, we formalize the definition
of exploitable front-running vulnerabilities based on previous
empirical studies on historical attacks, and present Nyx, a novel
static analyzer to detect them. Nyx features a Datalog-based
preprocessing procedure that efficiently and soundly prunes a
large part of the search space, followed by a symbolic validation
engine that precisely locates vulnerabilities with an SMT solver.
We evaluate Nyx using a large dataset that comprises 513 real-
world front-running attacks in smart contracts. Compared to
six state-of-the-art techniques, Nyx surpasses them by 32.64%-
90.19% in terms of recall and 2.89%-70.89% in terms of
precision. Nyx has also identified four zero-days in real-world
smart contracts.

1. Introduction

Smart contracts, designed for operation on decentral-
ized blockchain platforms like Ethereum, form a vast in-
terconnected network that drives the innovative financial
system known as Decentralized Finance (DeFi). Despite
its groundbreaking potential, DeFi, much like traditional
finance, is susceptible to certain vulnerabilities. One such
vulnerability carried over from traditional finance in DeFi
is “front-running”, an illegal practice where unethical bro-
kers leverage knowledge of upcoming transactions to make
trades that benefit their own portfolios. For instance, a
broker, upon receiving an order to buy a large number
of stocks, could foresee the subsequent price surge and

* Correspoinding author.
The work was done during Wuqi Zhang’s visit at Purdue University.
Yepang Liu is with both the Department of Computer Science and Engi-
neering and the Research Institute of Trustworthy Autonomous Systems at
Southern University of Science and Technology.

purchase some shares in advance. Once the original order is
processed and the stock price rises, the broker can then sell
his shares to realize a profit. In the DeFi ecosystem, this
vulnerability is even more prominent. As all transactions,
essentially smart contract function invocations, are publicly
pending in a transaction pool before they are executed on
the blockchain [22], anyone has access to this information
and can potentially attack it.

While traditional finance discourages front-running by
legally penalizing such actions, whereas relies on the smart
contracts themselves to deter and prevent this. These con-
tracts should be designed in a manner that there is no profit
incentive for front-running, thus mitigating the propen-
sity of this unethical behavior. Maximal Extractable Value
(MEV) [17] is used by the Ethereum community as a metric
to quantify the total amount of profits in all conceivable
front-running attacks. A recent study has highlighted that
these front-running attacks on Ethereum have led to substan-
tial financial damages, with losses surpassing 675 million
USD before the Merge update of Ethereum (September
2022) [7]. As of July 2023, profits from front-running have
exceeded the sum of 224K ethers since the Merge [25].

The substantial impact of front-running attacks within
the blockchain community is well acknowledged, yet the
existing techniques fall short in effectively identifying vul-
nerabilities that render systems susceptible to these attacks.
These vulnerabilities often stem from flawed designs, which
allow an adversary to make profits by front-running a user’s
transaction. A significant obstacle in the detection of such
vulnerabilities lies in the design of the detection oracle.

Existing studies have taken significant efforts to pinpoint
specific code behaviors susceptible to front-running, such
as transaction order dependency [31], event ordering
bugs [30], and state inconsistency bugs [14], which are
essentially data races between transactions [42]. However,
while these methods are effective for detecting targeted
behaviors, they have trouble assessing the profitability
or “exploitability” of a potential front-running attack,
rendering a large number of false positives. For instance,
a data race between transactions could be an intentional
design feature and may not necessarily offer a profitable

exploitation avenue for front-running attacks. Research by
Perez and Livshits [36] reveal that only 54 out of 1,881
contracts (about 2.9%) flagged by existing tools were ever
exploited via front-running attacks. In our evaluation, we
find that existing tools raise, on average, 51.12% false
alarms in a benchmark of real-world contracts [54].

The recent work by Zhang et al. [54] provides insightful
observations on historical front-running attacks, highlighting
that rational attackers exploit data races in smart contracts
only when there is a potential profit by front-running
transactions. Leveraging this observation, we formalize
the definition of front-running vulnerabilities within the
context of smart contract analysis, with particular emphasis
on the exploitability of data races across multiple contracts
(Section 2). Specifically, we assert that a DeFi application,
characterized as a group of interconnected smart contracts,
contains front-running vulnerability if and only if there
exist two competing execution paths such that the execution
of the first one adversely affects the subsequent one, leading
to financial loss. The two execution paths correspond to the
attack and victim transactions, respectively. The negative
influence one poses on the other typifies the essence of a
front-running attack.

Existing techniques, however, encounter substantial
limitations in terms of scalability to facilitate cross-contract
analysis to detect front-running vulnerabilities that can be
exploited. Existing contract analysis techniques usually
focus on a single execution path, often overlooking the
mutual influence between execution paths executed by two
transactions. Detecting the existence of such vulnerability
requires the modeling of all combinations of two execution
paths and evaluating the influence that one poses on the
other under different execution orders. Therefore, our
formalized front-running vulnerability definition cannot
be directly applied as a detection oracle with existing
techniques. In addition, the business logic of many DeFi
applications is implemented with multiple interconnected
contracts. Given that existing techniques only analyze
contracts in isolation, they fail to adequately comprehend
and analyze the complete logic of a DeFi application, thus
overlooking many vulnerabilities. In our evaluation, we find
that existing tools miss a majority of the vulnerabilities in
a benchmark of real-world contracts [54].

To tackle the limitations of existing works, we present
Nyx, an innovative technique for front-running vulnerability
detection. Nyx is designed to efficiently prune benign or
possibly intentional instances of data races and identify
exploitable front-running vulnerabilities effectively. Particu-
larly, when analyzing a DeFi application, Nyx examines all
possible pairs of contract functions, where one function is
invoked by an attacker and the other is invoked by a victim.
For each function pair, Nyx aims to assess the profit changes
resulting from altering the invocation order and raises an
alert if these profit shifts align with the previously stated
definition of exploitability.

The major challenge stems from the vast search space,
given that Nyx needs to explore all paths that victims
and attackers may execute across multiple contracts. To

mitigate this, Nyx first incorporates an innovative and
efficient static pruning technique. We propose a necessary
condition for the vulnerability that allows us to soundly
prune the functions deemed non-vulnerable from the search
space. We propose the extended system dependency graph
(xSDG) to capture the control and data flow across multiple
contracts in a DeFi application. Furthermore, an efficient
algorithm is designed to verify the necessary condition
leveraging graph reachability analysis using Datalog. Our
experiment results show that static pruning is capable of
pruning 88.73% non-vulnerable function pairs rapidly.

The retained function pairs after pruning are then
accurately analyzed by a tailored symbolic execution
engine. Nyx symbolically models profit changes (resulting
from altering the invocation order of the attacker and the
victim) and utilizes the capabilities of an SMT solver to
determine if the profit changes meet the criteria set by the
vulnerability oracle. Our evaluation indicates that Nyx can
achieve 90.19% recall and 70.89% precision on a large-scale
benchmark consisting of 513 real-world attacks in smart
contracts [54]. Our contributions are summarized as follows.
• We devise a novel static pruning technique that effectively

identifies profit-related data races among functions in a
given DeFi application and prunes a considerable portion
of the search space.

• We present a tailored symbolic execution engine capable
of modeling profit changes and leveraging the power of
SMT solver to validate whether the profit changes satisfy
the criteria established by the exploitability definition.

• We develop a prototype of Nyx and assess its efficacy
using a large-scale front-running attack benchmark [54].
In comparison with six state-of-the-art front-running vul-
nerability detection techniques, Nyx outperforms them by
32.64%-90.19% in terms of recall and 2.89%-70.89% in
precision. Regarding runtime overhead, Nyx aligns with
existing solutions. Notably, Nyx successfully identifies
four zero-days in real-world DeFi projects. Nyx is publicly
available at https://github.com/Troublor/Nyx.

Threat Model. We aim to detect vulnerabilities that can
be exploited by front-running attacks, wherein adversaries
manipulate the transaction execution order to maximize
their profits at the expense of other users. We hence
consider vulnerabilities that necessitate adversaries to
supply specially crafted inputs, such as providing an
exceedingly large value to induce an integer overflow,
out of the scope. Additionally, vulnerabilities related
to the manipulation of block properties, such as block
timestamp manipulation attacks [2], or those that exploit
weak pseudo-random number generators [13], are beyond
the scope of this paper. These types of vulnerabilities,
although important, fall outside the scope of this paper.

2. Front-Running Vulnerability

The previous empirical studies characterize and mine
historical front-running attacks on the blockchain by identi-
fying the profits that the attacker can make and the loss the

https://github.com/Troublor/Nyx

victim suffers [46], [54]. In this section, we formally define
the front-running vulnerability in smart contracts from the
aspect of program analysis based on the observations of
these previous studies.
Notations. Blockchain can be considered as a state
transition system, where each state σ is characterized by the
data stored on the blockchain. One state transits to another
when a transaction is executed. A blockchain state σ maps
contract storage variables to concrete values. The storage
variables of a contract are global variables whose values
are shared by different transactions calling the contract.
Let F be a list of all functions in a DeFi application under
analysis, represented as a group of interconnected contracts
C. We define a transaction as a tuple T = ⟨a, f(x⃗)⟩, where
a is the transaction submitter, f ∈ F is the first function
invoked by T , and x⃗ is the arguments passed to f in the
transaction T . We denote a state transition of transaction
T as σ

T−→ σ′, where σ and σ′ are the blockchain states
before and after executing T , respectively. Transactions
on the blockchain are executed sequentially. We use T1T2

to denote executing T1 sequentially before T2. The state
transition of executing T1T2 is denoted as as σ T1T2−−−→ σT1T2

.
Assets. An asset is a valuable entity that attackers may target
as potential gains and victims may lose in an attack. For
instance, the assets can be the amount of tokens (e.g., ethers,
ERC20 tokens, NFTs) that a user possesses. The definition
of assets can be contract-specific according to the function-
alities of a DeFi application. The exploitability of front-
running vulnerability is defined in terms of the gain and loss
of assets for the attacker and the victim. In the subsequent
discussion, let Aσ(a) denote the assets that can be possessed
by a transaction submitter, a, at a blockchain state σ.

In the vulnerability detection technique to be proposed
in Section 4, the definition of assets can be customized
as per the logic of specific DeFi applications so that the
oracle can be applied to the detection of vulnerabilities
under specific use cases. By default, we implement the
assets as standard tokens a user may possess, including
ether [52], ERC20 [50], ERC721 [20], ERC777 [16], and
ERC1155 [41] tokens. Considering the historical front-
running attacks collected by previous studies [46], [22], [54],
implementing all these standard tokens as assets is sufficient
to capture most of the vulnerabilities.

Definition 1 (Front-Running Vulnerability). We say a pair
of functions ⟨f1, f2⟩, where f1, f2 ∈ F , is vulnerable to
front-running attack if and only if ∃T1, T2, σ, a1 ̸= a2, where

T1 = ⟨a1, f1(x⃗1)⟩, T2 = ⟨a2, f2(x⃗2)⟩,

σ
T1T2−−−→ σT1T2 , σ

T2T1−−−→ σT2T1 ,

such that the following condition is satisfiable:

AσT1T2
(a1) > AσT2T1

(a1) ∧ AσT1T2
(a2) < AσT2T1

(a2).

Note that f1 and f2 can be different functions, i.e., an at-
tacker may call a different function to launch a front-running
attack on the victim. The definition of front-running vulner-
ability characterizes the incentive of an attacker to launch a

front-running attack and the damage that the attack makes
to a victim user. The predicate AσT1T2

(a1) > AσT2T1
(a1)

asserts that the attacker a1 gains profits (i.e., the assets of a1
is more) if the attacker’s transaction T1 is executed before
the victim’s transaction T2 (front-running). Similarly, the
predicate AσT1T2

(a2) < AσT2T1
(a2) asserts that the victim

a2 suffers from loss (i.e., the assets of a2 is less) if T2 is
executed after T1. The predicate a1 ̸= a2 makes sure that
the attacker and the victim are different users.
Discussion. The condition in Definition 1 captures the
mutual influence between the attacker and victim. Other
scenarios, where attackers make profits but no victim is
harmed, are not considered vulnerable by Definition 1. A
significant majority of front-running vulnerabilities involve
direct victims, as confirmed by measurement studies [46],
[39] and our analysis of 119 audit reports from a leading
contract audit platform, Code4rena [3]. Similarly, scenarios,
where attackers are not affected by the victim transactions,
are also excluded in Definition 1 since attackers cannot
make profits in front-running.

Definition 1 is capable of capturing vulnerabilities that
require attackers to submit multiple transactions to exploit.
One example is sandwich attack [57], where an attacker
submits two attack transactions before and after the vic-
tim transaction, respectively, to manipulate token exchange
prices and realize price manipulation profits. However, pin-
pointing vulnerabilities inducing such attacks does not re-
quire synthesizing the entire exploits with multiple attack
transactions. Those multi-transaction attacks still exhibit
profitable transaction order dependencies between the vic-
tim and one of the attack transactions. The vulnerabilities
thereby can be identified by Definition 1. As evidence, we
conduct experiments of Nyx on a dataset consisting of a
large number of sandwich attacks (Appendix E), showing
that Nyx can achieve a recall as high as 95.9%.

The root cause of the vulnerability is the profitable
transaction order dependency between two function invoca-
tions. Transaction order dependencies are common in smart
contracts but only those leading to profitable opportunities
for attackers are considered as harmful and a true vul-
nerability. Definition 1 checks such profitability to avoid
reporting those benign ones. Developers avoid front-running
vulnerabilities by either eliminating transaction order depen-
dencies or preventing attackers from making profits if such
dependencies are unavoidable in the business logic.

3. Motivation

In this section, we illustrate the front-running vulnerabil-
ity with a real-world DeFi application as an example. Then,
we discuss the limitations of existing vulnerability detection
techniques, followed by a sketch of our solution.

3.1. Example Contracts

Fig. 1 shows three contracts of a DeFi application that
allow project owners to raise crowdfund for their ongoing
projects (Contracts CrowdFund and Controller). Each

1 contract CrowdFund {
2 Controller controller;
3 mapping(address => uint) projects;
4 mapping(uint => ERC20) tokens;
5 mapping(uint => uint) donations;
6 function donate(uint project, uint donation)

public {
7 tokens[project].transferFrom(msg.sender, this,

donation);
8 donations[project] += donation;
9 }

10 function withdraw() public {
11 uint project = projects[msg.sender];
12 uint donation = donations[project];
13 tokens[project].transfer(msg.sender,donation);
14 donations[project] = 0;
15 }
16 function _changeToken(address projOwner, ERC20

newToken) public {
17 require(msg.sender == controller);
18 require(newToken.owner()==address(this));
19 require(noProject(newToken));
20 uint project = projects[projOwner];
21 ERC20 oldToken = tokens[project];
22 tokens[project] = newToken;
23 oldToken.transferOwnership(projOwner);
24 }}
25 contract Controller {
26 CrowdFund crowdFund;
27 function changeToken(ERC20 newToken)public{
28 require(notBlackList(msg.sender));
29 ERC20 oldToken = crowdFund._changeToken(msg.

sender, newToken);
30 }}
31 contract ERC20 {
32 address public owner;
33 function transferOwnership(address newOwner)

public onlyOwner {
34 owner = newOwner;
35 }}

Figure 1: Example smart contracts adapted from real-
world contracts [23], [37]. Function pair ⟨changeToken,
changeToken⟩ is vulnerable [37].

project is associated with an ERC20 token contract as the
type of crowdfund to collect (the mapping variable tokens
at Line 4). The CrowdFund contract contains a donate
function that enables donors to donate tokens to a specific
project (Lines 6–8), and a withdraw function that enables
project owners to withdraw the donations for their own
project (Lines 13–14). Project owners can change the token
contract associated with their own project using the function
changeToken in contract Controller (Lines 27–29).
The ownership of the old token contract associated with
the project will be transferred to the project owner.

The contracts contain a front-running vulnerability re-
lated to the function pair ⟨changeToken,changeToken
⟩ in contract Controller. To associate a token con-
tract with a project, a project owner (victim) needs
to first transfer the ownership of newToken to con-
tract CrowdFund (due to the precondition at Line 18)
and then call function changeToken. The project
owner’s invocation to changeToken, denoted by T2 =
⟨victim,changeToken(newToken)⟩, can be attacked
by a malicious user who calls changeToken, denoted
as T1 = ⟨attacker,changeToken(newToken)⟩, before
the project owner and associates newToken, which should
have belonged to the victim, to the attacker’s project. Then,

the project owner’s invocation T2 will fail at Line 19 since
the newToken has already been associated with the at-
tacker. As a result, the attacker steals the ownership of
newToken from the project owner (victim). Fitting into
Definition 1, the asset can be defined as the total number
of ERC20 contracts that the victim or attacker owns. When
executing T1T2, i.e., attacker’s transaction before the vic-
tim’s one, the newToken will be associated to attacker’s
project (Line 22), instead of to the victim’s project. Note that
one user can easily claim the ownership of a token contract
associated with their own project. After the execution, the
attacker steals the ownership of newToken from the victim
as profits, i.e., AσT1T2

(attacker) = Aσ(attacker) + 1,
AσT1T2

(victim) = Aσ(victim), where σ is the blockchain
state before T1 and T2 are executed. Similarly, when
executing T2T1, AσT2T1

(victim) = Aσ(victim) + 1,
AσT2T1

(attacker) = Aσ(attacker). Thus, The condition
defined in Definition 1 is satisfied.

To fix the vulnerability, contract Controller may per-
form additional identity verification such that only the caller,
who transfers the ownership of newToken to CrowdFund,
can invoke changeToken. If authentication is enforced,
the contract will no longer be considered vulnerable by Def-
inition 1 since the a1 ̸= a2 condition is violated (i.e., both
attacker and victim must be the authenticated user).

3.2. Limitations of Existing Techniques

We leverage our example in Fig. 1 to illustrate the two
typical limitations of existing techniques.
Cross-Contract Analysis. They cannot detect the vulner-
ability in the example contracts since they only analyze
contracts individually and do not analyze the logic across
multiple contracts. Front-running vulnerabilities usually lie
in the designed logic of multiple contracts of a DeFi ap-
plication [54]. In Fig. 1, analyzing contract CrowdFund
alone cannot detect the vulnerability since the function can
only be called by the trusted address, i.e., the Controller
contract (Line 17). The contract Controller itself is
also safe since although the function can be called by
anyone, there are no critical operations. In addition, the
profits targeted by attackers in the front-running are often
managed by external contracts, e.g., in Fig. 1, transfers of the
ERC20 tokens (Line 13) or the contract ownership (Line 23)
are performed in external contracts. Analyzing individual
contracts cannot analyze the complete logic and may miss
many vulnerabilities. According to our experiments in Sec-
tion 5.1, existing tools miss over 90% vulnerabilities due to
this limitation.
Exploitability. The detection oracle of existing techniques
is inappropriate for catching vulnerabilities, inducing false
alarms. Existing techniques detect vulnerabilities by identi-
fying possible data races between two transactions invoking
the same contract. However, many contract data races are
unexploitable since they are benign or intended [36]. For in-
stance, there exists a data race between transactions invoking
function donate and withdraw on the shared variable

donations. However, such a data race cannot be exploited
by attackers to earn extra benefits because the donations of a
project can only be withdrawn by its project owner. Attack-
ers may change the amount of donations withdrawn by the
project owner by invoking donate before the victim. How-
ever, the amount of donations can only increase, meaning
that the victim does not suffer from any loss from the attack.
Thus, determining vulnerabilities by means of data races
without considering the exploitability can induce many false
alarms. Our evaluation finds that existing techniques, on av-
erage, generate 54.92% false positives due to this limitation.

3.3. Challenge and Our Solution

In Section 2, we formalize the front-running vulnerabil-
ity in smart contracts, taking into account the exploitability
of data races across multiple contracts and various kinds
of profits attackers may target. This, however, requires
extensive analysis of various asset transfers across con-
tract variables, which collectively prescribe a large search
space, in particular when the analysis includes the detection
of vulnerabilities arising from cross-contract interactions.
Thus, we design an exploitability-aware and cross-contract-
semantic-aware static pruning approach to reduce cross-
contract symbolic execution paths that are not exploitable
for front-running attackers. Then, symbolic execution is
performed on function pairs with deferred path constraint
solving and several optimizations to detect vulnerabilities
against Definition 1 efficiently. Below, we summarize the
key challenge and our solution.
Challenge. Detecting the vulnerability using Definition 1
as oracle is challenging due to the increased complexity of
program analysis. To capture possible updates of contract
variables and asset transfers, one may need to symbolically
execute all pairs of possible functions that can be called
by an attacker and a victim, respectively. The executions
cover possible transaction execution orders between attacker
transactions and victim transactions. An SMT solver can
then be used to check if an execution would result in profit
for the attacker and losses for the victim. However, this
straightforward approach is not scalable because it needs
to symbolically execute all possible path combinations of
each function pair. The total number of paths that symbolic
execution needs to explore is O(n2), where n is the number
of execution paths in a public function. Note that n itself
is already exponential to the number of branches in the
program. Worse still, external function calls also need to be
analyzed during symbolic execution to support analyzing the
semantics across multiple contracts, making the number of
execution paths even larger. The simple design would lead
to severe path explosion [29].
Our Solution. We tackle the challenge by constructing an
extended system dependency graph (xSDG) on smart con-
tracts and pruning the search space substantially using static
analysis. A tailored symbolic execution engine that can co-
analyze two functions (from the same contract or multiple
different contracts) is then utilized to identify exploitable

front-running vulnerabilities. In the following, we highlight
some of the important features of our technique.
Search Space Pruning. To address the challenge, we pro-
pose a datalog-based static analysis to effectively prune the
search space by eliminating those function pairs whose exe-
cution orders cannot violate the vulnerability oracle. This is
based on an extended system dependency graph (xSDG) that
characterizes control and data flow across multiple contracts,
as well as their interactions. For example, the function pair
⟨withdraw,withdraw⟩ in Fig. 1 will be pruned by our
analysis, since each transaction submitter can only withdraw
the donation of the project led by themselves. We can
statically conclude that a transaction executing withdraw
would not induce losses to another transaction submitted by
a different user. The function pair is thus excluded from the
expensive symbolic execution. The evaluation shows that
our static pruning can reduce the search space by 88.73%
on the benchmark.
Oracle Checking. The static pruning can confidently pre-
clude function pairs that are not vulnerable. However, there
are still false alarms. To faithfully check whether an attacker
can launch a front-running attack to obtain profits and
cause loss to victims, we adopt SMT solvers to check the
satisfiability of constraints encoding our oracle. To obtain
the constraints, we construct a symbolic blockchain state
and symbolically execute two symbolic transactions, T1 (at-
tacker) and T2 (victim), in two orders, i.e., T1T2 and T2T1,
respectively, to simulate the two scenarios that the victim is
attacked and the front-running does not occur. In order to
mitigate the path explosion problem, we merge the symbolic
values of variables at the merge points of different execution
paths so that the SMT solver does not need to check the
feasibility of each path. For each function pair, we collect
symbolic expressions representing the digital assets pos-
sessed by the two transaction submitters of T1 and T2 after
the execution of two orders. Finally, we construct constraints
to encode our oracle. The amount that an attacker can profit
from and that a victim may lose are deduced by comparing
the assets possessed by the attacker and the victim under
different execution orders of their transactions. The SMT
solver is only invoked once for each function pair to check
the satisfiability of constructed constraints, instead of being
invoked for each execution path, since we have merged the
values of variables in different paths and the SMT solv-
ing is deferred until all branches have been explored. Our
approach can effectively detect vulnerabilities with 90.19%
recall and 70.89% precision in our evaluation. Despite of
the drastically increased search space compared to existing
tools, our evaluation indicates that the runtime overhead of
our approach is comparable to that of existing tools.

4. Methodology

Fig. 2 shows an overview of Nyx. Nyx takes a smart
contract group, which is a set of contracts closely inter-
acting with each other, as input. Nyx first extracts the
SlithIR [24], an intermediate representation of contracts,

Nyx

Static
Pruning

Symbolic
Validation

SlithIR
Function
Pairs

DeFi App
(Contracts)

Warnings

Figure 2: Workflow of Nyx

using Slither [47]. Then, Nyx conducts a static pruning based
on SlithIR to eliminate function pairs that do not satisfy
the necessary condition of front-running vulnerability (Sec-
tion 4.1). In this phase, most function pairs are filtered out.
After that, Nyx validates whether each suspicious function
pair is truly vulnerable to front-running with Definition 1
(Section 4.2) via symbolic execution and SMT solving. In
the end, Nyx reports all the vulnerable function pairs.

4.1. Static Pruning by Necessary Condition
As mentioned in Section 3.3, a simple symbolic execu-

tion would suffer from severe performance issues due to the
large search space of checking our vulnerability oracle along
each pair of paths (Definition 1). To tackle this, we propose
a novel static analysis to first reduce the search space before
adopting the symbolic execution approach. Intuitively, Nyx
checks a necessary condition for a function pair to be
vulnerable and eliminates those not satisfying the condition.
Necessary condition (informal). A pair of functions
⟨f1, f2⟩ is vulnerable only if executing f1 influences the
profits a user can make in function f2, and the execution
of f2 also influences the profits made in f1. The prof-
its in the execution of a function refer to the change of
assets of the user who invokes the function. Intuitively,
f1 influencing the profits in f2 is the necessary condition
for the front-running to be harmful to the victim a2, i.e.,
AσT1T2

(a2) < AσT2T1
(a2) in Definition 1. Similarly, f2

influencing the profits in f1 is the necessary condition for
the front-running to be profitable for the attacker a1, i.e.,
AσT1T2

(a1) > AσT2T1
(a1).

Example. Fig. 3a shows a vulnerable contract, which re-
wards the first caller who provides a solution string whose
cryptographic hash is a specific value. The function pair
⟨solve,solve⟩ is vulnerable since when a normal user
(victim) who finds a correct solution calls function solve,
an attacker can copy the solution and call solve before
the victim to steal the rewards that should be given to
the victim. Such an attack is possible since normal users’
submitted transactions are kept in a public pending pool
before execution, and attackers can easily inspect the content
of pending transactions (e.g., the solution for the function
solve). Suppose an attacker a1 submits a transaction
T1 = ⟨a1,solve(s1)⟩ which is executed before T2 =
⟨a2,solve(s2)⟩ submitted by victim user a2. When T1 is
executed before T2, the execution of T1 updates the storage
variable bounty and pubFund to zero after the reward
(i.e.,bounty+ pubFund) is sent to a1 (Line 7). The data
written to the storage variable influence the later execution
of T2. The reward in T2 is zero, making the victim a2
receive no transferred ethers. Similarly, if T2 is executed
before T1, the user a2 will receive the reward while a1 re-

ceives nothing. In other words, one execution of the function
solve updates the storage variable so that the profits made
in another invocation of the function become zero.

On the other hand, consider the function pair ⟨solve,
addFund⟩ in Fig. 3a, where the users a1 and a2 send trans-
actions of these two functions, respectively. The execution
of function addFund may influence the profit that the user
a1 can make in function solve, i.e., changing the storage
variable pubFund which is part of the reward. However,
the execution of solve cannot influence the profits of
user a2 in function addFund. The profit of a2 is always
−msg.value since a2 pays a constant amount of ethers to
the contract. The execution of solve does not make the a2
pay more ethers than a2 would want to. In other words, user
a2 does not have losses even if his transaction is executed
after that of a1. Therefore, this function pair is considered
not vulnerable, without the need for symbolic execution. □

This static pruning is guided by a graphic program
representation, called an extended system dependency graph
for smart contracts (Section 4.1.1), and a set of Datalog
rules enacting the necessary condition of vulnerability (Sec-
tion 4.1.2 and Section 4.1.3).

4.1.1. Extended System Dependency Graph (xSDG).
We propose an extended version of the system dependency
graph (SDG) [28] on smart contracts to capture the control
and data dependency across contracts within a transaction
and between transactions. The extended system dependency
graph (xSDG) is represented as G = ⟨N,E, λ⟩, where
N is a set of nodes, E is a set of edges, and λ is a
function mapping each e ∈ E to a label. Fig. 3b shows
the corresponding xSDG for the code in Fig. 3a.
Nodes. One node in the xSDG G is either a statement or a
storage variable, i.e., N = NS ∪NV . NS contains all state-
ments (e.g., msg.sender.transfer(reward())) as
well as the entry node for each function (e.g., en-
try solve) and function formal parameter assignments
(e.g., solution = solutionin with solution the
formal parameter at Line 5 of Fig. 3). Nodes in NV represent
the locations in the blockchain state where storage variables
store, e.g., bounty and pubFund.
Edges. An edge between two nodes represents either a con-
trol dependency or a data dependency relationship. Let Ec

denote the control dependency edges, and Ed denote the data
dependency edges. Then, E = Ec ∪ Ed. Function λ : E →
{c,C,d,D} is a mapping from each edge to a label. For an
edge e = ⟨n, u⟩ ∈ Ec, λ(e) = c if node u control-depends
on node n1; λ(e) = C if node n calls a function whose entry
node is u. For an edge e = ⟨n, u⟩ ∈ Ed, i.e., there is a data
flow from node n to u, λ(e) = D if n ∈ NV , otherwise
λ(e) = d, which will be explained in the following.
Difference from SDG. Our extended system dependency
graph (xSDG) differs from the traditional system depen-
dency graph (SDG) [28] in that we distinguish the intra-
transaction and inter-transaction data flow. As mentioned

1. Node u control-depends on n if and only if the execution of u is
conditionally guarded by n.

1 contract FindThisHash {
2 bytes32 public hash = 0xb5b...e0a;
3 uint bounty = 1 ether;
4 uint pubFund = 0;
5 function solve(string solution) public {
6 require(hash == sha3(solution));
7 msg.sender.transfer(reward());
8 bounty = 0; pubFund = 0;
9 }

10 function reward() view public {
11 return bounty + pubFund;
12 }
13 function addFund() public payable {
14 pubFund += msg.value;
15 }
16 }

(a) Contract under analysis

entry solve

solution = solutionin

require(hash == sha3(solution))

msg.sender.transfer(reward())

bounty=0; pubFund=0;

entry reward

return bounty+pubFund

entry addFund

pubFund += msg.value

bounty pubFund

a

b

c

d

e

f

g

i

j

k h

c

d

c

c

c

C c

d

d

d

D D

c

d

(b) Extended system dependency graph (xSDG) of the contract
Figure 3: Example of extended system dependency graph (xSDG) for a contract code snippet. Edge labels c, C, d, and D
in the graph refer to control dependency, inter-procedural call, intra-transaction data dependency, and inter-transaction data
dependency, respectively. Colored nodes are profiting nodes.

previously, front-running attacks are essentially data races
between transactions. Contract storage variables, such as
bounty and pubFund in Fig. 3a, are the shared data
between transactions. Therefore, we refer to the data flow
edges from contract storages as inter-transaction data de-
pendency, i.e., λ(e) = D, since they flow from one transac-
tion to the other. Other data flows are referred to as intra-
transaction data dependency, i.e., λ(e) = d, since they
flow within a single transaction. By distinguishing intra-
and inter-transaction data flow, we can interpret whether the
change of user assets (e.g., token transfers) can be affected
by another transaction via inter-transaction data flow since
storage is the data shared across transactions.

Cross-contract. The xSDG captures the control and data
dependency within a contract group C, which is a set of
contracts that interact with each other closely to implement
functionality as a whole, e.g., contract CrowdFund and
Controller in Fig. 1. In practice, the contract group is
the set of contracts provided by developers to be analyzed by
our approach. In the xSDG, we do not distinguish function
invocations within a contract or across contracts. However,
determining callee in external contracts is hard since the ad-
dresses of external contracts are usually not known in static
analysis. We adopt an over-approximation approach of infer-
ring cross-contract function callees within the contract group
C by consider all functions in C with the same signature as
potential callees. Although, as mentioned in Section 3.2,
the search space grows drastically as more contracts are
included in C, our static analysis approach can efficiently
prune much of the search space as discussed in what follows.

4.1.2. Necessary Condition of Vulnerability. In this sec-
tion, we formally define the necessary condition of a func-
tion pair to be vulnerable based on the xSDG.

Definition 2 (Profiting Node). A profiting node is a node
in the xSDG where transaction submitter, a, makes profits,
i.e., Aσ(a) changes.

Note that the profits made in a profiting node may be

either positive or negative, depending on whether the assets
of the user increase or decrease. We identify profiting nodes
by finding statements performing asset transfer actions since
transfers are those actions changing users’ assets. Such
transfer actions are explicitly defined as function or event
interfaces by the specification of token standards we support
as digital assets. For example, statements invoking a ERC20
transferFrom function or emitting ERC20 Transfer
event are considered as profiting nodes. Specially, we also
consider the entrance of a payable function as a profiting
node since callers can implicitly pay ethers to the underlying
contract when invoking such functions.
Example. The profiting nodes in Fig. 3b are d and i since
the caller of the function solve receives the reward at node
d , and the caller of addFund pays msg.value amount

of ethers to the contract at node i . □
As mentioned previously, given a function pair ⟨f1, f2⟩,

the necessary condition of the vulnerability requires the
profiting nodes executed in one function can be influenced
by the execution of the other function. Therefore, for each
function, we define the set of profiting nodes that can be
executed in the function and the set of profiting nodes
that the function can influence through inter-transaction data
flow, respectively.

Definition 3 (Reachable Profiting Nodes). Given an xSDG
G = ⟨N,E, λ⟩, the reachable profiting nodes of f , denoted
by RP (f), is the set of profiting nodes reachable on G∗

from the entry node of f , where G∗ = ⟨N,E∗⟩ and E∗ =
{e|e ∈ E, λ(e) ∈ {c,C,d}}.

Definition 4 (Influenced Profiting Nodes). Given an xSDG
G = ⟨N,E, λ⟩, and let D denote the set of storage variable
nodes that are reachable on G∗ from the entry node of f , the
influenced profiting nodes of f , denoted by IP (f), is the set
of profiting nodes reachable on G′ from any n ∈ D, where
G′ = ⟨N,E′⟩, where E′ = {e|e ∈ E, λ(e) ∈ {c,d,D}},
and G∗ is defined same as in Definition 3.

Subgraph G∗ only contains the control dependency (c),
function call (C), and intra-transaction data flow (d) edges,

thus only capturing the nodes that can be reached (via either
control flow or data flow) by the execution of a single
transaction. Subgraph G′ contains the inter-transaction data
flow (D) but not the function call (C) edges, thus capturing
the control and data-dependency relationship on the storage
variables, which may be written by another transaction.
RP (f) denotes the set of profiting nodes that can be exe-
cuted by a transaction invoking f . IP (f) represents the set
of profiting nodes that f can influence in the execution of
other transactions, i.e., function f may write to storage vari-
ables, which profiting nodes of other transactions depend on.
Example. For the function solve in Fig. 3, RP (solve) =
{ d } since node d in function solve transfers rewards to
the transaction submitter. In addition, IP (solve) = { d }
since function solve updates the storage variable bounty
and pubFund, which later will influence another transac-
tion that executes node d . □

Lemma 1 (Necessary Condition of Definition 1). A pair of
functions ⟨f1, f2⟩ is vulnerable to front-running attacks only
if IP (f1) ∩RP (f2) ̸= ∅ ∧ IP (f2) ∩RP (f1) ̸= ∅.

Proof. Suppose an attacker a1 is able to submit an attack
transaction T1 invoking f1 to execute before T2 invoking f2
by the victim user a2. From the Definition 1, the execution
of the transactions must satisfy AσT1T2

(a1) > AσT2T1
(a1),

which means the change of the assets of user a1 must be
different given two transaction execution orders, i.e., T1T2

and T2T1. The assets of a1 can only be changed in the
profiting nodes of xSDG in the execution of T1, and the dif-
ference of assets change is caused by the fact that the other
transaction T2 may write to the contract storage. Therefore,
the necessary condition is that there must be an overlap be-
tween the influenced profiting nodes of f2 and the reachable
profiting nodes of f1, i.e. IP (f2)∩RP (f1) ̸= ∅. Similarly,
the necessary condition of victim loss, i.e., AσT1T2

(a2) <
AσT2T1

(a2), is IP (f1) ∩RP (f2) ̸= ∅.

Example. Consider the function pair ⟨solve,solve⟩,
where f1 = f2 = solve in Fig. 3. As illustrated pre-
viously, IP (solve) = RP (solve) = { d }. The nec-
essary condition of the function pair being vulnerable is
satisfied. Therefore, we will further analyze it using sym-
bolic execution to validate it is vulnerable. In contrast,
consider the function pair ⟨solve,addFund⟩ in Fig. 3.
IP (addFund) = { d }, RP (addFund) = { i }, and
IP (solve) = RP (solve) = { d }. The necessary con-
dition IP (solve)∩RP (addFund) ̸= ∅ does not hold. If
the transaction of solve is executed before addFund, the
user calling addFund will still execute as expected, paying
the exact amount of ethers to the contract as the user wants.
The user is not affected by the front-running so this function
pair is pruned and we will not symbolically execute it. □

4.1.3. Fast Pruning via Datalog. The key to checking the
necessary condition (Definition 1) for a pair of functions
⟨f1, f2⟩ is to interpret the reachable profiting nodes and
influenced profiting nodes for each function. We use Data-
log [15] to define rules and inductively interpret the RP (f)

Relation Description
edge(n, u, l) edge ⟨n, u⟩ ∈ E and λ(⟨n, u⟩) = l.
profit(n) node n is a profiting node
rp(n, u) node u ∈ RP (n).
ip(n, u) node u ∈ IP (n).

dep(n, u) node u is a profiting node and depends on
node n.

Figure 4: The definitions of relations in Datalog, given an
xSDG G = ⟨N,E, λ⟩.

dep(n, u) :- dep(w, u), edge(n,w, l), l ∈ {c,d} 1
ip(n, u) :- dep(w, u), edge(n,w, l), l = D 2
ip(n, u) :- ip(w, u), edge(n,w, l), l ∈ {c,C,d} 3
rp(n, u) :- rp(w, u), edge(n,w, l), l ∈ {c,C,d} 4
dep(u, u) :- profit(u) 5
rp(u, u) :- profit(u) 6

Figure 5: Inference rules of relations in Fig. 4

and IP (f) for each function f in xSDG. Datalog rules con-
sist of two parts: facts and induction rules, with the former
describing basic relations that are explicit before inference
and the latter defining how new relations can be inferred
from facts and other relations by the Datalog engine.

First, we extend our definition of reachable profiting
nodes and influenced profiting nodes to each node in the
xSDG. The reachable profiting nodes of the node n, denoted
by RP (n), is the set of profiting nodes reachable on G∗

from node n. Let D denote the set of storage variable
nodes that are reachable on G∗ from node n, the influenced
profiting nodes of the node n, denoted by IP (n), is the set
of profiting nodes reachable on G′ from any u ∈ D. The def-
initions of G∗ and G′ are the same as those in Definition 3
and 4. Clearly, the reachable profiting nodes and influenced
profiting nodes of a function f is equavilent to those of the
entry node of f , e.g., in Fig. 3, RP (solve) = RP (a)
and IP (solve) = IP (a).

Second, for each node n, we design rules to infer
RP (n) and IP (n) inductively. Fig. 4 shows the Datalog
relations we define on the xSDG. In addition to the relations
corresponding to the edges in the xSDG, profiting nodes,
reachable profiting nodes, and influenced profiting nodes,
we also introduce a utility relation dep(n, u). The dep(n, u)
relation represents that node u is a profiting node, and node
u depends (either control dependency or data dependency)
on node n. In Fig. 5, we present the rules to infer the
relations in Fig. 4. The relations edge(n, u, l) and profit(n)
are facts provided initially to start the inference. If a node u
is a profiting node, then we infer the dep(u, u) and rp(u, u)
relations for u itself (rule 5 6). Then we inductively infer
the relations for other nodes according to the edge labels. In
rule 1 , if there is an edge ⟨n,w⟩ with label c or d, which
means node w depends on n, then all the profiting nodes
that depend on w is inherited by node n. In rule 2 , if there
is an edge ⟨n,w⟩ with label D, then all the profiting nodes
that depend on node w also depend on node n, which is
a storage variable node. Thus, all these profiting nodes are
part of the influenced profiting nodes of node n, i.e., IP (n).
Similarly, node n inherits the influenced profiting nodes of

⟨f1, f2⟩

⟨T1, T2⟩ Symbolic
Executor

σ

σT1T2

σT2T1

AσT1T2
(a1)

AσT1T2
(a2)

AσT2T1
(a1)

AσT2T1
(a2)

SMT
Solver

T1T2

T2T1

Figure 6: Symbolic validation of a function pair.

node w (rule 3) if the label of edge ⟨n,w⟩ is either c, C,
or d. Rule 4 specifies that the reachable profiting nodes of
w are also part of RP (n) if node w control-depends on n
or node n calls function at w.
Computation Complexity. Computing the reachable profiting
nodes and influenced profiting nodes for each function
is efficient. For a function f , the definitions of RP (f)
and IP (f) (Definitions 3 and 4) describe the reachability
relation between the entry node of f and profiting nodes on
subgraphs of xSDG. Calculating the reachability relations
from a single graph node is linear to the number of nodes.
Thus, the complexity to calculate RP (f) and IP (f) for
all f ∈ F in a contract group is O(|N ||F|), where N
is the set of all nodes in the xSDG and F is the set of
all functions. Note that the number of functions |F| is
significantly smaller than the number of nodes in xSDG,
and the computation can be easily parallelized for each
function. Thus, our static pruning is efficient.

4.2. Symbolic Validation
After the static pruning, we symbolically validate the

remaining function pairs that satisfy the necessary condition
to check whether they are truly vulnerable according to Def-
inition 1. Fig. 6 shows the procedure of symbolic validation
for a function pair ⟨f1, f2⟩. We first construct two indepen-
dent symbolic transactions T1 and T2 for the two functions,
respectively. The submitters of T1 and T2 are a1 and a2,
respectively. Then we execute the two symbolic transactions
sequentially in two different orders, i.e., T1T2 and T2T1,
respectively, based on a symbolic blockchain state σ. During
symbolic execution, we merge the symbolic values of the
same variables in different paths to reduce the influence of
path explosion. The rationale is that by merging symbolic
variables in different paths, we do not solve constraints
for each path. Instead, we collect the asset possessed by
a transaction submitter as a single symbolic expression for
each symbolic execution of the transaction. In the end, after
symbolically executing two transaction orders, we derive
the assets of the two submitters a1 and a2, i.e.,AσT1T2

(a1),
AσT1T2

(a2), AσT2T1
(a1), and AσT2T1

(a2). Lastly, we use
the SMT solver, Z3 [18], to check whether the predicates
in Definition 1 are satisfiable. If true, we will report the
function pair as vulnerable. How we compare users’ assets
in symbolic execution is explained in Appendix A.
Example. Suppose the contract in Fig. 3a has the following
symbolic state, i.e., hash=h, bounty=b, pubFund=f . A
symbolic blockchain state σ and two symbolic transactions
T1 = ⟨a1,solve(s1)⟩ and T2 = ⟨a2,solve(s2)⟩ are
created. We symbolically execute the two transaction orders

separately, i.e., T1T2 and T2T1. Consider the scenario where
T1 is executed before T2. In T1, the assets of user a1 (ethers
balance) increase by b + f , since the reward is transferred
to a1 at Line 7, i.e., AσT1T2

(a1) = Aσ(a1) + ite(s1 =
h, b+f, 0), where ite is the if-then-else symbolic expression
which returns the second operand if the first operand is
evaluated to be true or, otherwise returns the third operand.
After the execution of T1, storage variables bounty and
pubFund are set to zero. Then when T2 executes, the
assets of a2 remain the same, i.e., AσT1T2

(a2) = Aσ(a2),
since function reward returns zero. Similarly, when sym-
bolically executing the transaction order T2T1, the assets
of a2 increase by b + f while the assets of a1 remain the
same, i.e., AσT2T1

(a2) = Aσ(a2) + ite(s2 = h, b + f, 0),
AσT2T1

(a1) = Aσ(a1). In the end, we use an SMT solver
to conclude that the condition in the vulnerability definition
(Definition 1) is satisfiable when s1 = s2∧ (b > 0∨f > 0).
Therefore, the function pair ⟨solve,solve⟩ is vulnerable
to front-running attacks. □

When developing our approach, we find that many con-
tracts involve complex computations, which makes the SMT
solver hard to solve the constraints within a reasonable time
limit. Thus, we adopt the following heuristics to improve
the performance of SMT solving. First, we use symbolic bit
vectors with smaller bit-width to represent integers during
symbolic execution. Many smart contracts involve computa-
tions on 256-bit integers, which are hard for SMT solvers to
solve constraints. As such, we use symbolic 32-bit vectors
to represent integers whose bit-width is larger than 32.

Second, we convert non-linear symbolic expressions
to linear ones by assigning concrete values to symbolic
values. For example, for a division operation whose both
nominator and denominator are symbolic expressions, we
will sample concrete values to assign to variables used
in the denominator so that the division operation results
in an output with linear expression. We only adopt this
strategy when the SMT solving fails to finish within a time
limit, i.e., when the SMT solving timeout, we will assign
concrete values to non-linear symbolic expressions and try
to use SMT solver to solve again.

Last but not least, many contracts use external math
libraries (e.g., SafeMath provided by Openzeppelin [6]) to
perform safe mathematical operations with safety checks
(e.g., overflow/underflow check). These libraries include
many branches that significantly increase the total number
of paths that symbolic execution needs to explore. As such,
we use operations provided by SMT solver to model the
behaviors of these math libraries instead of symbolically
executing them. Our heuristics may induce imprecision
in the symbolic execution and thus may result in false
positives and false negatives in vulnerability detection.
However, our evaluation shows that our heuristics are
effective in improving the performance of Nyx while
preserving a high recall and precision.

4.3. Discussion
Nyx differs from previous front-running vulnerability

detection techniques from two aspects. First, our approach

considers exploitability as the first-class citizen in the
contract analysis. Previous works detect data races,
neglecting whether the races are benign or exploitable
by attackers. Nyx, however, uses a vulnerability detection
oracle (Definition 1) defined from the aspect of attacker
exploitation opportunities. Such oracle drastically increases
the search space of analysis, so we further propose a static
pruning technique to make the analysis scalable. Our static
pruning is also based on a necessary condition of attack
exploitability, instead of data races which still produce
benign races and induce false alarms.

Second, Nyx is designed to support the analysis of
cross-contract semantics. Previous empirical study [54] has
pointed out that the program logic vulnerable to front-
running attacks often lies across multiple contracts (the
contract group analyzed by Nyx). Existing front-running
vulnerability detectors cannot collectively analyze a contract
group due to the enlarged search space and thus miss many
vulnerabilities. Our static pruning is efficient to safely prune
many search space and makes Nyx scalable to analyzing
cross-contract semantics of DeFi applications.

Nyx requires the source code of the smart contracts under
analysis to be available in that Nyx constructs a precise
xSDG based on SlithIR [24] (Fig. 2), which is converted
from contract source code by Slither [47]. This may limit the
usage of Nyx only on contracts with source code available.
However, we argue that focusing on source-code analysis is
practically valuable. Our review of the top 50 DeFi projects
on DefiLlama [5] indicates that all but only OpenSea [8]
(in which only a small portion of code is closed-source)
are open-source. Due to the trustless nature of blockchain,
users are more willing to deposit their funds in open-source
projects. In addition, the main application scenario of Nyx
is for contract developers to analyze front-running risks in
their contracts before deployment. Developers should have
access to the contract source code. Therefore, it is practical
for Nyx to require source code for analysis.

5. Evaluation

In this section, we evaluate our approach and answer
the following research questions. RQ1: (Effectiveness) How
effective is our approach compared to existing techniques?
RQ2: (Performance) How efficient is our approach? RQ3:
(Ablation Study) How effective are our static pruning and
symbolic validation in terms of reducing search space and
eliminating false positives, respectively? In addition, we also
leverage Nyx to identify four developer-confirmed zero-day
vulnerabilities, showing the real-world impacts of our work.
Benchmark. We adopt the front-running vulnerability
benchmark collected by Zhang et al. [54] to evaluate our
approach. This is the most recent benchmark specially de-
signed for front-running vulnerabilities. It contains 513 real-
world vulnerable contract groups. Each contract group has
on average 144 functions (with a total of 74,096 functions
and 1,453,578 LOC). Each contract group consists of one or
more contracts closely coupled with each other to implement

some functionalities (e.g., token swap). Each contract group
is associated with a front-running vulnerability exploited
in the Ethereum history. Each vulnerability is associated
with a witness transaction pair. The witness transaction pair
consists of the attack transaction that the attacker uses to
launch a front-running attack on the victim transaction in the
history. We can use the witness transaction pair as a ground
truth to evaluate the recall of vulnerability detection. The de-
tect recall and precision results are presented in Section 5.1.

It is important to note that several other front-running
datasets have been collected by researchers, in addition to
the aforementioned one. Torres et al. [46], for example,
compiled a considerable dataset of attacks using pattern
matching on execution traces. While Zhang et al. have
demonstrated that the experimented benchmark [54]
outperforms Torres et al.’s one in terms of attack diversity,
an evaluation conducted on Torres et al.’s dataset is provided
in Appendix E for interested readers. Furthermore, Perez
and Livshits [36] collect an attack dataset of known
vulnerable contracts, which are detected by our baseline
techniques [1], [21]. However, we exclude this dataset
from the evaluation, since its collection is restricted to
those attacks that are detectable by the baseline techniques,
which could bias the evaluation process.

Baselines. We evaluate Nyx against six existing techniques
that support detecting front-running vulnerabilities, namely,
Oyente [31], Mythril [34], Securify [32], Securify2 [44],
Ethracer [30], TODler [35] and Sailfish [14]. Oyente and
Mythril are symbolic execution-based tools. Securify is a
static analysis tool using Datalog rules to infer potential
vulnerabilities. Securify2 is a completely re-invented tool on
top of Securify supported by the Ethereum official. Ethracer
is a fuzzing tool, which tries to execute concrete transactions
in different orders to find front-running issues. TODler is a
static analyzer based on the data dependency extracted by
the contract bytecode decompiler, Gigahorse [27]. Sailfish
is a hybrid tool that combines rule-based static analysis
with symbolic execution to find data races for front-running
vulnerabilities. Another related work is NPChecker [51],
leveraging static model checking to identify asset transfers
with read-write hazards on contract global variables. How-
ever, NPChecker is not available to use (as also reported by
Munir and Reichenbach [35]). We thereby do not include
NPChecker as the baselines.

Experiment settings. We run Nyx as well as all baselines
to detect each vulnerability in the benchmark. Many
vulnerabilities in the benchmark are cross-contract,
meaning that the labeled vulnerable location lies across
multiple contracts. For every such vulnerability, we consider
these multiple contracts as a contract group and use Nyx to
analyze the contract group. However, none of the existing
techniques support such cross-contract analysis. Therefore,
we run all baselines on each contract of a contract group
individually and collect their results for each contract. We
set the timeout of each contract group analysis for each
tool to three hours. The timeout of SMT solving in the
symbolic validation of each function pair in Nyx is set to

15 minutes. We do not repeat the experiment since all the
tools are deterministic. 2 The experiments are conducted
on a machine with AMD Ryzen 3975x and 512GB RAM.
Each analysis is executed in a single thread.

Metrics. We measure the recall of each tool using the
ground truth provided by the benchmark. For Nyx and
Ethracer, we consider a vulnerability in the benchmark to
be successfully detected by the tool if it reports warnings on
the function pair that the witness transaction pair invokes.
For other baselines, they can only report a single function
that may be affected by some other transactions. Therefore,
we adopt an over-approximation strategy by considering
a vulnerability is successfully detected by the tool if it
reports warnings on any of the two functions invoked by
the witness transaction pair.

In addition, we also evaluate the precision of each tool
by manually inspecting a random sample of the detection
results. For Nyx and Ethracer, which reports a pair of
functions, ⟨f1, f2⟩, as vulnerable, we check whether we can
manually craft two concrete transactions t1 and t2 for f1 and
f2, such that the submitter of t1 can gain profits by front-
running t2, and t2’s submitter is harmed by the front-running
attack. For other tools that only report a single function f as
vulnerable, we try to manually identify another transaction
f ′ such that an attacker can invoke f ′ to launch a front-
running attack to a transaction of f . If such a f ′ exists, we
consider the tool reports a true positive.

5.1. RQ1: Effectiveness

Recall. Table. 1 shows the detection recall of on the bench-
mark for each tool. The recall of each tool is calculated
by the number of contract groups whose vulnerability is de-
tected (column DE) divided by the total number of analyzed
ones (column AN). Nyx achieves the highest recall, 90.19%,
outperforming the baselines, among which the highest recall
is only 57.55%. In the experiment result, we find that Secu-
rify2 and Sailfish fail in the analysis of many vulnerabilities
(column ER in Table 1). We inspect the error in the analysis
and find that the root cause is that newer versions of Solidity
are not supported by these tools. We have reported the issue
in the repositories of these two tools, but the issue is not
fixed at present. Ethracer timeouts on a large number of
vulnerabilities (column TO). The idea of Ethracer is similar
to the symbolic validation of Nyx, i.e., enumerating all pos-
sible combinations of transactions calling different functions
and checking if different execution orders result in different
outcomes. The result of a large number of timeouts aligns
with our discussion in Section 3.3, indicating that the search
space for analyzing all possible pairs of functions is very
large. In Section 5.3, we will show that our static pruning
contributes a lot to reducing the search space. All baselines
can barely detect vulnerabilities in the benchmark due to
the limitations discussed in Section 3.2, i.e., lack of cross-

2. Ethracer, a fuzzing technique using SMT solvers to generate concrete
transactions, is also deterministic across multiple runs.

TABLE 1: Detection Recall of Each Tool

Tool Vulnerability Detection Results
TO ER AN DE Recall LOC Time

Oyente 0 0 513 0 0% 2,744.48 55.48s
Mythril 0 17 496 7 1.41% 2,750.18 98.28s
Securify 0 108 405 31 7.65% 2,286.73 701.04s
Securify2 0 503 10 0 0% 1,968.70 193.53s
Ethracer 178 1 334 13 3.89% 2,492.55 7,155.33s
TODler 0 162 351 202 57.55% 2555.56 27.26s
Sailfish 1 428 84 0 0% 1,260.87 32.83s

Nyx 6 79 428 386 90.19% 2,850.92 789.93s

TO: analysis timeout. ER: analysis error. AN: successfully an-
alyzed. DE: vulnerability detected. LOC: average lines of code
analyzed. Time: average analysis time.

contract analysis. In contrast, Nyx tackles the limitations and
can detect front-running vulnerabilities with a high recall.
False Negatives. We manually inspect the false negatives
of Nyx. There are two reasons. One reason is that, the
attack profits may not be transferred to the submitter of the
attack transaction. The front-running attack profits may be
transferred to an address variable different from the attack
transaction submitter in the vulnerable contract. Although
at runtime, the value of the transfer recipient variable is the
same as the attack transaction submitter, it is hard for a
static analysis tool like Nyx to know that the recipient of
profits is the attacker. As a result, Nyx will falsely conclude
that no profits are transferred to the attacker, and there is no
exploitable front-running vulnerability. A case study of false
negatives due to this reason is presented in Appendix C.

Another reason for false negatives is the imprecise
modeling of contracts in our analysis. Some contracts use
inline assembly or low-level contract calls to invoke a
function in another contract. In the static analysis, it is hard
to decide which contract and which function is invoked.
As a result, these external function calls are missed by
our analysis. If the external function call induces the
vulnerability, Nyx will miss it.
Precision. Table. 2 shows the precision of each tool. The
column Total shows the total numbers of reported warnings.
For each tool, we randomly sample with 95% confidence
level and 5% margin of error for manual inspection. If
there are less than 50 warnings, we inspect all of them.
The criteria of true positive (TP) has been described early
in Section 5. The precision is calculated using the number
of true positives divided by the total number of sampled
warnings. Existing tools overall report 296 (51.12%) false
positives out of the total 579 manually inspected warnings.
In contrast, Nyx achieves high precision, 70.89%. Securify
can also achieve a comparable precision, 68.00%, but the
total number of warnings reported by Securify is much
smaller than Nyx.
True Positives. To better understand the vulnerability
uniquely detected by Nyx (not detected by other tools),
we conduct a case study on the 224 TPs in the sampled
warnings reported by Nyx. We summarize three categories
of front-running vulnerabilities. We briefly introduce the
three categories below and the details are presented in
Appendix B with a few representative vulnerable contracts.

TABLE 2: Detection Precision of Each Tool

Tool Manual Inspection Results
Total Sampled TP Precision

Oyente 8 8 1 12.50%
Mythril 151 109 53 48.62%
Securify 50 50 34 68.00%
Securify2 0 0 0 -
Ethracer 120 92 31 33.70%
TODler 1743 315 151 47.94%
Sailfish 5 5 0 0%

Nyx 1767 316 224 70.89%

First, front-running vulnerabilities may induce price slippage
in automated market maker (AMM) [33] contracts. AMM is
a type of DeFi application that allows users to swap tokens
and the token exchange rate is determined by calculating the
ratio of reserves of two tokens being swapped. Attackers
are able to swap the token in advance, change the token
reserves of AMM contracts, and manipulate the exchange
rate of victim transactions.

Second, front-running vulnerabilities may allow attack-
ers to break the atomicity of multi-step on-chain actions.
Many DeFi applications require users to perform a sequence
of low-level actions (i.e., invocations to smart contracts) to
complete a high-level functionality (e.g., remove liquidity
from AMM [49]). Adversaries may insert transactions in
the middle of ordinary users’ action sequences, breaking
the atomicity action sequences, and making profits.

Third, publicly obtainable profits in smart contracts
can induce front-running attacks. Many contracts expose
public profits (e.g., ERC20 tokens) or crypto-collectibles
(e.g., NFTs) that can be obtained permissionlessly. The
vulnerable contract lacks access control on the profit claim
while the total amount of profits to claim is limited. A front-
running attacker can execute transactions to obtain such
profits before the targeted user, leading to losses for the
victim since the expected profits are now unattainable.

Note that, in spite of a high precision and recall, Nyx
reports a large number of warnings. This is because many
smart contracts contain a lot of functions with similar
logic but different function signatures. For example, in
UniswapV2Router02 contract of Uniswap V2 proto-
col [49], an implementation of AMM, there are nine dif-
ferent functions with the same functionality to swap one
kind of token to another, e.g., ethers or ERC20 tokens.
Different functions are provided to facilitate different use
scenarios, e.g., to swap the exact amount of one token to
another or to swap a certain amount of one token to the exact
amount of another. Nyx finds that the token swap logic can
be attacked and any pair of swap functions are vulnerable.
All nine different functions have the same swap logic but
with different names and parameter lists. Therefore, Nyx will
report warnings for all of them. In this case, 45 warnings
(pairs of swap functions) are reported for this same vulner-
ability in the swap logic. However, it is non-trivial for Nyx
to automatically identify the same logic and remove such
duplicates due to the lack of contract specifications. In our
manual inspection of the sample, we find that 60.44% of the
reported warnings are duplicate warnings in such contracts.

Nyx
Pruning

Total

 0 5000 10000 15000 20000 25000 30000 35000

Number of Function Pairs

1680
3375

29960

Figure 7: The total number of function pairs and the number
of warnings reported by Nyx-P and Nyx.

TABLE 3: Detection Results of Nyx, Nyx-P, and Nyx-V.
Tool Warnings Recall Precision Avg. Time

Nyx 1767 90.19% 70.89% 789.93s
Nyx-P 3375 94.21% 35.07% 19.48s
Nyx-V 2207 92.67% 69.82% 2,319.37s

False Positives. We also investigate the false positives of
Nyx and find three reasons. The first reason is that when
performing external contract calls, the contract has implicit
assumptions for the callee contract. For example, the caller
assumes that a storage variable in the callee contract has
a specific value at runtime. There are no assertions in the
contract code encoding such assumptions. Thus, Nyx is
unaware of the assumptions and raises false warnings for
contract behaviors impossible at runtime. A case study of
false positives due to this reason is presented in Appendix D.

The second reason for false positives is implicit con-
straints on storage variables. For example, the contract may
be designed in a way that one storage variable always has
the same value as the other storage variable, regardless
of how the contract is invoked by transactions. However,
there are no assertion statements checking this equivalence
relationship. As a result, Nyx is not aware of such implicit
constraints on storage variables and over-approximates the
contract behaviors. A case study of false positives due to this
reason is presented in Appendix D. It may be possible to
infer such implicit constraints by analyzing all contract state-
altering functions in advance. We leave such analysis as
future work to further improve the precision of our approach.

Other false positives are caused by imprecise modeling
of contract semantics during symbolic validation. There
are some operations hard to model in symbolic execution,
such as abi.encode/abi.decode, which encode/de-
code arbitrary structured data to/from a byte sequence,
and cryptographic hash operations. When encountering such
operations, Nyx treats the operation output as unconstrained
symbolic values, which may induce false alarms.

Answer to RQ1: Nyx is effective to detect front-running
vulnerabilities with high recall (90.19%) and precision
(70.89%) on the benchmark of real-world smart contracts,
which significantly outperforms existing tools.

5.2. RQ2: Efficiency

Table 1 also shows the analysis time of baselines and
Nyx (column Time) averaged among contract groups that
each tool successfully analyzed (column AN). Since the

 0
 20
 40
 60
 80

 100
 120
 140
 160

[1,2)
[2,3)

[3,4)
[4,5)

[5,6)
[6,7)

[7,8)
[8,9)

[9,10)
[10,∞)

C

on
tr

ac
t G

ro
up

s

Speedup

Figure 8: Speedup achieved with static pruning.

number of analyzed contract groups varies among tools,
and the contracts may also vary in scale, we also show the
number of lines of code (LOC) on average for each ana-
lyzed vulnerability (column LOC). Column Time shows the
average analysis time for each contract group. On average, it
takes 789.83s for Nyx to analyze each contract group, within
which static pruning takes 9.30s and symbolic validation
takes 754.93s, respectively. The results show that our static
pruning is fast, while symbolic validation takes most of the
analysis time. Nyx is slower than most of the baselines, but it
is expected. As mentioned in Section 3.2, all baselines only
analyze contracts individually without considering the cross-
contract function calls. Thus, their search space is much
smaller than Nyx, which supports cross-contract analysis.
Analyzing contracts individually may make the analysis
faster, but it causes a large number of vulnerabilities missed
as shown in Section 5.1. In addition, Nyx takes one step
further compared to baselines by ensuring the exploitability
of the vulnerability, instead of only identifying data races.
Checking whether a front-running is profitable for attack-
ers and harmful for victims involves solving much more
complex constraints. The slowdown in Nyx is a trade-off
for higher precision. In fact, Nyx’s overall performance is
comparable to the baseline with the best precision, Securify.

Answer to RQ2: The performance of Nyx is comparable to
the baseline with the best vulnerability detection precision,
i.e., Securify, and significantly faster than Ethracer. Not
being faster than most of the baselines is expected since
our approach analyzes a much larger search space to
improve the detection recall and needs to solve more
complex constraints to achieve high precision.

5.3. RQ3: Ablation Study

To get a better understanding of how the static pruning
and symbolic validation contribute to the overall perfor-
mance of Nyx, we perform an ablation study. We build
two variants of Nyx: Nyx-P disables symbolic validation in
Nyx and reports all function pairs after static pruning as
warnings. Nyx-V disables static pruning in Nyx and directly
applies symbolic execution on all possible function pairs.
Table 3 shows the total number of warnings reported, the
recall on the benchmark, the precision of reported warnings,
and the average analysis time for each contract group. To
obtain the precision of Nyx-P and Nyx-V, we sample 345
and 328 (95% confidence level and 5% margin of error)

 250
 300
 350
 400
 450
 500
 550

 0 0.5 1 1.5 2 2.5 3

C

on
tr

ac
t G

ro
up

s

Analysis Time (h)

Nyx
Nyx-V

Figure 9: Number of contract groups that Nyx and Nyx-V
finish analyze over time.

reported warnings for Nyx-P and Nyx-V, respectively, and
manually check whether each warning is a false positive or
not in the same way as for RQ1.

Both Nyx and the two variants achieve a high recall
on the benchmark. However, Nyx-P has a low precision
due to the over-approximation of front-running vulnerability
in our static pruning. When applying symbolic validation
on top of Nyx-P, Nyx is able to improve the precision to
70.89% (RQ1). Nyx-V achieves a similar precision as Nyx-
V. However, Nyx is on average 2.93x faster than Nyx-V.
Specifically, Nyx’s efficiency significantly surpasses that of
Nyx-V when the complexity of contracts increases. Nyx-V
cannot finish analyzing 22.43% contract groups within an
hour, while Nyx struggles for only 2.34% of them (9.6-
fold decrease). This enhancement is attributable to Nyx’s
ability to drastically reduce the search space through static
pruning. Fig. 9 shows the cumulative count of contract
groups analyzed by Nyx and Nyx-V over time within the
three-hour experiment time budget. Nyx finishes analysis for
most contract groups within around one hour, while one-fifth
of the contract groups cannot be analyzed by Nyx-V within
the same duration.

To further understand the benefits of the static pruning
in Nyx. We measure the number of function pairs that static
pruning eliminates out of the entire search space. Fig. 7
shows the total number of function pairs that Nyx-V sym-
bolically executes (i.e., the entire search space), the number
of function pairs after static pruning (i.e., the function pairs
Nyx symbolically executes), and the number of function
pairs that Nyx reports in the end. There are, in total, 29,960
function pairs in contracts that contain vulnerabilities in the
benchmark, i.e., the entire search space. After static pruning,
there are only 3,375 function pairs left, reducing the search
space by 88.73%. However, as aforementioned, there are a
lot of false positives in the 3,375 function pairs. Symbolic
validation further eliminates 1,695 unexploitable function
pairs. We also measure the speedup that static pruning helps
Nyx achieve. For a contract group in the benchmark, the
speedup is calculated by the analysis time of Nyx-V divided
by the analysis time of Nyx. Fig. 8 shows a histogram
diagram of speedup for all contract groups in the benchmark.

Anaswer to RQ3: Static pruning and symbolic validation
play important roles to reduce search space and improve
the precision of detecting front-running vulnerabilities.

5.4. Real-World Impact

To show how our approach can help improve the security
of smart contracts, we leverage Nyx to audit real-world
contracts. By the time of writing, we have found four zero-
day vulnerabilities in four DeFi projects, posing risks to
over $320M on-chain funds. All the identified vulnerabilities
are reported to contract developers, who confirm and fix
them immediately. We are in total awarded a substantial
bug bounty of $10268.30, underscoring the effectiveness
and real-world significance of Nyx. One bug allows front-
running attackers to progressively steal all deposited funds.
Another bug allows denial of service attacks, where any
valid user action is blocked for a substantial period of
time. The third bug may induce malicious actors to claim
ownership of the entire project, thereby placing all user
assets at risk. The last finding allows malicious actors to
take advantage of the reward system by front-running and
unfairly claiming rewards. This discourages honest users
from updating the bucket exchange rates and contributing
to the system.

6. Related Work

Understanding front-running in smart contracts. Re-
searchers have conducted extensive empirical studies to
understand the front-running attacks. Sergey and Hobor [42]
first consider smart contracts as shared objects in the concur-
rent invocation of transactions and point out the root cause
of a variety of vulnerabilities in contracts from the concur-
rency perspective, including front-running. Daian et al. [17]
propose Maximal Extractable Value (MEV) to measure the
profits an attacker can make by manipulating transaction
orders and reveal the fact that various front-running bots
exist competing with each other for front-running profits.
Being aware of the prevalent front-running attacks on the
blockchain, Torres et al. [46], Perez and Livshits [36],
Qin et al. [40], and Flashbots [25] conduct measurement
studies and find that front-running attacks are pervasive
and attackers have obtained a large amount of profits. To
understand the vulnerable smart contract code that induces
front-running attacks, Eskandari et al. [22], Durieux et
al. [19], Ghaleb and Pattabiraman [26], Zhang et al. [56]
and Zhang et al. [54] construct datasets of vulnerable smart
contracts, which can also be used as benchmarks to evaluate
vulnerability detection techniques. Front-running can also be
leveraged as protection from other attacks. Zhang et al. [55]
and Qin et al. [38] propose novel techniques to synthe-
size front-running attacks to attack malicious exploitation
(e.g., reentrancy) on vulnerable contracts to recuse funds at
risk. However, such techniques mimic existing attacks and
require an already-exploited vulnerability. They have differ-
ent application scenarios from Nyx, which detect previously
unknown vulnerabilities in smart contracts.
Detecting front-running vulnerability. Researchers have
made efforts to pinpoint the smart contract code patterns
of front-running vulnerabilities, including transaction order

dependency [31], event ordering bugs [30], and state in-
consistency bugs [14]. Various techniques have been pro-
posed to detect such code patterns in smart contracts off-
chain (i.e., before contracts are deployed). Oyente [31] uses
symbolic execution to detect front-running vulnerabilities
by finding two execution paths that result in different ether
transfer flows. Securify [48] adopts a datalog-based static
analysis to identify ether transfers using data flowed from
contract storage variables as vulnerable. NPChecker [51]
uses taint analysis to find read-write hazards in smart con-
tracts with model checking technique. Sailfish [14] also
identify data races that affect ether transfers as vulnera-
bilities. Ethracer [30] generates concrete transactions using
SMT solvers and executes them in different orders to check
if there are races between transactions. All these tech-
niques do not consider the exploitability of front-running
vulnerabilities and cannot perform cross-contract analysis
(discussed in Section 3.2). They have shown to have high
false negative and false positive rates in our experiments
(Section 5.1), and Nyx outperforms these tools by mitigating
their limitations. In addition, there are on-chain contract
analyzers, which rely on the historical transactions of the
target contract to do vulnerability detection. IcyChecker [53]
replays historical transactions in different execution orders
and checks if the resulting blockchain state is different or
not. Similar to Ethracer, IcyChecker also does not consider
the exploitability of races between transactions and may
report many false positives. On-chain contract analyzers
have different application scenarios than Nyx since they can
only analyze contracts already deployed on the blockchain
and heavily rely on a fruitful transaction history of the
contracts. Therefore, We do not consider on-chain contract
analyzers as appropriate baselines to our approach.

7. Conclusion

We propose Nyx to detect exploitable front-running vul-
nerabilities. To mitigate the challenge of enlarged search
space of checking exploitability, we design an innovative
static pruning approach to prune the search space effectively.
We adopt SMT solver to identify exploitable vulnerabilities
in symbolic execution using our proposed oracle. The evalu-
ation shows that Nyx outperforms existing tools and has also
identified four developer-confirmed zero-day vulnerabilities.

Acknowledgment

This work was supported by National Natural Science
Foundation of China (Grant No. 61932021), Hong Kong
Research Grant Council/General Research Fund (Grant
No. 16205821), Hong Kong Research Grant Council/Re-
search Impact Fund (Grant No. R5034-18), Natural Sciences
and Engineering Research Council of Canada (Grant No.
RGPIN-2022-03744), Natural Sciences and Engineering Re-
search Council of Canada (Grant No. DGECR-2022-00378),
and Science and Technology Innovation Committee Founda-
tion of Shenzhen (Grant no. ZDSYS20210623092007023).

References

[1] Securify v2.0. SRI Lab, ETH Zurich, July 2022.

[2] Block timestamp manipulation attack. https://cryptomarketpool.com
/block-timestamp-manipulation-attack/, 2023.

[3] Code4rena | keeping high severity bugs out of production. https:
//code4rena.com/, 2023.

[4] Cryptokitties | collect and breed digital cats! https://www.cryptokitt
ies.co/, 2023.

[5] Defillama. https://defillama.com/, 2023.

[6] Math - openzeppelin docs. https://docs.openzeppelin.com/contracts/
2.x/api/math, 2023.

[7] The merge | ethereum.org. https://ethereum.org/en/roadmap/merge/,
2023.

[8] Opensea, the largest nft marketplace. https://opensea.io/, 2023.

[9] Openswap: Spot price queue. https://docs.openswap.xyz/#/technolo
gies/liquidity-queue, 2023.

[10] Stableswap - efficient mechanism for stablecoin liquidity. https://cl
assic.curve.fi/files/stableswap-paper.pdf, 2023.

[11] Tellor oracle protocol - transparent & permissionless. https://tellor.io/,
2023.

[12] Uniwhale: Unique oracle design. https://docs.uniwhale.co/unique-o
racle-design, 2023.

[13] Weak block-based prng in solidity. https://blog.solidityscan.com/we
ak-block-based-prng-in-solidity-f29e089de594, 2023.

[14] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Cristopher
Kruegel, and Giovanni Vigna. SAILFISH: Vetting Smart Contract
State-Inconsistency Bugs in Seconds. In 2022 IEEE Symposium on
Security and Privacy (SP ’22), pages 1235–1252. IEEE Computer
Society, January 2022.

[15] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to
know about Datalog (and never dared to ask). IEEE Transactions
on Knowledge and Data Engineering, 1(1):146–166, March 1989.

[16] Jacques Dafflon, Jordi Baylina, and Thomas Shababi. EIP-777: Token
Standard. https://eips.ethereum.org/EIPS/eip-777, April 2023.

[17] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash Boys 2.0:
Frontrunning, Transaction Reordering, and Consensus Instability in
Decentralized Exchanges. arXiv:1904.05234 [cs], 2019.

[18] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT
Solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and
Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science, pages 337–340, Berlin, Heidelberg, 2008.
Springer.

[19] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz.
Empirical review of automated analysis tools on 47,587 Ethereum
smart contracts. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering (ICSE ’20), pages 530–
541, New York, NY, USA, June 2020. Association for Computing
Machinery.

[20] William Entriken, Dieter Shirley, Jacob Evans, and Nas-
tassia Sachs. EIP-721: Non-Fungible Token Standard.
https://eips.ethereum.org/EIPS/eip-721, April 2023.

[21] Enzyme Finance. Enzymefinance/oyente. Enzyme Finance, June
2021.

[22] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. SoK:
Transparent dishonesty: Front-running attacks on blockchain. In
Andrea Bracciali, Jeremy Clark, Federico Pintore, Peter B. Rønne,
and Massimiliano Sala, editors, Financial Cryptography and Data
Security (FC ’19), Lecture Notes in Computer Science, pages 170–
189, Cham, February 2019. Springer International Publishing.

[23] Etherscan. Deplay. https://etherscan.io/address/0xe34443095f78099
675b165f07559e9b48450c77e, May 2023.

[24] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: A Static
Analysis Framework for Smart Contracts. In 2019 IEEE/ACM 2nd
International Workshop on Emerging Trends in Software Engineering
for Blockchain (WETSEB ’19), pages 8–15, New York, NY, USA,
May 2019. Association for Computing Machinery.

[25] Flashbots. MEV Explore. https://explore.flashbots.net/, April 2023.

[26] Asem Ghaleb and Karthik Pattabiraman. How effective are smart
contract analysis tools? evaluating smart contract static analysis tools
using bug injection. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA
’20), pages 415–427, New York, NY, USA, July 2020. Association
for Computing Machinery.

[27] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis.
Gigahorse: Thorough, Declarative Decompilation of Smart Contracts.
In 2019 IEEE/ACM 41st International Conference on Software En-
gineering (ICSE), ICSE 2019, pages 1176–1186, Montreal, QC,
Canada, May 2019. IEEE.

[28] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Program. Lang. Syst.,
12(1):26–60, January 1990.

[29] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, July 1976.

[30] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and
Prateek Saxena. Exploiting the laws of order in smart contracts.
In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA ’19), pages 363–373, New
York, NY, USA, July 2019. Association for Computing Machinery.

[31] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making Smart Contracts Smarter. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16), pages 254–269, New York, NY, USA, October
2016. Association for Computing Machinery.

[32] Alexander Mense and Markus Flatscher. Security Vulnerabilities in
Ethereum Smart Contracts. In Proceedings of the 20th International
Conference on Information Integration and Web-based Applications
& Services, iiWAS2018, pages 375–380, New York, NY, USA,
November 2018. Association for Computing Machinery.

[33] Vijay Mohan. Automated market makers and decentralized ex-
changes: A DeFi primer. Financial Innovation, 8(1):20, February
2022.

[34] Bernhard Mueller. Smashing Ethereum Smart Contracts for Fun
and ACTUAL Profit. In The 9th Annual HITB Security Conference
in the Netherlands (HITBSecConf ’18), Hack In The Box Security
Conference, pages 1–54, Amsterdam, Netherlands, April 2018.

[35] Sundas Munir and Christoph Reichenbach. TODLER: A Transaction
Ordering Dependency anaLyzER - for Ethereum Smart Contracts. In
2023 IEEE/ACM 6th International Workshop on Emerging Trends in
Software Engineering for Blockchain (WETSEB), pages 9–16, May
2023.

[36] Daniel Perez and Ben Livshits. Smart Contract Vulnerabilities:
Vulnerable Does Not Imply Exploited. In 30th USENIX Security
Symposium (USENIX Security ’21), pages 1325–1341. USENIX As-
sociation, August 2021.

[37] Lambda philogy, berndartmueller. Token change can be frontrun,
blocking token. https://code4rena.com/reports/2022-07-juicebox#h-0
2-token-change-can-be-frontrun-blocking-token, May 2023.

[38] Kaihua Qin, Benjamin Livshits, Stefanos Chaliasos, Liyi Zhou, Dawn
Song, and Arthur Gervais. The Blockchain Imitation Game.

[39] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying Blockchain
Extractable Value: How dark is the forest?, December 2021.

https://cryptomarketpool.com/block-timestamp-manipulation-attack/
https://cryptomarketpool.com/block-timestamp-manipulation-attack/
https://code4rena.com/
https://code4rena.com/
https://www.cryptokitties.co/
https://www.cryptokitties.co/
https://defillama.com/
https://docs.openzeppelin.com/contracts/2.x/api/math
https://docs.openzeppelin.com/contracts/2.x/api/math
https://ethereum.org/en/roadmap/merge/
https://opensea.io/
https://docs.openswap.xyz/#/technologies/liquidity-queue
https://docs.openswap.xyz/#/technologies/liquidity-queue
https://classic.curve.fi/files/stableswap-paper.pdf
https://classic.curve.fi/files/stableswap-paper.pdf
https://tellor.io/
https://docs.uniwhale.co/unique-oracle-design
https://docs.uniwhale.co/unique-oracle-design
https://blog.solidityscan.com/weak-block-based-prng-in-solidity-f29e089de594
https://blog.solidityscan.com/weak-block-based-prng-in-solidity-f29e089de594
https://etherscan.io/address/0xe34443095f78099675b165f07559e9b48450c77e
https://etherscan.io/address/0xe34443095f78099675b165f07559e9b48450c77e
https://code4rena.com/reports/2022-07-juicebox#h-02-token-change-can-be-frontrun-blocking-token
https://code4rena.com/reports/2022-07-juicebox#h-02-token-change-can-be-frontrun-blocking-token

1 contract AMM {
2 ERC20 tokenIn, tokenOut;
3 function swap(uint in) returns (uint out) {
4 // calculate output token amount
5 uint reserve0 = tokenIn.balanceOf(this);
6 uint reserve1 = tokenOut.balanceOf(this);
7 uint k = reserve0 * reserve1;
8 out = reserve1 - k / (reserve0 + in);
9 // swap

10 tokenIn.transferFrom(msg.sender, this, in);
11 tokenOut.transferFrom(this, msg.sender, out);
12 }}

Figure 10: An Automated Market Maker (AMM) contract
that contains front-running vulnerability.

[40] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying Blockchain
Extractable Value: How dark is the forest? In 2022 IEEE Symposium
on Security and Privacy (SP ’22), pages 198–214. IEEE Computer
Society, May 2022.

[41] Witek Radomski, Andrew Cooke, Philippe Castonguay, James The-
rien, Eric Binet, and Ronan Sandford. EIP-1155: Multi Token
Standard. https://eips.ethereum.org/EIPS/eip-1155, April 2023.

[42] Ilya Sergey and Aquinas Hobor. A Concurrent Perspective on Smart
Contracts. arXiv:1702.05511 [cs], February 2017.

[43] Shipyard Software Inc. Clipper DEX. https://clipper.exchange/, May
2023.

[44] SRI Lab. Securify2/securify at master · eth-sri/securify2.
https://github.com/eth-sri/securify2, April 2023.

[45] Sushi. SushiSwap. https://www.sushi.com, May 2023.
[46] Christof Ferreira Torres, Ramiro Camino, and Radu State. Fron-

trunner jones and the raiders of the dark forest: An empirical study
of frontrunning on the ethereum blockchain. In Michael Bailey
and Rachel Greenstadt, editors, 30th USENIX Security Symposium
(USENIX Security ’21), pages 1343–1359. USENIX Association,
August 2021.

[47] Trail of Bits. Slither/slither at master · crytic/slither.
https://github.com/crytic/slither, June 2023.

[48] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, and Martin Vechev. Securify: Practical Security
Analysis of Smart Contracts. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security
(CCS ’18), CCS 2018, pages 67–82, New York, NY, USA, October
2018. Association for Computing Machinery.

[49] Uniswap. Decentralized trading protocol. https://uniswap.org/, De-
cember 2021.

[50] Fabian Vogelsteller and Vitalik Buterin. EIP-20: Token Standard.
https://eips.ethereum.org/EIPS/eip-20, April 2023.

[51] Shuai Wang, Chengyu Zhang, and Zhendong Su. Detecting nonde-
terministic payment bugs in Ethereum smart contracts. Proc. ACM
Program. Lang., 3(OOPSLA):1–29, October 2019.

[52] Gavin Wood. Ethereum: A secure decentralised generalised transac-
tion ledger. https://ethereum.github.io/yellowpaper/paper.pdf, 2020.

[53] Mingxi Ye, Yuhong Nan, Zibin Zheng, Dongpeng Wu, and Huizhong
Li. Detecting State Inconsistency Bugs in DApps via On-Chain
Transaction Replay and Fuzzing. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2023, pages 298–309, New York, NY, USA, July 2023.
Association for Computing Machinery.

[54] Wuqi Zhang, Lili Wei, Shing-Chi Cheung, Yepang Liu, Shuqing Li,
Lu Liu, and Michael R. Lyu. Combatting Front-Running in Smart
Contracts: Attack Mining, Benchmark Construction and Vulnerability
Detector Evaluation. IEEE Transactions on Software Engineering,
pages 1–17, 2023.

[55] Zhuo Zhang, Zhiqiang Lin, Marcelo Morales, Xiangyu Zhang, and
Kaiyuan Zhang. Your exploit is mine: instantly synthesizing counter-
attack smart contract. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 1757–1774, 2023.

[56] Zhuo Zhang, Brian Zhang, Wen Xu, and Zhiqiang Lin. Demysti-
fying Exploitable Bugs in Smart Contracts. In Proceedings of the
ACM/IEEE 45nd International Conference on Software Engineering
(ICSE ’23), New York, NY, USA, May 2023. Association for Com-
puting Machinery.

[57] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V. Le, and
Arthur Gervais. High-Frequency Trading on Decentralized On-Chain
Exchanges. In 2021 2021 IEEE Symposium on Security and Privacy
(SP), pages 455–472. IEEE Computer Society, Invalid Date.

Appendix A.
Comparing Assets in Vulnerability Detection

When comparing the assets of user a on two different
blockchain states σ1 and σ2, the user may possess different
kinds of assets and Aσ1

(a) and Aσ2
(a) may not be directly

comparable. Let k denote a specific kind of asset (e.g., ether
or USDC token), and Ak

σ(a) denote the balance of asset
k of user a. We use the following sufficient condition to
approximate the comparison between Aσ1

(a) and Aσ2
(a):

∀k ∈ K,Ak
σ1
(a) ≥ Ak

σ2
(a) ∧ ∃k ∈ K,Ak

σ1
(a) > Ak

σ2
(a)

=⇒ Aσ1
(a) > Aσ2

(a)

where K is all the kinds of assets that users can possess.

Appendix B.
Case Study for True Positives

In Section 5.1, we summarize three categories of front-
running vulnerabilities uniquely detected by Nyx (not de-
tected by other tools). For each category, we present a
representative vulnerable contract simplified from real-world
contracts in the benchmark [54].
Price slippage in Automated Market Maker (AMM)
contracts. AMM is a kind of smart contract that supports
automated swaps between two types of fungible tokens with-
out the need to match buyers and sellers [33]. Fig. 10 shows
one typical implementation of AMM adopted by many
popular DeFi projects (e.g., Uniswap [49], SushiSwap [45],
etc.). Function swap allows users to swap in amount of
tokenIn to tokenTo. The token exchange rate is deter-
mined by invariant k, which is the multiplication of balances
of the two tokens (i.e., token reserves) held by the AMM
contract (lines 5-7). The contract determines the amount
of swap output token by the principle that the invariant k
should remain the same before and after the swap action.
Qualitatively, the exchange rate decreases after each swap
action from tokenIn to tokenOut. When an ordinary
user submits a transaction (victim), an attacker can invoke
function swap in advance (front-running attack), decreasing
the exchange rate in the victim transaction (price slippage).
As a result, the ordinary user swaps tokens at a lower
exchange rate, suffering from loss. Note that the ordinary
user’s transaction further decreases the exchange rate from
tokenIn to tokenOut (i.e., the reverse exchange rate
increases). Therefore, the attacker can later swap back to
tokenIn to make profits since the exchange rate of reverse

1 contract KittyCore {
2 function giveBirth(uint matronId) returns (uint

kittenId) {
3 // Grab a reference to the matron in storage.
4 Kitty storage matron = kitties[matronId];
5 // Check that the matron is pregnant, and that

its time has come!
6 require(_isReadyToGiveBirth(matron));
7
8 // Make the new kitten!
9 address owner = kittyIndexToOwner[matronId];

10 kittenId = _createKitty(matronId, matron.
siringWithId, owner);

11 msg.sender.send(autoBirthFee);
12 }}

Figure 12: A vulnerable contract simplified from Cryp-
toKitty [4].

1 contract Tellor {
2 function submitMiningSolution(string memory nonce,

uint[5] requestIds, uint[5] values) external
{

3 require(correctMiningSolution(requestIds, values)
);

4 _newBlock(nonce, requestIds);
5 address[5] memory miners = requestDetails[

_requestIds[0]].minersByValue[
_timeOfLastNewValueVar];

6 //pay Miners Rewards
7 _payReward(miners, _previousTime);
8 _adjustMiningDifficulty(nonce);
9 }}

Figure 13: A false negative example. The example is sim-
plified from Tellor Oracle protocol contract [11].

1 contract LPToken is ERC20 {
2 ERC20 token0, token1;
3 function burn(address to) returns (uint amount0,

uint amount1) {
4 // The LPToken to burn should have been

transferred to this contract.
5 uint burn_amount = self.balance(this);
6 // Calculate the amount of token0 and token1 to

redeem.
7 uint balance0 = token0.balanceOf(this);
8 uint balance1 = token1.balanceOf(this);
9 amount0 = burn_amount * balance0 / totalSupply;

10 amount1 = burn_amount * balance1 / totalSupply;
11 // Burn LPToken and transfer token0 and token1.
12 _burn(burn_amount);
13 token0.transferFrom(this, to, amount0);
14 token1.transferFrom(this, to, amount1);
15 }}

Figure 11: A vulnerable contract simplified from the LP
token of UniswapV2 [49] and SushiSwap [45].

swap increases. Such front-running vulnerability is due to
the flaw in the design of the AMM contract. Researchers and
DeFi community are exploring better designs of AMM con-
tracts (e.g., StableSwap in Curve [10], spot price queue in
OpenSwap [9], oracle-based exchange rate in Uniwhale [12],
etc.) that have little to zero token exchange price slippage
(i.e., attackers have no way to manipulate the exchange
rate of a victim transaction) to mitigate such front-running
vulnerability.
Atomicity breaking in multi-step on-chain actions.
Fig. 11 shows a vulnerable contract implementing the
ERC20 token: LP. The function burn allows users to burn

LP tokens they hold and redeem for another two types of
tokens (token0 and token1) proportionally (lines 8-11).
To burn LP tokens, users have to perform two consecutive
actions: 1) transfer a certain amount of LP tokens to the
contract, and 2) call burn function specifying the address
to which the redeemed token0 and token1 should be
transferred (lines 15-16). The vulnerability exists in that an
attacker may invoke the burn function after an ordinary
user has finished the first action and before the user per-
forms the second one. In the attack transaction, the contract
mistakenly treats all its LP token balance (line 5) as the
amount to burn by the attacker, even though the LP token
originally belongs to the user instead of the attacker. Then,
the redeemed tokens (lines 15-16) are transferred to an
address specified by the attacker.
Preemption of publicly obtainable profits. Fig. 12 shows
a snippet of a contract simplified from CryptoKitty [4].
CryptoKitty implements cartoon kitties as Non-Fungible
Tokens (NFT) [20], where each kitty is unique with distinct
features on the blockchain. Each kitty is created through a
“pregnancy” process and after a period of time, the kitty is
ready to give birth (line 6). The caller to the giveBirth
function receives a reward for the birth of the kitty (line 12).
Note that rth to a kitty as long as the kitty’s birth is ready.
However, only the first caller gets the reward since the kitty
can only be born once. Attackers can front-run other users’
invocations to giveBirth function to obtain the reward as
profits since the contract enforces no access control, causing
loss of rewards for the users. Daian et al. [17] also point
out that such permissionlessly obtainable profits may also
pose a threat to blockchain system (fee-based blockchain
forking attack) in that malicious block miners may have the
incentive to maliciously fork a blockchain if the profits made
in the front-running attacks exceed the profits they can earn
from honest block mining.

Appendix C.
Case Study for False Negatives

We present a case where Nyx fails to detect the
vulnerability because the attack profit is transferred to
other accounts different from the attack transaction sub-
mitter. Fig. 13 shows a simplified version of a vul-
nerable contract that Nyx fails to detect. The contract
Tellor implements a blockchain-like logic. The func-
tion submitMiningSolution can be called by a block
miner who calculates the correct solution (requestIds
and values) to get the reward for block mining at Line 7.
The contract is vulnerable to front-running in a way similar
to the vulnerability in Fig. 3 that only the first miner
submitting the correct solution can get the block reward.
Attackers can front-run victims’ transactions to obtain the
current block reward as profits while the victims lose the
reward. Note that in this example, the recipient of the block
reward (the attack profit) is obtained from the contract
storage, instead of the transaction submitter. At runtime, the
attacker’s account is one of the miners at Line 5 to whom
the reward is paid. However, during static analysis, it is hard

1 contract ClipperExchange {
2 ERC20 theExchange;
3 function withdrawAll() public {
4 require(theExchange.balanceOf(msg.sender) ==

theExchange.totalSupply());
5 theExchange.burn(msg.sender, amount);
6 uint amount = address(this).balance;
7 msg.sender.transfer(amount);
8 }}

Figure 15: A false positive example due to the implicit
constraints in contract state. The example is adapted from
Clipper Exchange protocol [43].

1 contract UniswapV2Router {
2 function addLiquidity(ERC20 tokenA, uint amountA,

address to) external {
3 UniswapV2Pair pair = UniswapV2Library.pairFor(

factory, tokenA);
4 tokenA.transferFrom(msg.sender, to, amountA);
5 pair.mint(to);
6 }}
7 contract UniswapV2Pair {
8 uint reserve0; ERC20 token0;
9 function mint(address to) external lock returns (

uint liquidity) {
10 uint balance0 = token0.balanceOf(this);
11 uint amount0 = balance0 - reserve0;
12 uint liquidity = computation(amount0);
13 _mint(to, liquidity);
14 reserve0 = balance0;
15 }}

Figure 14: A false positive example due to the implicit
contract assumption. The example is adapted from Uniswap
V2 protocol contracts [49].

for Nyx to know that the miners obtained at Line 5 contain
the attack transaction submitter. As a result, Nyx falsely
concludes that no profits are transferred to the attacker, and
the vulnerability is missed.

Appendix D.
Case Study for False Positives

We present two cases that Nyx report false positives due
to implicit assumptions for external contracts and implicit
constraints on storage variables, respectively.
Implicit assumptions for external contracts. Fig. 14
shows an example, where Nyx falsely reports function pair
⟨addLiquidity,addLiquidity⟩ as vulnerable. In the
addLiquidity function, the transaction submitter trans-
fers a certain amount of tokenA to the UniswapV2Pair
contract at Line 4, and UniswapV2Pair mints liquidity
tokens in return to the submitter at Line 13. The amount
of liquidity tokens to be minted is calculated based on the
amount of tokenA transferred. The addLiquidity func-
tion is not vulnerable since the number of liquidity tokens
the user receives remains the same regardless of whether the
transaction is front-run or not. However, during symbolic
validation, Nyx has no way to know that amount0 at
Line 11 is always equal to amountA at Line 4. There is an
implicit assumption that token0 at Line 10 is the same as
tokenA at Line 4. Thus, amount0, the balance difference
calculated at Line 11, is guaranteed to be the amount of
tokenA transferred at Line 4. However, during symbolic
validation, Nyx has no way to know that the token0 and

tokanA are the same. This is because the value of token0
is dynamically set in the contract deployment transaction,
while the pairFor function at Line 3 only obtains the
address of the already-deployed UniswapV2Pair con-
tract. As a result, the variable amount0 is treated as an
unconstrained symbolic value, and Nyx falsely concludes
that the liquidity token the transaction submitter receives
can be manipulated by another transaction via a front-
running attack. For a static analyzer like Nyx, such implicit
assumptions are hard to infer during analysis.
Implicit constraints on storage variables. Fig. 15 shows an
example in the Clipper Exchange protocol [43], where Nyx
raises false alarms. The withdrawAll function is used to
burn all the ERC20 tokens theExchange ever supplies
(Line 5) and transfer all the balance of the current contract
to whoever calls the function (Line 7). Nyx falsely reports
the function pair ⟨withdrawAll,withdrawAll⟩ as vul-
nerable since whoever calls the function first will get all the
balance of the contract as profit at Line 7, and other later
callers will get zero. However, the function has a precondi-
tion that the caller must process the entire totalSupply
of theExchange (Line 4). There is an implicit constraint
that if any user processes the total supply of theExchange
tokens, other users must all have zero balance. Thus, at
runtime, only one user can call this function and no other
attackers can pass the precondition at Line 4. However, Nyx
has no idea about this implicit constraint. During symbolic
validation, Nyx considers that multiple users may process the
amount of theExchange tokens equal to totalSupply,
and it is possible that a malicious user can front-run to call
this function and take the contract balance as profits, while
other callers receive nothing at Line 7.

Appendix E.
Evaluation of Nyx on other dataset

In addition to the benchmark collected by Zhang et
al. [54] that we used in the Section 5, Torres et al. [46] also
collect a large dataset consisting of 199,724 attacks using
pattern matching on historical transaction execution traces.
However, their dataset is not ideal for our experiment
since they collect attacks instead of vulnerable contracts.
The authors do not provide the ground truth on which
function is vulnerable to front-running and the dataset may
contain multiple attacks due to the same vulnerability in
the same DeFi application. Nevertheless, to mitigate the
potential threat to validity that evaluation Nyx only on one
benchmark may draw biased conclusions, we construct
another benchmark by randomly sampling 513 attacks (the
same size as the benchmark used in Section 5) from this
dataset. To conduct experiments, we consider all contracts
executed in the victim transaction of each attack as a
contract group to be analyzed by Nyx. We consider Nyx
successfully detects the underlying vulnerability of an
attack if a warning is generated for the pair of functions
called by the attack and victim transaction of the attack,
respectively. As a result, Nyx is able to report vulnerabilities
for 492 out of 513 attacks, giving a recall of 95.9%. This
indicates that Nyx is also effective in Torres et al.’s dataset.

Appendix F.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

F.1. Summary

This paper introduces a novel technique and tool, Nyx,
to detect front-running attacks in smart contracts with static
analysis and symbolic execution. Nyx examines all possible
contract function pairs and proposes a pruning technique to
handle the huge search space.

F.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Creates a New Tool to Enable Future Science

F.3. Reasons for Acceptance

1) The paper proposes a tool, called Nyx. Nyx outper-
forms the SOTA in terms of accuracy.

2) Nyx finds four zero-days in real-world DeFi applica-
tions.

	Introduction
	Front-Running Vulnerability
	Motivation
	Example Contracts
	Limitations of Existing Techniques
	Challenge and Our Solution

	Methodology
	Static Pruning by Necessary Condition
	Extended System Dependency Graph (xSDG)
	Necessary Condition of Vulnerability
	Fast Pruning via Datalog

	Symbolic Validation
	Discussion

	Evaluation
	RQ1: Effectiveness
	RQ2: Efficiency
	RQ3: Ablation Study
	Real-World Impact

	Related Work
	Conclusion
	References
	Appendix A: Comparing Assets in Vulnerability Detection
	Appendix B: Case Study for True Positives
	Appendix C: Case Study for False Negatives
	Appendix D: Case Study for False Positives
	Appendix E: Evaluation of Nyx on other dataset
	Appendix F: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

