
BEACON : Directed Grey-Box Fuzzing with Provable Path Pruning

Heqing Huang:, Yiyuan Guo:, Qingkai Shi:�, Peisen Yao:, Rongxin Wu;, Charles Zhang:

:The Hong Kong University of Science and Technology, China
;Xiamen University, China

:{hhuangaz, yguoaz, qshiaa, pyao, charlesz}@cse.ust.hk, ;wurongxin@xmu.edu.cn

Abstract—Unlike coverage-based fuzzing that gives equal at-
tention to every part of a code, directed fuzzing aims to direct a
fuzzer to a specific target in the code, e.g., the code with potential
vulnerabilities. Despite much progress, we observe that existing
directed fuzzers are still not efficient as they often symbolically
or concretely execute a lot of program paths that cannot reach
the target code. They thus waste a lot of computational resources.
This paper presents BEACON, which can effectively direct a grey-
box fuzzer in the sea of paths in a provable manner. That is,
assisted by a lightweight static analysis that computes abstracted
preconditions for reaching the target, we can prune 82.94% of
the executing paths at runtime with negligible analysis overhead
(ă5h) but with the guarantee that the pruned paths must be
spurious with respect to the target. We have implemented our
approach, BEACON, and compared it to five state-of-the-art
(directed) fuzzers in the application scenario of vulnerability
reproduction. The evaluation results demonstrate that BEACON
is 11.50x faster on average than existing directed grey-box
fuzzers and it can also improve the speed of the conventional
coverage-guided fuzzers, AFL, AFL++, and Mopt, to reproduce
specific bugs with 6.31x ,11.86x, and 10.92x speedup, respectively.
More interestingly, when used to test the vulnerability patches,
BEACON found 14 incomplete fixes of existing CVE-identified
vulnerabilities and 8 new bugs while 10 of them are exploitable
with new CVE ids assigned.

Index Terms—Directed fuzzing, precondition inference, pro-
gram transformation

I. INTRODUCTION

Different from the conventional coverage-based fuzzing that
pays equal attention to every part of the code, directed fuzzing
aims to thoroughly test a specific part of the program [1]–[3]. It
is widely adopted in many application scenarios such as testing
vulnerability patches [4], [5], generating proof-of-concept of
potential bugs [6], reproducing crashes [7], [8], and tracking
information flow [9].

The key to achieving practicality in directed fuzzing is to
reject the unreachable execution paths as early as possible.
However, despite the great improvements made by existing
works, namely the directed white-box fuzzing and the directed
grey-box fuzzing, they still often execute a large number of
paths that cannot reach the target code, which we refer to as the
infeasible-path-explosion problem. Specifically, the directed
white-box fuzzers [5], [10], [11] rely on symbolic execution to
decide upon reachability by solving path constraints and aims
to provide a theoretical guarantee for generating inputs that
can reach the target. Therefore, their innate use of symbolic
execution fundamentally limits their ability to scale. Moreover,
the cost of path exploration is further exacerbated by both
paths with unsatisfiable path conditions or the ones that cannot

95

95.5

96

96.5

97

97.5

98

98.5

99

CVE-2016-4491 CVE-2016-6131 CVE-2017-5969 CVE-2017-8397

Percentage of Unreachable Execution

Figure 1: The proportion of executed unreachable paths in
terms of different CVEs with AFLGo in 24-hour experiments.

even reach the target points. For instance, directed white-box
fuzzing is shown to be incapable of reproducing a vulnerability
within 24 hours [1]. On the other hand, the directed grey-box
fuzzers are in general not concerned with rejecting unreachable
paths at all. They rely on prioritizing seeds according to their
likelihood of reaching the target code using heuristics collected
from the execution feedback [1]–[3]. They either employ
lightweight meta-heuristics [1], [2], e.g., the distance towards
the target, or machine learning techniques [3] to predict the
reachability, with no guarantees of such prioritization leading
to any rejection of infeasible paths. As a result, more than
95% of the inputs cannot reach the given program point in the
24-hour experiment mentioned in AFLGo [1], demonstrated
in Figure 1.

This paper presents BEACON, a directed grey-box fuzzer
that directly addresses pruning infeasible paths1 at runtime
with negligible overhead, thus dramatically increases the ef-
ficiency by 11.50 times on average comparing to the related
work. Our key insight is that, through a cheap static analysis,
we can calculate a sound approximation for the values of pro-
gram variables that directly make the path-to-target infeasible.
Armed with this approximation, our fuzzer can reject over
80% of the paths executed during fuzzing. More specifically,
we not only directly prune a path when it hits an instruction
that cannot reach the target on the control flow graph, but
also the paths that are reachable to the target but have an
unsatisfied path condition. For example, to reach the target
code at Line 19 in Figure 2, the program states must satisfy
the condition w ą 10 in Line 18. Notice that the calculation in

1In this paper, we say a path is infeasible if it cannot reach the target code
at runtime. We say a program state is infeasible if a path with the runtime
state is infeasible.

10:w=w-15 12:w=-w+15

9:	x<20

14:	z<2y

16:	x<40

17:	v==y-x

18:	w>10 w:(10,	+∞)

z:	(-∞,	200)

x:	(-∞,	40)

w:	(-∞,	5)
w:	(25,	+∞)

w:	(-∞,	5)	∨	(25,	+∞)w:	(-∞,	+∞)

z:	(-∞,	+∞)

T F

w:(10,	+∞)

x:(-∞,	40)

w:	(-∞,	5)

w:	(25,	+∞)

State	Conventional State	OptimizedControl	Flow	Graph

T:

F:
T:
F:

a) b) c) d)

15:	v<60

v:	(-∞,	+∞) v	==	y-x

v:	(-∞,	60) v:	(-∞,	60)
y:	(-∞,	100)y:	(-∞,	+∞)

v:	(-∞,	+∞)

Figure 2: A Motivating Example. a) The code snippet for illustration. b) The control flow graph of the given program. c)
Conventional backward interval analysis. d) Our backward interval analysis.

Lines 10 and 12, w must be initialized with w ă 5_w ą 25.
Otherwise, it is not necessary for us to explore any path after
Line 2. Given the fact that such infeasible paths widely exist
in practice, effectively pruning these paths allows significant
improvement in terms of testing efficiency.

To determine the infeasible program states efficiently, we
employ a dedicated static analysis as a preprocessing proce-
dure that analyzes the program and computes the necessary
conditions, e.g., w ă 5 _ w ą 25 in the last example, of
program variables for reaching the target code. To be both
precise and efficient, we arm the static analysis with two novel
optimizations, termed respectively as relationship preservation
and bounded disjunction. The former preserves the relationship
among program variables and thus maintains precision. The
latter bounds the number of disjunctions to avoid expensive
logical reasoning and precision loss due to exhaustive path
merging. Such a tailored static analysis is efficient and ensures
precision and scalability at the same time.

To evaluate its effectiveness, we implement our approach,
BEACON, as a direct grey-box fuzzer. We compare it with
the state-of-the-art (directed) fuzzers, including AFL [12],
Mopt [13], AFLGo, and Hawkeye [2], via experiments of
reproducing existing CVE-identified vulnerabilities and testing
whether they are fixed completely in the newest versions
of the software. The results demonstrate that BEACON can
stop early on an average of 82.94% paths during fuzz testing
and, thus, exhibits 11.50x speedup compared to conventional
directed fuzzers. Furthermore, BEACON can also be integrated
with any non-directed fuzzer to reproduce a specific bug.
Specifically, BEACON accelerates 6.31x, 11.86x, and 10.92x
for AFL, AFL++, and Mopt to reproduce the target bugs.
More interestingly, when used to test the vulnerability patches,
BEACON found 14 incomplete fixes and 8 new bugs. All
these incomplete fixes and new bugs have been confirmed by
the software developers, and 10 of them are assigned with

CVE ids. The prototype can be found in Docker Hub: https:
//hub.docker.com/r/yguoaz/beacon. In summary, we make the
following contributions:

‚ We design a cheap and precise static analysis for com-
puting necessary conditions for reaching the given testing
target, enabling us to filter the infeasible program states.

‚ We propose a directed grey-box fuzzer that can prune a
large number of infeasible paths with negligible runtime
overhead.

‚ We provide empirical evidence that our approach is more
efficient and effective than the state-of-the-art (directed)
fuzzers and has the potential to improve the performance
of non-directed fuzzers.

II. BACKGROUND

This section surveys recent directed grey-box fuzzers (Sec-
tion II-A) and summarizes the challenges we try to resolve in
this paper (Section II-B).

A. Directed Grey-Box Fuzzing

Directed grey-box fuzzing aims to thoroughly test a target
part of a program with little runtime overhead. Recent work in
this line mainly focuses on addressing two problems — one
is how to specify which target to test, and the other is how to
drive the fuzzer to reach the target code quickly.

Specifying the Targets. In many applications like testing
a patch, we can manually specify the target code, i.e., where
the patch is made. Meanwhile, recent work also attempts to
automatically specify the testing target:

‚ Semfuzz [14] leverages natural language processing to
analyze bug reports and retrieves the potential buggy
points as its targets.

‚ ParmeSan [15] labels the potential buggy points indicated
by various sanitizers [16].

https://hub.docker.com/r/yguoaz/beacon
https://hub.docker.com/r/yguoaz/beacon

Reaching the Targets. This paper tries to address this
problem more efficiently. Recent mainstream directed grey-
box fuzzers prioritize testing inputs so that we can run them
“closer” to the target with higher priority. To this end, multiple
distance metrics have been proposed:

‚ AFLGo [1]: It takes the first step to define the concept
of directed fuzzing. It defines the distance of a testing
input towards a target basic block as the average of the
distances between a block B and the target, where B
ranges over the blocks that an execution against the input
goes through.

‚ Hawkeye [2]: It optimizes the distance metric with the
intuition that a vulnerability is triggered by a sequence of
operations rather than a single program point. Therefore,
Hawkeye also takes the call trace similarity into account.

‚ FuzzGuard [3]: It leverages an observation that reproduc-
ing a bug needs to satisfy its path condition. Therefore,
it trains a classifier as a predictor to prioritize the testing
inputs so those with a higher probability of satisfying the
path condition can be executed at a higher priority.

‚ Savior [17]: It integrates fuzzing with symbolic execution.
During dynamic testing, it drives symbolic execution to
solve the path constraint with higher priority if this path
visits more branches that can reach more targets with
potentially buggy code.

B. Problem and Challenges

As discussed before, existing directed fuzzers suffer from
the infeasible-path-explosion problem as they execute a lot
of infeasible paths that cannot reach a given target program
point. To solve this problem, our basic idea is to employ
a lightweight static analyzer to compute sound intermediate
program states (in the form of first-order logic conditions)
that allow an execution to reach the target. Any execution
violating these intermediate conditions should be immediately
terminated to save computational resources.

In our approach, the intermediate program states are com-
puted as an approximation of the weakest precondition (also
known as the necessary precondition), which has been widely
studied in static analysis [18]–[21]. Formally, given a target
program point l and another program location p at the control
flow graph, the weakest precondition wppp, lq categorizes
the least restricted precondition at p that can guarantee the
reachability of l [22]. wppp, lq is usually represented as a first
order logic formula over the program variables defined before
p, and any path reaching p that does not satisfy wppp, lq could
be safely pruned during fuzzing. In our demonstration, we use
li to represent the program location after Line i of the source
code. For example, in Figure 2, wppl13, l18q ” z ă 2y ^ v ă
60 ^ x ă 40 ^ v “ y ´ x ^ w ą 10, meaning that any
execution reaching Line 14 not satisfying this condition (e.g,
an execution with x “ 500) could be safely pruned.

As with all static analyses, statically inferring the necessary
precondition is challenging as it is difficult to be precise
and efficient at the same time. Existing studies often make

two tradeoffs to compromise precision for speed. First, fast
static analyses often do not precisely reason about the path
condition: they either ignore path conditions sheerly by focus-
ing on checking a particular property [18], [19] or perform
limited reasoning on simple path conditions, e.g., discarding
the relationship among variables in branch conditions [23] or
neglecting condition satisfiability [24] to achieve high speed.
To illustrate, let us consider the code in Figure 2 and its control
flow graph. We perform a simple backward analysis from Line
18 to infer the precondition wppli, l18q using explicit pattern
matching. When reaching Lines 18, 16, and 15, it can retrieve
the simple path conditions, w ą 10, x ă 40 and v ă 60, which
determine the preconditions for variables w, x and v before
Line 14 as w P p10,`8q, x P p´8, 40q, v P p´8, 60q. Such
deduction is easy because of the simplicity of the constraints
in those lines. However, notice that the path conditions can
get rather complex, such as v “ y´ x at Line 17 and z ă 2y
at Line 14, which normally involves an expensive constraint
solver [25]–[27] in reasoning.

Second, there are also many techniques that attempt to
precisely reason about path conditions [21], [28]–[30]. How-
ever, to avoid path explosion (or the explosive number of
disjunctions), they either consider a limited number of paths
and produce unsound results [21] or merge the conditions
computed from different branches at merge points on the
control flow graph, which may notably lose precision [28]–
[30]. On the one hand, since unsound results may let us
incorrectly prune a path that can reach the target, we cannot
use these approaches in our scenario. On the other hand, merg-
ing conditions from different branches may lead to precision
loss [31]. For example, in Figure 2, the precise precondition
on variable w before Lines 10 and 12 is w P p25,`8q and
w P p´8, 5q respectively. To be efficient, the analysis then
merges the conditions from the two branches, which results in
an imprecise condition w P p´8,`8q before Line 9, where
false positives in the interval, w P r5, 25s, are introduced. Thus
any execution with w residing in this range cannot be pruned
by the preconditions.

To make the static inference of a necessary precondition
practical for directed fuzzing, our analysis attempts to address
the following two problems in the aforementioned approaches:

1) How to efficiently reason about the path conditions in
precondition inference?

2) How to design a sound analysis while avoiding severe
precision loss brought by merging paths?

III. BEACON IN A NUTSHELL

As illustrated in Figure 3, BEACON takes the program
source code and the targets to reach as the inputs. To simplify
the static analysis and prune apparent infeasible paths, we
firstly perform a reachability analysis on the inter-procedural
control flow graph and slice away paths that apparently cannot
reach any target. For example, we place an assert(false)
at Line 21 in Figure 2 to prune paths reaching this Line
because the target at Line 19 is not reachable from Line 21 in
the control flow graph. To prune more infeasible paths (such as

Fuzzers
(e.g.,	AFL,	Mopt)

Static	Analysis	Module

Relation
Preservation

Instrumented	Binary

Precondition
Instrumentation

Target	code

Source	code Reachability
Analysis Bounded

Disjunction

Backward	Interval	Analysis

Coverage
Instrumentation

Figure 3: Workflow of BEACON.

those with unsatisfied path conditions), we employ a dedicated
static analyzer, as illustrated below.

Backward Interval Analysis. After slicing the program
with statically computed control flow information, we start
our backward analysis to infer the weakest precondition like
wppl13, l18q ” z ă 2y^v ă 60^x ă 40^v “ y´x^w ą 10
in Figure 2. However, such an exact weakest precondition is
not computable in general. Thus, we often compute a sound
abstraction (or over-approximation), ŵppl13, l18q as the nec-
essary precondition, with respect to a predefined abstract do-
main. Commonly used numerical abstract domains include the
interval domain [32], octagon domain [33], polyhedral domain
[34], etc, and can aid in reasoning possible values of variables
occurring in the program. For instance, when the interval
domain is used, we have ŵppl13, l18q ” w P p10,`8q ^ x P
p´8, 40q ^ v P p´8, 60q ^ y P p´8, 100q ^ z P p´8, 200q.

In this work, we choose the interval domain because it
is almost the cheapest domain that can be computed via
a featherweight static analysis [35]. Such an efficient static
analysis is practical as it does not introduce much overhead for
fuzz testing. Meanwhile, notice that preconditions expressed
using an interval domain can be efficiently checked at runtime,
requiring only comparisons between variables and constants
(i.e., bounds of the intervals). Therefore, it does not interfere
with the original execution with much runtime overhead.

Despite these merits of the interval domain for efficiently
reasoning about the preconditions, it is known that the interval
abstraction is coarse and can produce imprecise results because
it does not respect inter-variable relations [36]. We also have
shown in the previous section that the merging of backward
paths can also lead to imprecise results. In this work, we
argue these are the two problems significantly exacerbate the
perceived imprecision of which we need to address.

(1) Relationship Preservation. Preserving the relationship
among variables leads to more precise preconditions, thus
pruning more paths during the directed fuzzing. Formally, this
problem can be described as: given a path condition φ, how to
compute the interval of a variable v. For example, in Figure 2,
we perform a backward analysis starting from the location
after Line 18 with the interval domain to obtain the necessary
precondition ŵppl13, l18q. Similar to the conventional ap-
proach, we obtain the interval of w P p10,`8q from Line 18.
Moreover, even though we cannot deduce the precondition of

v, y, x when analyzing the path condition v ““ y´x at Line
17, we still track the fact that v ““ y ´ x holds. Therefore,
after the intervals for x and v are inferred at Lines 16 and 15
respectively, we can utlize the tracked relation v ““ y´ x to
infer the interval for y at Line 15 as the sum of the intervals of
v and x: y P p´8, 60q`p´8, 40q “ p´8, 100q. This updated
interval for y also enables us to further infer the interval of z
at Line 14.

(2) Bounded Disjunction. As discussed in the last section,
conventional approaches merge static analysis results from
different paths, e.g., w P p´8, 5q and w P p25,`8q
from Line 9 to Line 12 in Figure 2, which results in an
imprecise result, e.g., w P p´8,`8q. However, separately
keeping the results of each path by disjuncting the results,
e.g., w P p´8, 5q _ w P p25,`8q, can lead to an explosive
condition size and make the analysis slow. To control the loss
of precision and, meanwhile, be fast, we maintain a bounded
disjunction for the analysis results and only merge results
when the number of paths exceeds a threshold, τ . As an
example, the conventional approach has τ “ 1 as we always
merge the results.

The key question here is that, given a disjunction of many
analysis results, which two should be merged when the number
of disjunctive conditions exceeds the threshold τ so that
the merged precondition is still precise and can prune more
infeasible paths. For instance, given the threshold τ “ 2 and
the disjunction w P p´8, 5q _ w P p25, 40q _ w P p55,`8q,
merging w P p25, 40q _ w P p55,`8q is better than w P

p´8, 5q _ w P p25, 40q because the former adds fewer false
positives, i.e., r40, 55s, than the latter, i.e., r5, 25s. While the
example looks simple, this question becomes very challenging
for a complex disjunctive condition, which we detail later.

Selective Instrumentation. It is expensive and not neces-
sary to instrument all statements in the code under test. In
BEACON, we instrument two kinds of statements: variable-
defining statements and branch statements. For a statement
that defines a variable x, we insert an assert(c(x)) after
the statement where cpxq represents the inferred precondition
in disjunctive form over the variable x. For example, we insert
assert(w<5||w>25) at Line 4 in Figure 2 so that every
execution reaching this point with the condition 5 ď w ď 25
is stopped immediately after the variable w is defined. For a
branch statement, we insert an assert(false) after it if
the branch condition does not allow an execution to reach the
target. For example, we insert assert(false) at Line 21
because, as discussed above, this block cannot reach the target
point through control flow.

IV. METHODOLOGY

BEACON prunes the infeasible paths from two aspects,
control flow reachability and path condition satisfiability. Our
first step is to prune basic blocks that cannot reach the target
code by applying a graph reachability analysis on the inter-
procedural control flow graph (ICFG) of the program. This
step is straightforward except that we employ an efficient and
sound pointer analysis to resolve function pointers [37]. In this

Program P ::“ fun`
Function fun ::“ fun : pv1, ..., vnq Ñ r

tsu
Statement s ::“ s1; s2 | l : s1 ‹ s2 : l1 | l : i : l1

Instr i ::“ v :“ e | v1 :“ ˚v2 | ˚ v “ e
| goto l | assume b
| v :“ call funpa1, ..., anq

Expression e ::“ v | c | e1 op e2, op P t`,´,ˆ,˜u
Boolean b ::“ true | false

| e1 cmp e2, cmp P tă,ą,“u
| b1 ^ b2 | b

Location contains all program location l
Figure 4: A simple programing language.

Algorithm 1 Predicate transformers for precondition inference

Input: t “ l : i : l1: target instruction, φ: postcondition at l1

Output: a set of preconditions at l
1: procedure COMPUTEPRECOND(t, φ)
2: match i
3: case v :“ e
4: return tφre{vsu
5: case v1 :“ ˚v2

6: return tφrSymp˚v2q{v1su

7: case ˚v :“ e
8: return tφre{Symp˚uqs | u P aliaspvqu
9: case assume b

10: return tφ^ bu
11: case goto l0
12: return tφu
13: end procedure

section, we focus on pruning basic blocks that can reach the
target code by using a dedicated static analysis. To be clear,
we first define a simple language on which we demonstrate
our algorithm and the background on precondition inference
in IV-A. Then, we illustrate the details of how BEACON
infers the precondition of reaching the target in IV-B, and
optimizations to maintain analysis precision in IV-C. Finally,
we present how we leverage the preconditions inferred for
fuzzing through the instrumentation process IV-D.

A. Preliminary

Language. Figure 4 shows a simple language we use to
demonstrate our methodology. In the language, a program con-
sists of one or more functions, each taking a vector of formal
parameters pv1, ..., vnq and returns a value r. The statement
inside a function is a sequence s1 : s2, a non-deterministic
branch s1‹s2, or an atomic instruction i. We label the program
location before and after a statement as l and l1 respectively.
Most of the instructions are standard. The assume instruction
states that a Boolean condition must hold. Notice that common
language constructs like if (b) then s1 else s2 can be reduced
to passume b; s1q‹passume b; s2q. Loops can be transformed
to our simple language in a similar manner.

Precondition Inference. Traditionally, the weakest precon-
dition for reaching the target is computed by performing the
analysis backward: we start with an initial postcondition true
at the target and repeatedly transform it according to the
semantics of the current instruction. Algorithm 1 shows the
standard predicate transformers for various instructions [22].

For example, an assignment v :“ e transforms φ into φre{vs
by replacing v in φ with e. Load and store statements can be
similarly handled [18] by introducing a new symbol Symp˚vq
to represent the dereference of pointer v, and taking care of
possible aliases of v in aliaspvq. The interprocedural analysis
is facilitated by renaming variables in φ according to the
context of callee or caller, details omitted here due to the
limit of space. As an example, in Figure 2, wppl13, l18q ”

pz ă 2y ^ v ă 60 ^ x ă 40 ^ v “ y ´ x ^ w ą 10q by
applying the transformer of assume (Line 9-10, Algorithm 1)
successively. The assignment in Line 12 can then transform
w ą 10 in wppl13, l18q into pw ą 10qr´w ` 15{ws ” w ă 5.

In practice, we start from the target location and propagate
the condition backward into multiple paths, which need to be
combined and approximated to make the analysis sound and
tractable. While Algorithm 1 gives a precise characterization
of a precondition, it outputs complex constraints that are ex-
pensive to reason. Therefore, trade-offs are needed between the
precision of the preconditions and the overhead in reasoning.

B. Backward Interval Analysis

We aim for an analysis that is sound, ensuring that all pruned
paths can not reach the target, and precise, pruning away a
large proportion of infeasible paths. Our designed analysis is
shown in Algorithm 2. Given a target location l10, it computes
for location l a set of preconditions ŵppl, l10q that is necessary
for reaching the target (formally, wppl, l10q ñ

Ž

ŵppl, l10q).
We abbreviate ŵppl, l10q as ŵpplq when the target location is
clear from the context.

The algorithm is parameterized by two functions α and γ
for reasoning path conditions (mentioned later). To be sound,
we need to over-approximate the effects of all backward paths
starting from the target point. We achieve this by using a
worklist containing all active (instruction, postcondition) pairs.

More specifically, the target t and initial postcondition true
are added into the worklist (Line 3). During the analysis,
whenever an item pxl, i, l1y, φq is popped from the worklist
(Line 5), the postcondition φ is transformed according to
instruction i (Line 6), as discussed in Algorithm 1. After that,
every newly computed precondition φ1 is further propagated
backward to update the value of ŵpplq, potentially adding new
items to the worklist if ŵp is updated (Lines 7-24, discussed
later). With the iteratively applied predicate transformers and
the worklist tracking all active executions, we soundly consider
all backward paths.

As an example, in Figure 2, starting from the target location
l18 and initial condition true, Algorithm 2 performs the
analysis backwards up to l14. we are then faced with a
conditional branch at Line 9 and the path splits into two paths

Algorithm 2 Backward interval analysis

Input: target t “ xl0 : i : l10y, α : condition Ñ Λ, γ : Λ Ñ

condition
Output: ŵp : Location Ñ tconditionu

1: procedure PRECONDINFER(t)
2: ŵppl10q Ð ttrueu
3: Worklist wlÐ tpxl0, i, l

1
0y, truequ

4: while wl not empty do
5: pxl, i, l1y, φq Ð poppwlq
6: precondsÐ computePreCondpxl, i, l1y, φq
7: for φ1 P preconds do
8: updated Ð false
9: if size of ŵpplq is less than threshold then

10: ŵpplq Ð ŵpplq Y tφ1u
11: updated Ð true
12: else
13: S1 Ð joinPathspŵpplq, φ1q
14: if S1 ‰ ŵpplq then
15: updated Ð true
16: ŵpplq Ð S1

17: end if
18: end if
19: if updated then
20: for all e “ xl2 : inst : ly do
21: wlÐ wlYtpe, ŵpplq.lastAddedElemqu
22: end for
23: end if
24: end for
25: end while
26: end procedure
27: procedure JOINPATHS(conds, φ1)
28: cÐ pickOnepcondsq
29: newabsÐ αpφ1q \ αpcq
30: c1 Ð γpnewabsq
31: return condsztcu Y tc1u
32: end procedure

p1 and p2. When reaching l8, the accumulated condition for
p1 and p2 is pc1 and pc2 respectively:
pc1 :

ľ

tz ă 2y, v ă 60, x ă 40, v “ y ´ x,w ă 5, x ě 20u

pc2 :
ľ

tz ă 2y, v ă 60, x ă 40, v “ y ´ x,w ą 25, x ă 20u

As dicussed in II-B, reasoning complex conditions such as
pc1 and pc2 are hard, which usually requires a prohibitively
expensive SMT solver. Moreover, since the two paths p1 and
p2 confluence at l8, their effects need to be combined in
ŵppl8q to maintain soundness with certain precision loss. To be
efficient, we propose to use an interval abstraction to support
both lightweight reasoning of path conditions and a sound
over-approximation of backward paths.

To this end, we utilize an abstraction function α (discussed
later) that abstracts the path condition into the lifted interval
domain Λ : V Ñ Interval, where Interval def

“ tra, bs | a ď
b, a P IntegerYt´8u, b P IntegerYt`8uuY tKu. We use J
to denote the interval with a “ ´8, b “ `8, K to denote the

empty interval, and the notation pa, bq to represent an open
interval. Its corresponding concretization function γ maps the
abstracted value back to logical constraints in a straightforward
way, and is defined by γpΛq “

Ź

vPdompΛq

conspvq where

conspvq “

$

’

&

’

%

true, if Λpvq “ J

a ď v ď b, else if Λpvq “ ra, bs

false, otherwise

With the help of interval abstraction, we soundly combine
different backward paths at l. ŵpplq is a summary that records
the already propagated conditions at l, in the form of interval
abstractions. When a newly computed condition φ1 reaches l,
we first check if ŵpplq is empty (Line 9 of Algorithm 2, for
now assume threshold “ 1). If this is the case, φ1 is recorded
in ŵpplq. Otherwise we combine φ1 with ŵpplq in joinPaths
(Line 13) by joining2 αpφ1q and αpcq into a new abstract
element newabs, where c is the only condition in ŵpplq (Line
29). We then use γ to map newabs back to constraints (Line
30) and set it as the new value of ŵpplq. Finally, if ŵpplq
has an update, the newly added condition further propagates
backward by entering the worklist (Lines 19-23).

Notice that the use of interval abstraction enables us to effi-
ciently reason about path conditions. Additionally, by always
combining newly discovered abstract elements with the join
operation, all backward paths are soundly over-approximated
without enumerating each of them one by one, alleviating the
path explosion problem. In the previous example, supposing
ŵppl8q “ tpc1u and a new condition pc2 also propagates to
l8, the abstraction of pc1 and pc2 are as follows:

Abstraction v w x y z

αppc1q p´8, 60q p´8, 5q r20, 40q p´8, 100q p´8, 200q
αppc2q p´8, 60q p25,`8q p´8, 20q p´8, 80q p´8, 160q

αppc1q \ αppc2q p´8, 60q J p´8, 40q p´8, 100q p´8, 200q

In joinPaths, we combine the two paths by joining the
interval abstractions of pc1 and pc2, and replace pc1 in ŵppl8q
with c1 “ γpαppc1q \ αppc2qq ” v ă 60 ^ x ă 40 ^ y ă
100 ^ z ă 200. Since the new condition is different from
pc1 meaning that ŵppl8q has been updated, c1 is propagated
backward further, summarizing the effects of both paths.

The interval abstraction used in the above analysis can be
imprecise in practice. We propose two optimization methods
that improve its precision without harming its speed too much:

1) We design an interval abstraction α that tracks certain
inter-variable relations explicitly.

2) We design a bounded disjunction strategy that determines
when and how to perform the join operations.

C. Optimizations for Maintaining Precision

Relationship Preservation. The interval abstraction α is
used in Algorithm 2 to deduce ranges for variables occurring

2join is replaced by widening after a finite number of steps to ensure
termination, as is standard in abstract interpretation [32].

e P EY B,Λpeq P Interval

pΛ, eq ó val

updatepΛ, e, valq (1)

pΛ, b1 ^ b2q ó true

pΛ, b1q ó true, pΛ, b2q ó true (2)

pΛ, b1q ó b, b P ttrue, falseu

pΛ, b1q ó b (3)

pΛ, cq ó rc, cs (4)

Λpe1q “ itv1,Λpe2q “ itv2

pΛ, e1 binOp e2q ó pitv1 {binOp itv2q (5)

Λpe cmp cq “ true

pΛ, eq ó

$

’

&

’

%

p´8, cq, cmp “ “ ă ”

rc, cs, cmp “ “ “ ”

pc,`8q cmp “ “ ą ”

(6)

Λpe1 cmp e2q “ true,Λpe2q “ ra, bs

pΛ, e1q ó

$

’

&

’

%

p´8, bq, cmp “ “ ă ”

ra, bs, cmp “ “ “ ”

pa,`8q cmp “ “ ą ”

(7)

Λpe1 op e2q “ ra, bs,Λpe2q “ rc, ds

pΛ, e1q ó ra, bs revpxopq rc, ds (8)

updatepΛ, e, vq “

$

’

&

’

%

Λre ÞÑ vs, e R dompΛq
K, Λpeq [v “ K
Λre ÞÑ Λpeq [vs, otherwise

(9)

updatepΛ, e, valq “ K
UNSAT (10)

Figure 5: Inference rules for interval abstraction. Especially, we design the rules (7) and (8) for interval analysis transformer
to maintain relations among variables during the precondition inference.

Expression Newly Discovered Intervals
BEACON Conventional

1© v ă 60 Rule (6), v P p´8, 60q v P p´8, 60q

2© x ă 20 Rule (6), x P p´8, 20q x P p´8, 20q

3© w ą 25 Rule (6), w P p25,`8q w P p25,`8q

4© v “ y ´ x Rule p7q, y ´ x P p´8, 60q v P p´8,`8q

5© y ´ x Rule p8q, y P p´8, 80q N/A
6© 2y Rule (5), 2y P p´8, 160q N/A
7© z ă 2y Rule p7q, z P p´8, 160q z P p´8,`8q

Figure 6: Example of interval abstraction inference for pc2 “
Ź

tz ă 2y, v ă 60, x ă 20, v “ y ´ x,w ą 25u using
our inference rules and by conventional interval analysis. N/A
means no inference rule is applicable.

in the path conditions. To make the inferred ranges both sound
and precise, we design the inference rules shown in Figure 5
to perform the interval abstraction.

In the conventional interval analyses [38], [39], each state-
ment occurring in the program transforms the interval abstract
state. In similar spirits, we design a top-down analysis that
performs a recursive descent traversal over the path conditions
and propagates the known interval values along the way to
infer new interval values in a sound manner by respecting
laws of interval arithmetic [40]. Unlike conventional interval
analysis, our analysis tracks intervals for not only variables but
also expressions occurring in the path conditions. Afterward,
we propagate these value ranges of expressions to their parents
and child expressions to make the analysis more precise.

In Figure 5, we use Λ to represent a map from expres-
sions to their interval value ranges. For convenience, boolean
constants true, false are represented as interval r1, 1s, r0, 0s
respectively. Given constraint e, the inference starts with
pΛ, eq ó true. pΛ, eq ó val means that a new interval value val
has been inferred for e, and triggers updatepΛ, e, valq (Rule

(1)). If we derive a contradiction from the old interval Λpeq and
the new interval val, the entire condition is indeed unsatisfiable
and the computation ends. Otherwise, Λpeq is updated by
intersecting val (Rules (9)-(10)). Rules (2)-(3) recurses down
and carries the interval values to the sub-logical formulas.
Rules (4)-(6) corresponds to the abstract state transformer
used in conventional interval analysis: a constant c gets range
rc, cs (Rule (4)); In Rule (5), arithmetic operation op and
comparison operation cmp (denoted uniformly by binOp) are
replaced by their interval counterparts: pop P tp`, p´, pˆ, p˜u and
ycmp P tpă, pą, p“u respectively; Rule (6) updates the range of
an expression based on the conditional test against a constant
(The case when Λpe1 cmp cq “ false is similar and omitted).

We additionally propose Rules (7)-(8) to improve the pre-
cision of the interval abstraction heuristically. In these rules,
we try to refine the range of a given expression based on the
updated ranges of other expressions. Rule (7) extends Rule
(6) to consider the comparison between any two expressions,
utilizing the range of one expression and the comparison result
to refine the range of the other expression. In Rule (8), when
the parent expression is an arithmetic expression e1 op e2

and its range is updated to ra, bs, we can refine the range
of its operand by reversing the binary operator in the interval
domain: revpp`q “ p´, revppˆq “ p˜, etc. Since the expressions
in Rules (7)-(8) may preserve certain inter-variable relations
not captured by the conventional interval domain, these rules
may bring precision improvement through refinement.

Figure 6 shows how we apply these inference rules on a
simplified version of condition pc2. Starting with pΛ, pc2q ó
true, we deduce from the conjunction in pc2 and rule (2) that
all conjunct subexpressions z ă 2y, v ă 60, x ă 20, v “
y ´ x,w ą 25 are true. Subexpreesions that compares a
variable with a constant enable us to infer ranges for the
involved variables (Steps 1© ´ 3©). Step 4© propagates the

known interval for v to expression y ´ x. Step 5© uses the
updated range of y´x to refine the interval of its subexpression
y to Λpy´xqp`Λpxq “ p´8, 60qp`p´8, 20q “ p´8, 80q, and
the refined interval for y in turn propagates to 2y, z in 6©´ 7©.

Steps 4©, 5©, 7© of our approach in Figure 6 clearly shows
that our additional inference rules (7)-(8) utilize the rela-
tions among variables encoded in the form of expression to
propagate interval values, and hence achieve more precise
result. If we solely apply abstract state transformers of the
interval domain to conjuncts of pc2, as in conventional interval
analysis, the result is less precise than using our rules. The
rightmost column of Figure 6 shows that conventional interval
analysis can obtain the same intervals for v, x, w in 1©´ 3©.
However, it can not further refine the range for y and z: At
Step 4© when facing v “ y´x, conventional interval analysis
tries to deduce interval of v by subtracting interval of x from
interval of y. Since y is unbounded at 4©, no useful intervals
can be inferred. Moreover, since conventional interval analysis
does not track the range of the expression v “ y´x, it has lost
all the relations among variables occurring in the expression,
leading to imprecise results for y and z.

Bounded Disjunctions. As discussed in Section III, by
keeping the propagated conditions from different paths sep-
arately, and selectively joining them, we stand a better chance
of gaining precision. Specifically, we design a bounded dis-
junctions strategy to maintain precision during the backward
propagation. With a given bound threshold, we preserve
the propagated conditions to a program location l in a set
ŵpplq, detailed in Algorithm 2. When the number of paths
reaching l is less than the threshold, their conditions are
kept separately in ŵpplq and propagate backwards individually
(Lines 9-11). Therefore, we can take the precision benefits
from the disjunctive form whenever the size is less than
threshold. With threshold ą 1, Algorithm 2 outputs a set
of abstracted conditions in ŵpplq when it finishes. We obtain
the final precondition through a disjunction over ŵpplq. For
example, with the two paths p1 and p2 reaching l8 in Figure 2,
the precondition at l8 on w is w P p´8, 5q_p25,`8q, which
comes from an explicit disjunction of interval abstractions
αppc1q and αppc2q. Nonetheless, the number of paths could
grow extremely large. Thus, we still need to join parts of the
interval abstraction from different paths for efficiency.

This is carried out by the joinPath function in Algorithm 2:
When a new condition φ1 propagates to l but the size of ŵpplq
has already reached the threshold (Line 13), we pick one of
the stored conditions in ŵpplq, denoted by c (Line 28) and join
the interval abstractions of φ1 and c (Line 29). The join result
is concretized and replace c in ŵpplq, keeping the number of
tracked conditions in ŵpplq no more than threshold.

Different choices of conditions to join may lead to different
resultant precision. For example, in Figure 7, there are differ-
ent precision losses of joining the interval abstractions of w.
We define the problem of minimizing precision loss in join as
finding the smallest intersection area among different polygon
search spaces described by each abstraction. Conventionally,

30 50

{Precision	Loss

w

30 50

No	precision	loss

w

-20	<	w	<	30	or	50	<	w	<	100
-20 100

0 80

0	<	w	<	50	or	30	<	w	<	80

A B

A B

Figure 7: Precision loss of joining different disjunctive path
conditions for backward precondition inference.

the intersections of two abstract domains can be measured by
the Fréchet distance [41]. Specifically for our interval domain,
we only need to calculate the precision loss by accumulating
the distance from the interval of each variable. Thus, the
intersection can be measured by the distance of two intervals,
which is defined as:

L “
ÿ

vPφ1Xφ2

minpmaxp0, u1 ´ l2q,maxp0, u2 ´ l1qq

where v is a shared variable of the path conditions φ1 and φ2,
whose interval abstractions are vφ1=rl1, u1s and vφ2=rl2, u2s.

As an example, In Algorithm 2, suppose the program loca-
tion l already has two paths reaching it and ŵpplq “ tB,Cu
records their propagated conditions, and a new condition with
interval abstraction A now reaches l:

A: x P p´8, 20q ^ y P p20, 50q
B: x P p30, 50q ^ y P p60, 70q

C: x P p90, 140q ^ y P p100,`8q ^ z P p200,`8q

With threshold “ 2, A needs to be joined with either B or C
to restrict the numebr of paths. we can measure the precision
loss induced by joining as distance L: LpA,Bq=10+10=20,
and LpA,Cq=70+50=120. We choose to join A,B since it
suffers from the minimum precision loss, and the joined
abstraction used for further propagation is:

x P p´8, 50q ^ y P p20, 70q

D. Precondition Instrumentation

After inferring the necessary precondition for reaching the
target program location, we need to use it to instrument the
program and prune infeasible paths at runtime. Notice that
the elaborative analysis result may put a heavy burden on
instrumentation and increase the runtime overhead of fuzzing:
it contains a map from variable to its disjunctive interval values
at various program locations. Therefore, we need to perform
the instrumentation selectively to reduce the overhead.

We observe that it is unnecessary to instrument and check
the values of all variables. Also, it is unnecessary to check
for one variable at various program locations. For instance,
in Figure 2, instrumentation is added for u (Line 7) but not
v, since the value of u determines the value of v. Also, we
place the instrumentation for variables w, x, y, z right after
their definitions in Line 4, instead of checking them at every
program location that uses these variables since their values

do not change after definition. Based on these observations,
we apply the lightweight instrumentation as following:

1) We first transform the program into SSA form [42],
and only consider variable definitions as the candidate
program locations for instrumentation. This is correct
because the SSA form guarantees that a variable is not
written after being defined.

2) When the value of a variable v1 depends only on another
variable v2, v1 should not be instrumented. Such infor-
mation can be computed by the reaching definition data
flow analysis [43]. As an example, in Figure 2, v depends
only on u instead of x or z.

V. EVALUATION

We implemented BEACON, a grey-box fuzzer with a precon-
dition analysis and an instrumentation component, based on
LLVM [44]. That is, as shown in Figure 3, we first compile the
input source code to LLVM bitcode, on which the precondition
analysis, the instrumentation for checking preconditions, and
other coverage-related instrumentation are performed. After
instrumentation, the LLVM bitcode is compiled to an exe-
cutable binary, which can be integrated with various fuzzing
engines, such as AFL [12], AFLGo [1], amongst many others.
By default, we choose to use AFLGo as the fuzzing engine.

With the implementation, we conducted a series of exper-
iments to evaluate the effectiveness of BEACON. First, we
compared BEACON with four state-of-the-art (directed) fuzzers
in the application scenario of vulnerability reproduction (Sec-
tion V-A). This experiment aims to show that BEACON is
far more efficient than existing directed fuzzers, and the
performance of existing non-directed fuzzers can be notably
improved when armed with the path pruning methods of BEA-
CON. Second, since BEACON prunes paths based on both path
slicing (slices away infeasible paths based on the reachability
on the control flow graph) and precondition checking (prunes
infeasible paths according to the precondition analysis), and
thus, to better understand the two strategies, we also evaluated
how much they contribute to the time reduction in fuzzing
(Section V-B). Third, we argued that our precondition anal-
ysis is both precise and fast due to two techniques, namely
relationship preservation and bounded disjunction. Therefore,
we evaluated their impacts on fuzzing by removing them
from the static analysis, respectively (Section V-C). Fourth,
we also evaluated the runtime overhead introduced by our
instrumentation, which aims to show the effectiveness of our
instrumentation strategy.

Baselines. We compared BEACON with the fuzzers men-
tioned in Table I. AFLGo [1] and Hawkeye [2] are two recent
directed grey-box fuzzers that prioritize inputs so that inputs
closer to the target code can be executed in a high priority.
Their technical details are mentioned in Section II-A. We
also planed to compare with Fuzzguard and Savior. However,
Fuzzguard is not open source, and we cannot reproduce the
experiments mentioned in their paper in our environments.
Savior mainly depends on prioritizing the symbolic execution
engine for multiple targets (provided by the address sanitizer)

Table I: Compared fuzzers.
Fuzzer Category Description
AFLGO [1] Directed Sophisticated seeds prioritization
Hawkeye [2] Directed Optimized fitness function + mutation strategies
AFL [12] Greybox Evolutionary mutation strategies
Mopt [13] Greybox Mutation operator prioritiztion
AFL++ [45] Greybox Optimization of overall fuzzing framework

Table II: Real-world benchmark programs and vulnerabilities.
Project Program Version Input format Num. CVEs

Binutils
cxxfilt 2.26 TXT 2
objdump 2.28 ELF 7
objcopy 2.28 ELF 4

Libjpeg cjpeg 2.04 JPG 1
cjpeg 1.98 JPG 1

Ming swftophp 0.4.7 SWF 7
swftophp 0.4.8 SWF 10

Libxml2 xmllint 20902 XML 4
Lrzip lrzip 0.631 ZIP 2
Libpng pngimage 1.6.35 PNG 1

Libpoppler
pdftoppm 0.74 PDF 3
pdftops 0.74 PDF 1
pdfdetach 0.71 PDF 3

Libav avaconv 12.3 AVI/AAC 5

in the programs. Since it is different from grey-box fuzzing
and the applicable scenarios are different, we suppose it is
orthogonal to our approach.

To show the capability of BEACON to cooperate with
other fuzzers, we also choose AFL, AFL++, and Mopt, three
coverage-guided grey-box fuzzers, to evaluate how our idea
of path pruning can improve their performance. AFL is one
of the most widely-used fuzzers nowadays, and many existing
works are built based on AFL, such as AFLGo and Hawkeye.
Mopt and AFL++ are also built upon AFL. The former im-
proves input generation by prioritizing the mutation strategies.
The latter integrates with multiple engineer optimizations to
improve the overall performance.

Benchmarks. We chose 51 vulnerabilities in 14 real-world
programs that have been frequently evaluated in the existing
fuzzing frameworks [1], [2]. The chosen programs, which are
shown in Table II, also have diverse functionalities as well as
different program sizes. Moreover, the vulnerabilities chosen
are either causing multiple issues (cause several CVEs) or too
complicated to be fixed completely even after several patches.

Configurations. The initial seed corpus determines the
effectiveness of fuzzing [46]. To achieve the best performance
of related work, we used the seeds provided by AFLGo in
their Github repository3 with the intuition that the related
works should perform better in their own proposed setting. By
experience, we set the threshold “ 5 for bounded disjunction
in BEACON. We conducted every experiment 10 times and, for
each time, the experiment is run with a time budget of 120
hours. Besides, we employed the Mann-Whitney U Test [47]
to demonstrate the statistical significance of the contribution
made by each part of our framework.

All experiments were conducted on an Intel Xeon(R) com-
puter with an E5-1620 v3 CPU and 64GB of memory running

3https://github.com/aflgo/aflgo/tree/master/scripts/fuzz

Table III: Comparing to AFLGo with 10 repeated experiments
of vulnerability reproduction. Tsa and Tf are the time cost
of static analysis and fuzzing, respectively. N is the number
of executions. F is the ratio of the executions that are early
stopped by BEACON.

No. Program CVE AFLGo Beacon
TAFLGo Tsa Tf Tall N F

1

ming4.7

2016-9827 1.25h 43s 0.31h 0.32h 0.28M 80.7%
2 2016-9829 T.O. 18s 5.54h 5.55h 5.25M 82.6%
3 2016-9831 2.52h 16s 0.62h 0.62h 0.47M 84.3%
4 2017-7578 2.43h 20s 0.29h 0.30h 0.26M 80.8%
5 2017-9988 37.99h 20s 1.45h 1.46h 1.26M 72.3%
6 2017-11728 T.O. 27s 11.14h 11.15h 23.70M 84.6%
7 2017-11729 4.34h 27s 1.02h 1.03h 2.02M 82.0%
8

ming4.8

2018-7868 T.O. 21s 1.75h 1.76h 3.91M 85.8%
9 2018-8807 10.71h 16s 1.89h 1.89h 4.42M 83.9%

10 2018-8962 35.39h 20s 1.92h 1.93h 5.96M 88.8%
11 2018-11095 60.29h 20s 3.13h 3.14h 6.07M 84.9%
12 2018-11225 34.23h 17s 2.84h 2.84h 4.33M 91.7%
13 2018-11226 37.59h 18s 3.98h 3.99h 5.25M 89.0%
14 2018-20427 T.O. 21s 3.14h 3.15h 7.81M 86.2%
15 2019-9114 T.O. 22s 3.53h 3.54h 7.08M 84.0%
16 2019-12982 T.O. 20s 2.47h 2.48h 4.12M 82.3%
17 2020-6628 T.O. 24s 3.91h 3.92h 8.76M 84.3%
18 lrzip 2017-8846 5.05h 61s 1.78h 1.80h 1.32M 86.4%
19 2018-11496 3.01h 68s 1.17h 1.19h 0.89M 92.4%
20 cxxfilt 2016-4491 7.74h 2,229s 1.38h 2.00h 7.69M 95.9%
21 2016-6131 5.88h 2,258s 0.84h 1.47h 3.76M 94.9%
22

xmllint

2017-5969 2.07h 5,381s 0.17h 1.66h 0.33M 95.1%
23 2017-9047 T.O. 5,238s 16.55h 18.01h 16.46M 83.6%
24 2017-9048 T.O. 7,049s 18.00h 19.96h 18.47M 85.1%
25 2017-9049 T.O. 5,672s 31.56h 33.14h 40.15M 95.2%
26

objdump

2017-8392 T.O. 2,654s 8.42h 9.16h 1.97M 79.3%
27 2017-8396 T.O. 2,909s 39.03h 39.84h 95.85M 91.2%
28 2017-8397 T.O. 3,067s 83.46h 84.31h 261.2M 96.1%
29 2017-8398 T.O. 2,825s 40.51h 41.29h 166.3M 96.0%
30 2017-14940 T.O. 3,420s 61.38h 62.33h 41.13M 86.1%
31 2017-16828 T.O. 3,326s 22.24h 10.59h 4.32M 94.3%
32 2018-17360 T.O. 2,950s 45.69h 46.51h 121.55M 92.6%
33

objcopy

2017-7303 T.O. 2,033s 20.09h 20.65h 31.75M 85.7%
34 2017-8393 T.O. 2,484s 19.78h 20.47h 20.21M 90.5%
35 2017-8394 T.O. 2,671s 4.46h 5.20h 4.74M 92.3%
36 2017-8395 T.O. 2,608s 3.83h 4.55h 4.31M 96.9%
37 cjpeg 2018-14498 49.78h 93s 11.46h 11.46h 20.12M 91.2%
38 2020-13790 7.34h 106s 3.98h 4.01h 19.78M 90.4%
39 pngimage 2018-13785 T.O. 85s 3.22h 3.23h 65.81M 91.3%
40

pdftoppm
2019-10872 T.O. 4,904s 102.90h 104.26h 2.98M 76.5%

41 2019-10873 T.O. 5,899s 90.25h 91.89h 3.76M 69.4%
42 2019-14494 T.O. 4,153s 95.35h 96.50h 3.13M 67.2%
43 pdftops 2019-10871 T.O. 6,593s 62.54h 64.37h 12.94M 75.2%
44

pdfdetach
2018-19058 T.O. 2,950s 73.98h 74.80h 14.60M 86.3%

45 2018-19059 T.O. 2,686s 82.46h 83.21h 14.21M 81.1%
46 2018-19060 T.O. 2,995s 92.65h 93.48h 13.76M 70.1%
47

avconv

2018-11102 T.O. 14,335s 89.57h 93.55h 6.00M 53.4%
48 2018-11224 T.O. 14,893s 98.20h 102.34h 7.65M 69.8%
49 2018-18829 T.O. 14,623s 47.97h 52.03h 3.44M 56.7%
50 2019-14441 T.O. 16,600s 52.86h 57.47h 6.89M 51.3%
51 2019-14443 T.O. 14,239s 95.81h 99.77h 13.49M 52.6%

Avg. 11.50x 82.9%
T.O.: time outs (>120 hours)

Ubuntu 16.04 LTS.

A. Compared to the State of the Art

To compare BEACON to the (directed) fuzzers in Table I,
we ran them to reproduce the CVE-identified vulnerabilities
listed in Table III.

1) Compared to AFLGo: Table III lists the comparison re-
sults, where we show the time cost of AFLGo and BEACON for
reproducing the vulnerabilities, as well as the time cost of the
static analysis employed by BEACON. We observe that AFLGo
cannot reproduce 34 out of the 51 vulnerabilities in 120 hours,
while BEACON can succeed in reproducing all of them, 23
within 5 hours, 33 in 24 hours (including the time of static

Table IV: Comparing to AFLGo and Hawkeye of average
results (s) from 10 repeated experiments. Since Hawkeye is
not open source, we use the data reported in its paper. The
p-value is the comparison between AFLGo and BEACON.

CVE AFLGo Hawkeye Beacon p-value

2016-4487/8 412 (x2.7) 177 (x1.1) 151 0.00906
2016-4489 567 (x3.1) 206 (x1.1) 180 0.00804
2016-4490 306 (x3.7) 103 (x1.2) 82 0.01596
2016-4491 27,880 (x5.6) 18,733 (x3.6) 4985 0.00018
2016-4492 540 (x1.7) 477 (x1.5) 325 0.00804
2016-6131 21,180 (x7.3) 17,314 (x5.7) 3013 0.00018

Figure 8: Coverage comparison between AFLGo and BEA-
CON. The x-axis is the CVEs listed in Table III. The y-axis is
the relative coverage compared with AFLGo.

analysis). Overall, BEACON achieved 1.2x to 68.5x speedup,
11.50x speedup on average, compared to AFLGo. Table III
also lists the number of program executions for reproducing a
vulnerability, as well as the ratio of the executions that can be
stopped early by BEACON. We can observe that in most cases,
more than 80% of the executions can be stopped early during
fuzz testing, which allows BEACON to save much time.

We observe that the time spent for the precondition analysis
in BEACON is at most 5 hours, and, in many cases, it can
complete in only a few minutes. As discussed above, even
with the static analysis time, BEACON is still much faster than
AFLGo. In practice, we can further speed up the static analysis
by leveraging other techniques, e.g., incremental analysis,
proposed by the static analysis community. However, as this is
out of the scope of this paper, we leave it as our future work.

In addition to the experiments of vulnerability reproduction,
we also ran BEACON and AFLGo to test the patches of the
CVE-identified vulnerabilities. Surprisingly, BEACON detected
3, 9, and 2 incomplete patches in Binutils, Ming, and Lrzip,
respectively, and 8 additional bugs, whereas AFLGo only
detected 6 incomplete patches. We have reported the detected
issues to the developers, and all of them have been confirmed.
All links to the bug reports are available through this link.

Moreover, we evaluated the coverage exposed till the vul-
nerabilities are reproduced. The results are shown in Figure 8.
Interestingly, we find the coverage exposed by BEACON and
AFLGo fluctuates. On the one hand, BEACON needs less
coverage (91.2% on average) for those vulnerabilities repro-
ducible for AFLGo. On the other hand, BEACON could achieve
higher coverage in some scenarios, especially when AFLGo
cannot reproduce the vulnerabilities. We find the reason is that
AFLGo spends too much time executing infeasible paths, and
thus the execution filtration rates are high (ą 80%) as shown
in Table III.

https://www.notion.so/Beacon-fdea7438c9254efb97031402e4c682e9

Figure 9: Reproduction time comparison among AFL,
AFL+BEACON, Mopt, Mopt+BEACON AFL++, and AFL++
+BEACON. The x-axis is the vulnerabilities in Table III.
The y-axis is the average reproduction time in 10 repeated
experiments. We used 120h as the timeout bound.

2) Compared to Hawkeye: We also tried to compare with
Hawkeye, the other recent directed grey-box fuzzer, that was
reported to be more effective than AFLGo. However, Hawkeye
is not open source. Thus, we tried to reproduce Hawkeye’s
experiments using AFLGo and BEACON. We then compared
the results with those reported in Hawkeye’s paper. The results
are shown in Table IV. BEACON outperformed AFLGo and
Hawkeye for reproducing all the vulnerabilities, with all p-
values less than 0.05. For CVE-2016-4491 and CVE-2016-
6131, in particular, BEACON can achieve a 3.6x and 5.7x
speedup compared to Hawkeye.

3) Compared to AFL, AFL++, and Mopt: Since the path-
pruning idea is orthogonal to existing fuzzing techniques,
the idea of BEACON can be leveraged to speed up almost
all fuzzers for the thorough testing of a specific target in
a given program. To illustrate the generality of our idea,
we integrate BEACON with AFL, AFL++, and Mopt, three
non-directed fuzzers, to help them prune paths for repro-
ducing vulnerabilities in Table III. The results in Figure 9
show the improvement brought about by BEACON for non-
directed fuzzing. On average, compared to the original tools,
AFL+BEACON AFL+++BEACON, and Mopt+BEACON can
achieve 6.31x, 11.86x and 10.92x speedup, respectively.

Figure 10: Comparison of BEACON and BEACON*. The x-
axes are the CVE-identified vulnerabilities listed in Table III.
The y-axes are the reproduction time and the ratio of paths that
are stopped early, respectively. We used 120h as the maximum
timeout budget.

B. Impacts of Path Slicing & Precondition Checking

Recall that, in addition to the precondition-based path prun-
ing, BEACON also leverages conventional reachability analysis
on the control flow graph to slice away paths that simply
cannot reach the target code. To evaluate how path slicing
and precondition checking contribute to the time reduction
in BEACON, we also set up a naive variant of BEACON,
BEACON˚, which disables the precondition analysis. We then
reran the experiments discussed before using BEACON and
BEACON˚. The experimental results are shown in Figure 10,
where we can observe that BEACON is much faster (1.1x to
18.4x) than BEACON˚ for reproducing the vulnerabilities, as it
prunes 29.1% more paths than BEACON˚ on average. In some
cases (e.g., CVE-2017-8397), BEACON˚ cannot even repro-
duce the vulnerability in 120 hours. This result demonstrates
the significance and necessity of the precondition analysis,
which allows us to achieve notable performance improvement.

C. Impacts of Relation Preservation & Bounded Disjunction

To effectively prune paths during fuzzing, we proposed a
dedicated precondition analysis that is armed with two key
strategies, i.e., relationship preservation and bounded disjunc-
tion, to ensure both scalability and precision. To evaluate how
relationship preservation and bounded disjunction contribute to
the time reduction in BEACON, we also set up another variant
of BEACON, BEACON-rp and BEACON-bd, which disable
the bounded disjunction and the relationship preservation,
respectively. We then reran the experiments discussed before
using BEACON-rp and BEACON-bd.

The experimental results are shown in Figure 11, where we
can observe that BEACON is much faster (1.05x to 4.9x, 1.05x
to 5.34x) than BEACON-rp and BEACON-bd for reproducing
the vulnerabilities, respectively. This result demonstrates the

Figure 11: Reproduction time comparison of BEACON
BEACON-rp, and BEACON-bd. We use the results of BEACON
with only reachability pruning as the baseline. The x-axis is
the CVE-identified vulnerabilities listed in Table III. The y-
axis is the reproduction time compared with BEACON˚.
Table V: Different configurations of the bound used for
precondition inference and its time costs. We sample one CVE
from each project 10 times and record the average filteration
ratio with these preconditions till reproducing the CVEs. Tinf
denotes the time costs, F represents the filtration ratios. oom
denotes the analysis used up the 30G memory budgets.

Project 5 20 50
Tinf F Tinf F Tinf F

Ming 27s 81.3% 101s 82.5% 280s 83.0%
Binutils 2560s 90.4% 20.11h 90.8% oom n{a
Libxml 6418s 88.5% 13.17h 89.1% oom n{a

Lrzip 67s 87.1% 464s 89.2% 1806s 90.0%
Libjpeg 103s 90.7% 423s 91.3% 1096s 92.6%
Libpng 85s 92.9% 441s 93.7% 3836s 93.8%

Libpoppler 4290s 70.5% 4.91h 71.8% oom n{a
Libav 14895s 61.1% 14.94h 64.3% oom n{a

significance and necessity of both strategies, as both of them
contribute to the precision of the precondition analysis, and
their combination allows us to achieve greater precision and
prune a lot more paths during the fuzz testing.

We also studied the influence brought about by the bound
threshold used in bounded disjunction. The results are shown
in Table V. The execution filtration ratio improves slightly
from 0.9% to 3.2% when the bound threshold increase from
5 to 50. However, the time costs burst dramatically and even
used up the server memory. Therefore, BEACON uses 5 as the
threshold to get a sweet spot of efficiency and effectiveness.
Meanwhile, the distance calculated for picking the merging
states preserves the program semantics to prevent too much
precision loss.

D. Instrumentation Overhead

BEACON prunes the infeasible paths through instrumen-
tation, which may cause additional runtime overhead. To
evaluate the runtime overhead, we run the same inputs against
two versions of each benchmark program. One is the vanilla
version without any instrumentation, and the other is instru-
mented by BEACON, where we add precondition checks but
do not let the program exit early when a precondition check
fails. We do not exit the program early because this evaluation
needs to ensure that we run the same paths on the two versions.
The results are shown in Table VI, where we show the number
of executions of each program (Nexec), the original time cost

Table VI: Runtime overhead comparison with pure instrumen-
tation from AFL and BEACON without filteration using the
same inputs generated from the deterministic stage of AFL.

Project Nexec Torig TBeacon Overhead

Ming 126K 4.52m 4.80m 6.2%
Binutils 2.38M 2.48h 2.51h 1.2%
Libxml 25K 0.63h 0.65h 3.2%

Lrzip 1.07M 1.43h 1.57h 9.8%
Libjpeg 2.97M 0.59h 0.61h 3.4%
Libpng 1.41M 7.55h 8.01h 6.1%

Libpoppler 1.21M 23.73h 25.27h 6.5%
Libav 7.62M 23.87h 26.13h 9.5%

1 int init(char* input) {
2 int type,length1,length2 = extract(input)

;
3

4 // assertion inserted by Beacon
5 assert(type==5&&length1+length2<42);
6

7 // an overly lengthy function
8 data=processing(input);
9

10 // crash on some condition
11 if(type==5&&length1+length2<42)
12 crash();
13}

Figure 12: An example of a case study.

(Torig), and the time cost after our instrumentation (TBeacon).
We observe that BEACON introduces up to 9.8% runtime
overhead and 5.7% on average. We believe that such low
overhead is acceptable in practice, and the previous evaluation
has shown BEACON is much faster than the existing fuzzers.

E. Case Study

To provide a better understanding of why BEACON can
achieve good performance as discussed before, we provide
an example in Figure 12, which is simplified from a real
bug detected by us4. In the code snippet, a crash at Line 12
may happen on the branch condition at Line 11. Before the
crash, it exists an overly lengthy procedure at Line 8. Thus,
if we cannot determine if an input can reach the crash, we
have to waste a lot of time on the overly lengthy procedure.
BEACON can compute the precondition on which the crash
may happen and inserts the precondition before the overly
lengthy procedure at Line 5. In this manner, we can stop
early before Line 8 if the precondition is violated, whereas
conventional directed fuzzers cannot prune any path.

F. Discussion

Assisting other fuzzers: Conventionally, input genera-
tion [15], [17] and seed prioritization [1], [2] are the two main
dimensions for improving the performance of directed fuzzing.
Nonetheless, fuzzers still have the possibility of failing to
reproduce the vulnerabilities without a provable guarantee.
Therefore, BEACON proposes another direction for directed
fuzzing, which prunes the infeasible paths away to minimize
the penalty brought about by the randomness.

4We cannot provide the original code since it is still reproducible in the
newest version of the program and may cause a malicious attack.

Threats to validity: The main concern is the random-
ness in input generation. Even though we have conducted
the experiments multiple times for fairness, different input
sequences might influence the outcomes in these projects. Still,
the results meet the expectation that BEACON achieves faster
crash reproduction than AFLGo by filtering those infeasible
paths. Meanwhile, the integration with other fuzzers shows
the capability of BEACON in improving existing fuzzing.

Another issue is that we have not proved the capability
of BEACON to assist fuzzers relying on symbolic executions.
However, since the scalability issue is the major concern of
symbolic execution, how to efficiently handle the large-scale
programs chosen in the experiment could become another
challenge. Therefore, we attempt to tackle this in future work.

VI. RELATED WORK

In addition to the related work discussed in Section II, this
section surveys other related work.

A. Directed White-box Fuzzing

The idea of directed fuzzing begins with white-box
fuzzing [5], [11], [48], which mainly depends on symbolic
or concolic execution, such as Klee [49], to generate an
exploitable input for bug reproduction. However, the path
explosion problem and the notoriously expensive constraint
solving make them hard to scale for real-world programs.
Therefore, existing works attempt to leverage the prior knowl-
edge of the vulnerabilities to make symbolic execution focus
on the relevant program states.

One direction is to prioritize program paths for the sym-
bolic execution to explore. For example, Hercules [50] uses
an unsound function summary to prioritize the reachable
paths. Others either rely on bug reports [51], critical system
calls [10], or changes in patches [52] to identify the potential
bug trace. However, these works usually require extra manual
expertise to ensure the quality of this prior knowledge, which
may lead to a varied performance on different programs.
The other direction is to accelerate the symbolic execution
itself for approaching the targets faster. For example, existing
works preserve the execution states either symbolically [53] or
concretely [54] with snapshot mechanisms to avoid redundant
path explorations. Chopper [55] adapts online static analysis
to provide state merging strategies while minimizing the
number of analyzed paths on the fly. DiSE [56] identifies
the relations among the branching conditions and solves them
incrementally.

Even though lots of effort has been devoted to symbolic
execution, scalability is still a major concern in research
nowadays. This is also why we choose directed grey-box
fuzzing, which often exhibits promising scalability in practice.

B. Coverage-guided Fuzzing

Optimizations for conventional coverage-guided fuzzers
also have the potential to improve directed fuzzing. First, we
can optimize input generation with dynamic taint analysis. The
basic idea is to mutate the related input offsets to satisfy the

uncovered branch conditions. Other than random mutation,
Angora [57] adapts byte-level taint tracking to discover the
related input bytes of the target condition, and then applies a
gradient-descent-based search strategy. To make the gradient-
descent-based search more reasonable, Neuzz [58] proposes to
use the neural network to smooth the search progress. There
are also some techniques involving a lightweight program
analysis and transformation to improve the effectiveness of
the mutation. Fairfuzz [59] identifies the input offsets where
it is not necessary to change the values, thus, minimizing the
input search space improves the efficiency of the mutation.
Mopt [13] proposes a novel mutation operator scheduling
strategy to adjust mutation strategies for different programs.

The second direction is to integrate fuzzers with con-
colic/symbolic execution, a.k.a., hybrid fuzzing, for tackling
complex and tight path constraints. Hybrid fuzzing combines
the advantages of efficient mutation and precise constraint
solving to evaluate the programs, which could be the future
direction for white-box fuzzing. With the development of fuzz
testing, the majority of the path exploring the demand offloads
to the fuzzers to avoid the path explosion problem in sym-
bolic/concolic execution. In short, the state-of-the-art hybrid
fuzzing selectively solves the path constraints to improve the
performance. For example, Driller [60] proposes to solve those
uncovered paths for fuzzing rather than exploring all paths
with concolic execution. However, how to effectively integrate
concolic execution with fuzzing is always under consideration.
QSYM [61] solves part of the path constraint for a basis
seed and leverages the mutation for validated inputs satisfying
the actual condition. Intriguer [62] further replaces symbolic
emulation with dynamic taint analysis, which decreases the
overhead of modeling a large amount of mov-like instruc-
tions. Pangolin [63] proposes to preserve the constraint as
an abstraction and reuse it to guide further input generation.
Overall, these methods are orthogonal to BEACON and can be
integrated with BEACON for better performance.

VII. CONCLUSION

We have presented BEACON, which directs the grey-box
fuzzer in the sea of paths to avoid unnecessary program exe-
cution and, thus, saves a lot of time cost. Compared to existing
directed grey-box fuzzers, BEACON can prune infeasible paths
provably and more effectively, via the assistance of a dedicated
cheap, sound, and precise static analysis. We have provided
empirical evidence that BEACON is more effective than the
state-of-the-art (directed) fuzzers.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments and opinions for improving this work. Rongxin
Wu is supported by the Leading-edge Technology Pro-
gram of Jiangsu Natural Science Foundation (BK20202001)
and NSFC61902329. Other authors are supported by the
RGC16206517 and ITS/440/18FP grants from the Hong Kong
Research Grant Council, and the donations from Microsoft Do-
nation and Huawei. Qingkai Shi is the corresponding author.

REFERENCES

[1] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: ACM, 2017, pp. 2329–2344. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134020

[2] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye:
Towards a desired directed grey-box fuzzer,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’18. New York, NY, USA: ACM, 2018, pp. 2095–2108.
[Online]. Available: http://doi.acm.org/10.1145/3243734.3243849

[3] “Fuzzguard: Filtering out unreachable inputs in directed grey-
box fuzzing through deep learning,” in 29th USENIX Security
Symposium (USENIX Security 20). Boston, MA: USENIX Association,
Aug. 2020. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/zong

[4] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated whitebox fuzz
testing,” November 2008. [Online]. Available: https://www.microsoft.
com/en-us/research/publication/automated-whitebox-fuzz-testing/

[5] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’05.
New York, NY, USA: ACM, 2005, pp. 213–223. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065036

[6] “Oss-fuzz report,” https://security.googleblog.com/2018/11/
a-new-chapter-for-oss-fuzz.html, 2018, accessed: 2018-11-06.

[7] J. Xuan, X. Xie, and M. Monperrus, “Crash reproduction via
test case mutation: Let existing test cases help,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 910–913. [Online]. Available:
https://doi.org/10.1145/2786805.2803206

[8] M. Soltani, A. Panichella, and A. Van Deursen, “Search-based crash
reproduction and its impact on debugging,” IEEE Transactions on
Software Engineering, pp. 1–1, 2018.

[9] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones,” ACM
Trans. Comput. Syst., vol. 32, no. 2, Jun. 2014. [Online]. Available:
https://doi.org/10.1145/2619091

[10] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations,” in
Proceedings of the 22Nd USENIX Conference on Security, ser. SEC’13.
Berkeley, CA, USA: USENIX Association, 2013, pp. 49–64. [Online].
Available: http://dl.acm.org/citation.cfm?id=2534766.2534772

[11] P. D. Marinescu and C. Cadar, “Katch: High-coverage testing of
software patches,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2013. New
York, NY, USA: Association for Computing Machinery, 2013, p.
235–245. [Online]. Available: https://doi.org/10.1145/2491411.2491438

[12] “Afl: american fuzzy lop,” http://lcamtuf.coredump.cx/afl/, 2013, ac-
cessed: 2013.

[13] “MOPT: Optimized mutation scheduling for fuzzers,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, 2019. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity19/presentation/lyu

[14] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang,
“Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 2139–2154.

[15] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “Parmesan: Sanitizer-
guided greybox fuzzing,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
2289–2306. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/osterlund

[16] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov, “Addresssanitizer: A fast address sanity
checker,” in USENIX ATC 2012, 2012. [Online]. Available:
https://www.usenix.org/conference/usenixfederatedconferencesweek/
addresssanitizer-fast-address-sanity-checker

[17] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and
L. Lu, “SAVIOR: towards bug-driven hybrid testing,” CoRR, vol.
abs/1906.07327, 2019. [Online]. Available: http://arxiv.org/abs/1906.
07327

[18] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Rinard, “Sound
input filter generation for integer overflow errors,” in Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 439–452. [Online].
Available: https://doi.org/10.1145/2535838.2535888

[19] R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang,
“Pse: Explaining program failures via postmortem static analysis,”
in Proceedings of the 12th ACM SIGSOFT Twelfth International
Symposium on Foundations of Software Engineering, ser. SIGSOFT
’04/FSE-12. New York, NY, USA: Association for Computing
Machinery, 2004, p. 63–72. [Online]. Available: https://doi.org/10.1145/
1029894.1029907

[20] S. Blackshear, B.-Y. E. Chang, and M. Sridharan, “Thresher:
Precise refutations for heap reachability,” in Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 275–286. [Online]. Available:
https://doi.org/10.1145/2491956.2462186

[21] S. Chandra, S. J. Fink, and M. Sridharan, “Snugglebug: A powerful
approach to weakest preconditions,” in Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 363–374. [Online]. Available:
https://doi.org/10.1145/1542476.1542517

[22] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,” Commun. ACM, vol. 18, no. 8, p. 453–457,
Aug. 1975. [Online]. Available: https://doi.org/10.1145/360933.360975

[23] C. Urban and A. Miné, “Proving guarantee and recurrence temporal
properties by abstract interpretation,” in Verification, Model Checking,
and Abstract Interpretation, D. D’Souza, A. Lal, and K. G. Larsen, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 190–208.

[24] K. Ferles, V. Wüstholz, M. Christakis, and I. Dillig, “Failure-directed
program trimming,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2017. New
York, NY, USA: Association for Computing Machinery, 2017, p.
174–185. [Online]. Available: https://doi.org/10.1145/3106237.3106249

[25] G. Singh, M. Püschel, and M. Vechev, “Fast polyhedra abstract
domain,” SIGPLAN Not., vol. 52, no. 1, p. 46–59, Jan. 2017. [Online].
Available: https://doi.org/10.1145/3093333.3009885

[26] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy
abstraction,” SIGPLAN Not., vol. 37, no. 1, p. 58–70, Jan. 2002.
[Online]. Available: https://doi.org/10.1145/565816.503279

[27] A. V. Thakur, “Symbolic abstraction: Algorithms and applications,”
Ph.D. dissertation, The University of Wisconsin-Madison, 2014.

[28] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival, “A static analyzer for large safety-critical
software,” in Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, ser. PLDI ’03.
New York, NY, USA: Association for Computing Machinery, 2003, p.
196–207. [Online]. Available: https://doi.org/10.1145/781131.781153

[29] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step towards
automated detection of buffer overrun vulnerabilities,” in IN NETWORK
AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM, 2000, pp. 3–
17.

[30] N. Dor, M. Rodeh, and M. Sagiv, “Cssv: Towards a realistic tool for
statically detecting all buffer overflows in c,” in Proceedings of the
ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation, ser. PLDI ’03. New York, NY, USA: Association
for Computing Machinery, 2003, p. 155–167. [Online]. Available:
https://doi.org/10.1145/781131.781149

[31] S. Sankaranarayanan, F. Ivančić, I. Shlyakhter, and A. Gupta, “Static
analysis in disjunctive numerical domains,” in Static Analysis, K. Yi,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 3–17.

[32] P. Cousot and R. Cousot, “Static determination of dynamic properties
of programs,” in Proceedings of the 2nd International Symposium on
Programming, Paris, France. Dunod, 1976.

[33] A. Miné, “The octagon abstract domain,” Higher-order and symbolic
computation, vol. 19, no. 1, pp. 31–100, 2006.

[34] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. ACM,
1978, pp. 84–96.

http://doi.acm.org/10.1145/3133956.3134020
http://doi.acm.org/10.1145/3243734.3243849
https://www.usenix.org/conference/usenixsecurity20/presentation/zong
https://www.usenix.org/conference/usenixsecurity20/presentation/zong
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
http://doi.acm.org/10.1145/1065010.1065036
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://security.googleblog.com/2018/11/a-new-chapter-for-oss-fuzz.html
https://doi.org/10.1145/2786805.2803206
https://doi.org/10.1145/2619091
http://dl.acm.org/citation.cfm?id=2534766.2534772
https://doi.org/10.1145/2491411.2491438
http://lcamtuf.coredump.cx/afl/
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
http://arxiv.org/abs/1906.07327
http://arxiv.org/abs/1906.07327
https://doi.org/10.1145/2535838.2535888
https://doi.org/10.1145/1029894.1029907
https://doi.org/10.1145/1029894.1029907
https://doi.org/10.1145/2491956.2462186
https://doi.org/10.1145/1542476.1542517
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/3106237.3106249
https://doi.org/10.1145/3093333.3009885
https://doi.org/10.1145/565816.503279
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781149

[35] A. Miné, “Tutorial on static inference of numeric invariants by
abstract interpretation,” Found. Trends Program. Lang., vol. 4, no. 3–4,
p. 120–372, Dec. 2017. [Online]. Available: https://doi.org/10.1561/
2500000034

[36] S. Sankaranarayanan, F. Ivančić, and A. Gupta, “Program analysis using
symbolic ranges,” in Static Analysis, H. R. Nielson and G. Filé, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 366–383.

[37] F. M. Q. Pereira and D. Berlin, “Wave propagation and deep propagation
for pointer analysis,” in Proceedings of the 7th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, ser.
CGO ’09. USA: IEEE Computer Society, 2009, p. 126–135. [Online].
Available: https://doi.org/10.1109/CGO.2009.9

[38] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, ser. POPL ’77.
New York, NY, USA: Association for Computing Machinery, 1977, p.
238–252. [Online]. Available: https://doi.org/10.1145/512950.512973

[39] R. E. Rodrigues, V. H. Sperle Campos, and F. M. Quintão Pereira, “A
fast and low-overhead technique to secure programs against integer over-
flows,” in Proceedings of the 2013 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), 2013, pp. 1–11.

[40] R. E. Moore, Interval analysis. Prentice-Hall Englewood Cliffs, 1966,
vol. 4.

[41] T. Eiter and H. Mannila, “Computing discrete frechet distance,” 05 1994.
[42] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and

F. K. Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 4, p. 451–490, Oct. 1991. [Online]. Available:
https://doi.org/10.1145/115372.115320

[43] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles, tech-
niques,” Addison wesley, vol. 7, no. 8, p. 9, 1986.

[44] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis and transformation,” in Proceedings of the Interna-
tional Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, ser. CGO ’04. USA: IEEE
Computer Society, 2004, p. 75.

[45] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[46] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren,
G. Grieco, and D. Brumley, “Optimizing seed selection
for fuzzing,” in 23rd USENIX Security Symposium (USENIX
Security 14). San Diego, CA: USENIX Association, 2014,
pp. 861–875. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/rebert

[47] P. E. McKnight and J. Najab, Mann-Whitney U Test. American Cancer
Society, 2010, pp. 1–1. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1002/9780470479216.corpsy0524

[48] W. Jin and A. Orso, “Bugredux: Reproducing field failures for in-
house debugging,” in 2012 34th International Conference on Software
Engineering (ICSE), 2012, pp. 474–484.

[49] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs.”
in OSDI, vol. 8, 2008, pp. 209–224.

[50] V. Pham, W. B. Ng, K. Rubinov, and A. Roychoudhury, “Her-
cules: Reproducing crashes in real-world application binaries,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 1, 2015, pp. 891–901.

[51] M. Christakis, P. Müller, and V. Wüstholz, “Guiding dynamic symbolic
execution toward unverified program executions,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
144–155. [Online]. Available: https://doi.org/10.1145/2884781.2884843

[52] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury, “Partition-
based regression verification,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. IEEE Press, 2013,
p. 302–311.

[53] S. Bugrara and D. Engler, “Redundant state detection for dynamic
symbolic execution,” in 2013 USENIX Annual Technical Conference
(USENIX ATC 13). San Jose, CA: USENIX Association, Jun. 2013,
pp. 199–211. [Online]. Available: https://www.usenix.org/conference/
atc13/technical-sessions/presentation/bugrara

[54] R. Majumdar and K. Sen, “Hybrid concolic testing,” in Proceedings
of the 29th International Conference on Software Engineering, ser.
ICSE ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp.
416–426. [Online]. Available: https://doi.org/10.1109/ICSE.2007.41

[55] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped
symbolic execution,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York,
NY, USA: ACM, 2018, pp. 350–360. [Online]. Available: http:
//doi.acm.org/10.1145/3180155.3180251

[56] G. Yang, S. Person, N. Rungta, and S. Khurshid, “Directed incremental
symbolic execution,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 1,
Oct. 2014. [Online]. Available: https://doi.org/10.1145/2629536

[57] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP), vol. 00, May
2018, pp. 711–725. [Online]. Available: doi.ieeecomputersociety.org/
10.1109/SP.2018.00046

[58] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana,
“NEUZZ: efficient fuzzing with neural program learning,” CoRR, vol.
abs/1807.05620, 2018. [Online]. Available: http://arxiv.org/abs/1807.
05620

[59] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE 2018. New York, NY, USA: ACM, 2018,
pp. 475–485. [Online]. Available: http://doi.acm.org/10.1145/3238147.
3238176

[60] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, 2016,
pp. 1–16.

[61] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A
practical concolic execution engine tailored for hybrid fuzzing,” in
27th USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, 2018, pp. 745–761. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

[62] M. Cho, S. Kim, and T. Kwon, “Intriguer: Field-level constraint
solving for hybrid fuzzing,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
515–530. [Online]. Available: https://doi.org/10.1145/3319535.3354249

[63] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin: Incremental
hybrid fuzzing with polyhedral path abstraction,” in 2020 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2020, pp. 1144–1158. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063

https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1109/CGO.2009.9
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/115372.115320
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0524
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0524
https://doi.org/10.1145/2884781.2884843
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bugrara
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bugrara
https://doi.org/10.1109/ICSE.2007.41
http://doi.acm.org/10.1145/3180155.3180251
http://doi.acm.org/10.1145/3180155.3180251
https://doi.org/10.1145/2629536
doi.ieeecomputersociety.org/10.1109/SP.2018.00046
doi.ieeecomputersociety.org/10.1109/SP.2018.00046
http://arxiv.org/abs/1807.05620
http://arxiv.org/abs/1807.05620
http://doi.acm.org/10.1145/3238147.3238176
http://doi.acm.org/10.1145/3238147.3238176
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://doi.org/10.1145/3319535.3354249
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063

	Introduction
	Background
	Directed Grey-Box Fuzzing
	Problem and Challenges

	Beacon in a Nutshell
	Methodology
	Preliminary
	Backward Interval Analysis
	Optimizations for Maintaining Precision
	Precondition Instrumentation

	Evaluation
	Compared to the State of the Art
	Compared to AFLGo
	Compared to Hawkeye
	Compared to AFL, AFL++, and Mopt

	Impacts of Path Slicing & Precondition Checking
	Impacts of Relation Preservation & Bounded Disjunction
	Instrumentation Overhead
	Case Study
	Discussion

	Related Work
	Directed White-box Fuzzing
	Coverage-guided Fuzzing

	Conclusion
	References

