
IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 1, MARCH 2016 19

Measuring the Diversity of a Test Set
With Distance Entropy

Qingkai Shi, Zhenyu Chen, Member, IEEE, Chunrong Fang, Yang Feng, and Baowen Xu, Member, IEEE

Abstract—Most existing metrics that we call white-box metrics,
such as coverage metrics, require white-box information, like pro-
gram structure information, and historical runtime information, to
evaluate the fault detection capability of a test set. In practice, such
white-box information is usually unavailable or difficult to obtain,
which means they often cannot be used. In this paper, we propose
a black-box metric, distance entropy, based on the diversification
idea behind many published diversity-based techniques. Distance
entropy provides a possible solution for test set evaluation when
white-box information is not available. The empirical study illus-
trates that distance entropy can effectively evaluate test sets if the
distance metric between tests is well defined. Meanwhile, distance
entropy outperforms simple diversity metrics without increasing
time complexity.
Index Terms—Fault detection capability, diversity, metrics, min-

imum spanning tree.

ACRONYMS AND ABBREVIATIONS

MST minimum spanning tree
SIR software-artifact infrastructure repository
RQ research question

NOTATIONS

test set
test case
cardinal number of a set
vertex set of a graph
partition of set
edge set of a graph
edge in a graph
test relationship graph of test set
sub-graph of

Manuscript received August 29, 2014; revised December 11, 2014 and Feb-
ruary 28, 2015; accepted May 17, 2015. Date of publication June 02, 2015; date
of current version March 01, 2016. This work was supported in part by the Na-
tional Basic Research Program of China (973 Program 2014CB340702) and in
part by the National Natural Science Foundation of China (Grant No. 61170067,
61373013). Associate Editor: W. E. Wong. (Corresponding authors: Baowen
Xu and Zhenyu Chen.)
The authors are with the State Key Laboratory for Novel Software

Technology, Nanjing University, Nanjing, China (e-mail: sqk08@soft-
ware.nju.edu.cn; zychen@software.nju.edu.cn; fy07@software.nju.edu.cn;
fcr06@software.nju.edu.cn; bwxu@nju.edu.cn).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TR.2015.2434953

minimum spanning tree of
minimum weight set of
weight of an edge in a graph
distance entropy
sum of edge weights in
sum of all edge weights in graph
pairs of distance entropy and the number
of killed mutants
function mapping from a multi-set of
edge weights to the value of diversity

I. INTRODUCTION

I T is important to evaluate the fault detection capability of
a test set. Mutation analysis [1] is one of the most effec-

tive techniques to evaluate the fault detection capability of a
test set. However, it needs to run tests on numerous mutants to
obtain runtime information (i.e., the number of killed mutants),
which is too expensive to be used in practice [2]. Like muta-
tion analysis, most existing evaluation metrics [3], which we
call white-box metrics, rely heavily on white-box information,
such as program structure information, and historical runtime
information, to measure the effectiveness of test sets; but such
information is not always available.
For example, in some secret projects, we cannot analyze

the source codes, or even binary codes. Therefore, a black-box
metric that does not require white-box information is needed
to evaluate the fault detection capability of a test set when
white-box information is not available, and to guide black-box
testing.
In recent years, many diversity-based techniques have gradu-

ally emerged from enormous research work, including [4], [5],
and [6], which have shown that, in most cases, the effectiveness
of a test set can benefit from its diversity. In software testing,
high diversity requires that tests should be spread evenly in a
specific space, such as the input space [5], or the output space
[4]. A classic example using diversity is combination testing [7],
one of whose theoretical bases is orthogonal experimental de-
sign [8] which requires the candidate tests to be evenly spread
across the sampling space. Furthermore, one recent research
paper showed that the effectiveness of a test set that contains
evenly spreading tests is close to the theoretical upper bound
of software testing effectiveness [9]. By theoretical analysis, A.
Arcuri and L. Briand [10] also proved that, to maximize the fault
detection possibility in one dimensional space, tests should be
evenly spread across the entire space (see Fig. 1(a)). That is to

0018-9529 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



20 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 1, MARCH 2016

Fig. 1. (a) Example of an existing work in one dimensional space [10]. (b)
Challenges in practice. in the figure is the distances between tests.

say, to maximize the fault detection possibility in one dimen-
sional space, tests should be spread as widely as possible, and
the distances between adjacent tests should be the same. Fol-
lowing this work, there are two main challenges (see Fig. 1 (b))
to measure the diversity of a test set in practice, as follows.
Challenge 1: How do we define the adjacency relation be-

tween tests in practice?
Challenge 2: How do we make use of the distances between

adjacent tests to measure the diversity of a test set?
For the first challenge, graph theory provides an important

theoretical basis for us. It defines the adjacency relation as a
symmetric binary relation between nodes that are linked with
an edge. Therefore, we need to carefully select a suitable graph
model to model a test set; at the same time, it also can describe
the diversity property. In this paper, a minimum spanning tree
is used because of its ability to measure the similarity and dis-
similarity of the nodes in a graph [11].
For the second challenge, distance metrics like Euclidean dis-

tance have often been used [12]–[14] to measure the dissimi-
larity between two tests. However, these distance metrics cannot
measure the dissimilarity of more than two tests. In contrast
to distance, entropy has been commonly used to measure how
evenly a set of entities are spread in a space, which inspires us to
introduce entropy as a metric so that we can precisely measure
the diversity of a test set, and provide insights into diversity in
software testing.
In this paper, we first present the graph model of a test set.

Based on the model, a lightweight black-box metric, namely
distance entropy, is proposed to measure the diversity of a test
set, thereby measuring its effectiveness.1 Subsequently, an em-
pirical study is conducted to illustrate the effectiveness and effi-
ciency of distance entropy. The main contributions of this paper
are as follows.

1Note that metrics for subjects other than test set effectiveness, e.g., Halstead
metrics for program complexity evaluation, will not be discussed in the paper.

1) By modeling a test set as a minimum spanning tree, a
metric, i.e., distance entropy, is proposed to measure the
diversity, as well as the fault detection capability, of a test
set, which provides a possible solution for test set evalua-
tion without white-box information.

2) We demonstrate the effectiveness of distance entropy by
comparing it with mutation analysis via an empirical study.

3) We also show that distance entropy outperforms metrics
that naively use distance, which illustrates the value of the
graph model for test sets.

The paper is organized as follows. Section II introduces the
fundamental theories of distance entropy. Section III takes us
from theoretical study to empirical study, in which we verify
the efficacy of distance entropy. In Section IV, we discuss
some practical issues. Section V describes the related work,
and Section VI concludes this paper.

II. DISTANCE ENTROPY

In this section, we first present the graph model for test sets.
Based on the model, a novel black-box metric called distance
entropy is proposed to measure the diversity of a test set.
Distance entropy only depends on the weights of the edges
(distances between tests, as described in Section II-D) in the
graph. Note that distances between tests can be defined without
any white-box information, thus being more flexible than those
white-box metrics, especially when white-box information is
not available. We also analyze the time complexity of distance
entropy, which shows it is as efficient as some naïve diversity
metrics.

A. Model

Given a test set , to describe the relations between tests,
we define the test relationship graph as a weighted undirected
complete graph.
Definition 1 (Test Relationship Graph): A test relationship

graph of a test set is a weighted
undirected complete graph , in which ,
and . The weight of each edge

is the distance between and .2
To preciselymeasure the diversity of a test set with acceptable

cost, we should select a sub-set of representative edges from
. According to the intuition that similar tests, i.e., nodes

that are connected by short edges in , have negative effects
on diversity, the short edges in should be evaluated prefer-
entially. In other words, if all short edges are long enough, the
diversity of the test set must be high. Following the intuition,
for any partition of , e.g., , we only reserve the
shortest edge between and for evaluation. As a result, a
sub-graph is extracted from for diversity
measurement. Exactly, the graph is the minimum span-
ning tree (MST) of the test relationship graph [15]. For
clarity, we denote as , and define the weights
of edges in as a minimum weight set.

2We discuss how to define distance in Section II-D.



SHI et al.: MEASURING THE DIVERSITY OF A TEST SET WITH DISTANCE ENTROPY 21

Definition 2 (MinimumWeight Set): Theminimumweight set
of a graph , denoted as , is the multi-set3 of the
weights of edges in .
For example, an MST of a test relationship graph has

four nodes, and three edges. The weights of the edges are 1, 2,
2, respectively. In this case, .
According to the previous discussions, it is the weights in

that will be used to measure the diversity of a test
set. Before defining the diversity metric, we highlight the three
important properties of MST as below that make it suitable to
measure diversity.
• An MST is a connected graph so that all tests in a test set
can be taken into consideration.

• Any edge in an MST is the shortest edge between two
partitions of the test relation graph.

• Given a test set, and its relationship graph, the minimum
weight set is unique, which ensures that the diversitymetric
of a test set is a unique value.

The properties are straightforward, except for the third one.
Gallager et al. [16] proved that, if each edge in a graph has a
distinct weight, then there will be only one unique minimum
spanning tree. However, there may exist edges with the same
weights in practice (i.e., there are some pairs of tests that have
the same distance), which will result in a graph having multiple
MSTs. We prove the uniqueness of the minimum weight set as
below.
Theorem 1: Given a test relationship graph , the min-

imum weight set is unique.4

B. Definition

Given a test set , and its minimum weight set , in
this section, we define as the diversity
metric. To measure diversity precisely, should have the
maximum iff both the even spreading condition and the wide
spreading condition are satisfied.
• Even spreading condition: .
That is to say, tests should spread evenly in a specific space.

• Wide spreading condition: should be as
large as possible. That is to say, tests should spread widely
in a specific space.

Following the definition of Shannon entropy [17], and based
on the above two conditions, we define the black-box metric,
distance entropy, as below.
Definition 3 (Distance Entropy): The distance entropy of

a test set is defined based on the minimum weight set, i.e.,
:

(1)

in which

3In mathematics, a multi-set is a generalization of set. Elements in a multi-set
are allowed to appear more than once.

4Please find all proofs in the Appendix.

Fig. 2. An example to illustrate that at least when , which is fixed,
distance entropy is much better. The black dots stand for tests.

TABLE I
RESULTS OF COMPARISON

Distance entropy (1) consists of two parts. The first one is
, which ensures that the wide spreading condition is satisfied.

That is, even though tests are evenly spread in a space, to make
the diversity high, tests must be spread widely. The other part
of distance entropy is consistent with Shannon entropy, which
guarantees that the even spreading condition is satisfied when

is fixed, which has been proved in [17].
Distance entropy is logically dependent on the definition of

distance. So one question is whether distance entropy outper-
forms some simple metrics (e.g., sum of distances). It is difficult
to verify the question theoretically in general. Hence, this ques-
tion will be studied empirically in Section III. The following ex-
ample illustrates that, at least when the value of is fixed, dis-
tance entropy is much better in the one-dimensional space. The
metrics used to compare with distance entropy are two simple
ones that use distance to measure diversity:
• is the sum of all weights in the test relationship graph

, and
• is the sum of all weights in the minimumweight set (see
Definition 3).

In Fig. 2, based on Euclidean distance, part (b) is obviously
better than part (a) according to the theorems in [10], because
tests in (b) are spreadmore evenly than those in (a).We calculate
the value of three metrics to measure the diversity. The results
are shown in Table I. Obviously, only when using distance en-
tropy can we make a correct conclusion (i.e., (b) is better than
(a)). To verify the effectiveness of distance entropy in practice,
we will empirically compare , and in Section III.

C. Complexity

We prove the following theorem to show that the time com-
plexity of distance entropy is asymptotically equal to , and

, two naive metrics. The whole process of using distance
entropy to evaluate the diversity of a test set is shown in Fig. 3.



22 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 1, MARCH 2016

Fig. 3. The process of using distance entropy to measure the diversity of a test
set.

Theorem 2: Given a test set , the time complexity
of using distance entropy to measure its diversity is ,
which is asymptotically equal to the time complexity of using

and .

D. Distance Calculation

In this subsection, we discuss how to define an appropriate
distance metric, which will drive the distance entropy metric
more effectively. Generally, distance metrics can be defined ac-
cording to data types. For example, Euclidean distance can be
used for numeric data, edit distance can be used for character
strings, and so forth. However, these typical relations between
data types and distance metrics are not always useful. For ex-
ample, Euclidean distance is not suitable when dimensions are
incomparable, and on different scales.
To define the distance between tests, a more practical, intel-

ligent way is to learn a distance metric from existing data. Re-
cently, there has been appreciable research on distance metric
learning [18], which can be divided into two categories: super-
vised distancemetric learning, and unsupervised distancemetric
learning. Previous work [18] has illustrated that a learned dis-
tance metric can significantly benefit the accuracy of similarity
calculation compared to the standard Euclidean distance.
Therefore, we can choose different methods to define distance

metrics to drive distance entropy according to actual situations.

III. EMPIRICAL STUDY
In the previous sections, we investigated some properties of

distance entropy in theory. Here, the following research ques-
tions (RQ) are studied empirically to show the efficacy of dis-
tance entropy.

RQ1 Does a high distance entropy imply a high bug detec-
tion rate, when white-box information is unavailable?
RQ2 Does distance entropy outperform those simple di-
versity metrics (i.e., , and )?

A. Subject Programs

We use five real, frequently-used programs as the subject pro-
grams of our empirical study. The five programs come from the
Software-artifact Infrastructure Repository (SIR) [19], which

TABLE II
SUBJECT PROGRAMS

has been widely used in the research of testing techniques. The
information of the five subject programs is shown in Table II.
The general criteria that we use to select programs were that,

first, they must be frequently-used programs. The programs
listed in Table II are used by countless Linux programmers
every day. Second, the scale of programs must be suitable. By
considering both the lines of programs and the sizes of test
pools, we select the largest programs possible from the SIR.
All these test pools were constructed following different al-

gorithms or criteria, each of which may represent a test suite
constructed by a software engineer [19].

B. Methodology
Although these benchmark programs contain some seeded or

real bugs in the SIR, the number of these bugs is too small to
obtain statistical significance in the experiments. Instead, muta-
tion analysis is used.
1) Mutation Analysis: As shown before, mutation analysis

is a widely used technique to evaluate the effectiveness of test
sets [20]. Lots of research work supports that mutation analysis
can provide a good indication of the fault detection capability
of a test set [21]. In our empirical study, mutation analysis is
used to evaluate the efficacy of distance entropy by evaluating
the fault detection capability of test sets. Here, the number of
killed mutants during mutation analysis is used as a metric of
fault detection capability.
In our experiment, mutate.py [43] is used to mutate

benchmark programs. mutate.py is a python script which
can be used to mutate programs directly. It is easy-to-use, and
contains all kinds of sufficient mutation operators [22]. These
mutation operators include the absolute value insertion, which
forces each arithmetic expression to take on a zero value, a
positive value, and a negative value; the arithmetic operator re-
placement, which replaces each arithmetic operator with every
syntactically legal operator; the logical connector replacement,
which replaces each logical connector with several kinds of
logical connectors; the relational operator replacement, which
replaces relational operators with other relational operators;
and the unary operator insertion, which inserts unary operators
in front of expressions. These five mutation operators suffice
to effectively implement mutation testing [22]. Even so, mu-
tate.py also contains some other mutation operators, like
the source constant replacement, which replaces constants in
the source codes with other constants.
After mutation, and manually removing equivalent mutants,

we randomly obtained five hundred executable mutants for each
program. Note that random mutant selection is not inferior to
operator-based mutant selection [23]. By running all tests of



SHI et al.: MEASURING THE DIVERSITY OF A TEST SET WITH DISTANCE ENTROPY 23

TABLE III
RESULTS FOR RQ1 AND RQ2

each program on all its mutants, and comparing the outputs with
those obtained from the original version, a mutation matrix is
established. It contains information about whether a test can kill
a mutant or not. To evaluate the effectiveness of a test set, we
only need to count the number of killed mutants by referring to
the mutation matrix.
2) Test Set Construction: For each program, we randomly

select tests from its test pool. We repeat the process by selecting
different sizes (5, 10, 15, 20, 25, 30, 40, 50) of test sets. For
each size, we randomly select 2500 test sets. We chose 50 as
the upper bound for the experiment because we observed that a
test set of that size usually can achieve the upper bound of fault
detection capability of the test pool.
3) Distance Definition: To calculate distance entropy, as well

as the simple metrics and , we should first calculate the
distances between tests. Therefore, a proper distance metric is
important, otherwise we may get an illusion that distance en-
tropy does not work.
We have discussed a variety of distance metrics in

Section II-D. We also showed that we can learn a distance
metric by data mining techniques. Considering that the tests for
all five benchmark programs are character strings, we simply
choose the edit distance for the tests of all these five programs
to show the general effectiveness of distance entropy.

C. Addressing RQ1
With the mutation matrix, types of test sets, and a distance

definition in hand, we conduct the RQ1 as below.
1) For each test set with a specific size, its distance entropy

, and the number of killed mutants are calculated.
2) Sort the 2500 test sets by distance entropy, and we get a list

of in ascending order of distance entropy.
3) Compute the mean values of distance entropy, and the

number of killed mutants for every 100 neighboring items.
A list of is obtained.

4) Draw each point in a rectangular coordinate
system, and fit a straight line for these scatter dots using
the least squares method. The Pearson correlation coeffi-
cient [24] is calculated to evaluate the goodness of fit.

The results are shown in Table III, which shows that the cor-
relation between distance entropy and the number of killed mu-
tants is very strong, except for the program gzip, which is a
data compression program. The observation shows that distance
entropy can be used to evaluate the effectiveness of test sets, as
well as mutation analysis.
Why does distance entropy not work well for gzip? To find

the reason, the tests and the user manual of gzip are inves-

tigated. We find that the outputs of gzip are heavily deter-
mined by the files which gzip works on. And when we use the
edit distance to calculate the dissimilarity between two tests of
gzip, the contents of the files are ignored. In contrast to gzip,
the other programs depend more on the options and arguments
in the command line strings, which are more sensitive to the edit
distance.

D. Addressing RQ2

In Section II, an example is used to illustrate that distance en-
tropy is better than and in a one-dimensional space.
In this subsection, we will verify the conclusion in practice by
empirical study. We repeat the process of the experiment for the
RQ1 by using and to measure the diversity instead of
the distance entropy.
The Pearson correlation coefficients are also shown in

Table III, which shows that the coefficients of and are
smaller than distance entropy in almost all cases. To make the
conclusion more visible, we give the plots of and for
each program in Fig. 4. As shown in Fig. 4,
and are not strongly related to the number of killed mutants;
and for the program sed, the points are far from a monotone
curve.
For metrics and , they both simply use distance to

measure diversity. Because distance can only be used to mea-
sure the difference between two tests, but not the distribution of
all tests, simply using distance to measure diversity is not suit-
able. For example, only takes the sum of the weights of an
MST into consideration, but does not consider the distribution
of all tests. Similarly, is also not a good metric.
In summary, distance entropy not only outperforms and
, but also its time complexity is asymptotically equal to them

(Theorem 2).

IV. DISCUSSION

A. Threats to Validity

Our empirical study of five real-world, frequently-used pro-
grams allow us to make some important, interesting conclu-
sions. Like any other empirical studies, some threats to the va-
lidity still exist. This section is concluded by considering the
internal, external, and construct threats to the validity of the em-
pirical study.
1) Internal Threats: Threats to internal validity may come

from errors in our implementation of tools used to collect data
and do statistics. To minimize this kind of threat, those tools are



24 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 1, MARCH 2016

Fig. 4. Results of RQ2.

thoroughly tested with a great deal of small examples. In addi-
tion, we try our best to review the codes of those tools manually.

Besides, we try our best to use open source tools, and refer
to their documents. For example, the mutation tool used in our



SHI et al.: MEASURING THE DIVERSITY OF A TEST SET WITH DISTANCE ENTROPY 25

experiment requires us to normalize the source codes of the sub-
ject programs before using it to produce mutants.
Last but not least, we also ensure the correctness of the re-

ported results by repeating our experiment several times for
each program. The consistent results of these repetitions make
us more confident of our conclusions.
2) External Threats: There are also threats to the external

validity of our empirical study. The main external threat is that
the five programs cannot stand for a wide range of all possible
programs. To mitigate this threat, the programs we selected are
all real-world, frequently-used programs. And we downloaded
these programs from SIR, which is a widely used benchmark
source for software testing.
One of the other external threats may be the tool we used to

produce mutants. There are many mutation tools [1] because
mutation analysis has been widely studied. To minimize the ex-
ternal threat, by manual review, we ensure that all kinds of suf-
ficient mutant operators [22] are used in our experiment. It is
a time-consuming effort, but it increases the reliability of our
conclusions.
3) Construct Threats: There are many alternative definitions

of distance. In empirical studies, edit distance is used to drive
distance entropy, because the tests in our benchmarks are char-
acter strings, and edit distance is the most widely-used metric
for the comparison of two character strings.

B. Distance Entropy in Risk-Driven Projects

We usually can expect that about 80% of the bugs come from
20% of the modules in a program. Therefore, some readers may
be concerned that distance entropy, which requires tests evenly
spread, may not work on such programs.
On the one hand, in most situations, we cannot know the dis-

tribution of the software bugs; hence, we have to suppose that
the bugs are evenly spread, because every part of the codes may
have bugs. On the other hand, even though we know the exact
part that contains most of the bugs in a program, we still can use
distance entropy for that part of the program, because we still
do not know how the bugs are distributed in that part.

C. Test Sets With Different Sizes

In the current version, distance entropy can only be used to
compare test sets with the same size. Here, we provide a solution
for test sets with different sizes.
Given a set , and a set ,

suppose , and . We can first compare
and using distance entropy, and then add tests in
into the winner (i.e., if otherwise),

thereby obtaining a better test set (i.e., if
otherwise).

V. RELATED WORK

In this section, we summarize some related work by consid-
ering white-box metrics, diversity-based black-box metrics &
techniques, and the entropy used in software testing. We also
discuss the difference between the existing research and ours.

A. White-Box Metrics
Coverage based metrics are the most commonly used

white-box metrics, which requires white-box information,
e.g., the historical runtime information of tests and program
structure information, to evaluate test sets. Structure coverage,
including branch coverage, condition coverage, etc., is one of
the most commonly used criteria to guide test generation and
selection [3]. In some cases, it also can be used to evaluate the
effectiveness of test sets. However, there are many disputes
about coverage criteria [25], [26]. The most recent report [27]
showed that coverage is not strongly correlated with test suite
effectiveness.
Mutation adequacy score, which is produced by mutation

analysis [1], is another kind of coverage-based adequacy crite-
rion. However, although many techniques have been proposed
to reduce the costs of mutation analysis (e.g., [28]) and detect
equivalent mutants (e.g., [29]), the two issues are still the main
bottlenecks.
As white-box metrics take advantage of white-box informa-

tion, it must be more effective than distance entropy, which does
not need any white-box information. However, we do not think
such a fact degrades the contribution, because white-box met-
rics will cease to be effective when white-box information is un-
available. In this paper, we provide a possible solution for the
scenario where no white-box information can be used, and we
have shown that the black-box metric, distance entropy, could
work well without such white-box information as long as we
define the distance suitably.

B. Diversity-Based Black-Box Metrics & Techniques
There have been some pieces of work studying how to mea-

sure the diversity of tests. Some of them [13], [30] in fact uti-
lize distance metrics or similarity metrics instead of a real di-
versity metric. [31] presented simple distribution metrics, e.g.,
dispersion and discrepancy, to measure the diversity of a test
set. However, they do not have enough ability to distinguish be-
tween different test sets. For instance, different test sets which
can be compared by distance entropy may have the same disper-
sion value, because dispersion only takes the maximin distance
[32] into consideration.
On diversity-based techniques, adaptive random testing [12]

is an extended version of random testing whose effectiveness
is close to the upper bound of software testing effectiveness
[9]. Ledru et al. [33], [34] used string distance instead of Eu-
clidean distance to compare test data. Recently, diversity in the
output space also has been utilized in web applications [4]. Be-
sides, many diversity-based techniques have been proposed for
model-based testing techniques [6], [35]–[37], and event se-
quence-based testing techniques [38].

C. Entropy
Information theory was famously founded by Shannon [17],

and has been widely used in software testing since Agrawal [39]
used information theory to test digital circuits in 1981. Even so,
we were the first to use entropy to measure the diversity of a test
set.
In recent years, entropy has been widely used in fault local-

ization. H. Cheng et al. [40] used entropy and information gain



26 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 1, MARCH 2016

to mine discriminative graphs to identify bug signatures. Roy-
chowdhury et al. [41] studied a family of generalized entropy
models, and presented a fault localization technique based on
generalized mutual information. Shannon entropy is used by
Yoo et al. [42] to prioritize tests based on their ability to reduce
fault localization entropy for fault localization.

VI. CONCLUSION
In this paper, we proposed a novel black-box metric, distance

entropy, to measure the diversity and effectiveness of test sets
without white-box information. By modeling a test set as an
MST, we study some of its important properties theoretically.
We show that, although distance entropy is a function of dis-
tance, it not only outperforms some simple metrics, but also
has an asymptotically equivalent time complexity with those
simple metrics. The empirical study showed that distance en-
tropy, which does not use any white-box metric, has consistent
results with mutation analysis when used to measure the effec-
tiveness of different test sets with the same size. We believe that
distance entropy is a good potential metric to measure the diver-
sity and effectiveness of test sets where white-box information
is usually unavailable.

APPENDIX

The Proof for Theorem 1.
Proof:

1. If all weights in are unique, then the MST of will be
unique. Therefore, the minimum weight set is unique.

2. If the weights in are not unique, will contain more than
one MST. Suppose , and are two different MSTs of
. We only need to prove that, if an edge in is not in
, there must exist an edge in but not in , and their

weights are the same.
Let be an edge that is in but not in . As is an MST,

must contain a cycle. Then must contain at least
one edge that is not in and lies on the cycle. Assume the
weight of is not equal to ; without loss of generality, suppose
the weight of is less than that of . Replacing with in
leads to the result that the spanning tree has a
smaller weight compared to , which contradicts our premise.
Therefore, the weight of must be equal to , and the min-

imum weight set is unique.
The Proof for Theorem 2.
Proof: Suppose the test relationship graph of is
, and its MST is . As , then

, and
.

1. To calculate the distance entry, first, we need to calculate
all distances between tests to establish the test relationship
graph . The time complexity is

Second, an MST is generated from . According to
[15], using a Fibonacci heap, the time complexity of the
Prim algorithm is

Third, according to the definition, the time complexity to
calculate distance entropy is

Therefore, the overall time complexity is

2. For the metric , like distance entropy, the time com-
plexity to produce an MST is . With the MST, the
time complexity to calculate is . There-
fore, the overall time complexity of is also .

3. For the metric , i.e., the sum of all distances, because
, the time complexity of

is .
In conclusion, the time complexity to calculate distance
entropy, , and is the same.

ACKNOWLEDGMENT

The authors wish to express deep appreciation to the anony-
mous reviewers for their insightful and constructive comments
on an early draft of this paper.

REFERENCES
[1] Y. Jia and M. Harman, “An analysis and survey of the development of

mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,
2011.

[2] B. Grun, D. Schuler, andA. Zeller, “The impact of equivalentmutants,”
in Proc. IEEE Int. Conf. Software Testing, Verification, and Validation
Workshops (ICSTW'09), 2009, pp. 192–199.

[3] P. Ammann and J. Offutt, Introduction to Software Testing. Cam-
bridge, U.K.: Cambridge Univ. Press, 2008.

[4] N. Alshahwan and M. Harman, “Augmenting test suites effectiveness
by increasing output diversity,” in Proc. 34th Int. Conf. Software Engi-
neering (ICSE'12), 2012, pp. 1345–1348.

[5] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, “Adaptive random
testing: The art of test case diversity,” J. Syst. Softw., vol. 83, no. 1, pp.
60–66, 2010.

[6] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-
based testing through test case diversity,” ACM Trans. Softw. Eng.
Methodol., vol. 22, no. 1, pp. 6:1–6:42, 2012.

[7] M. Grindal, J. Offutt, and S. Andler, “Combination testing strategies:
A survey,” Softw. Test., Verif., Rel., vol. 15, no. 3, pp. 167–199, 2005.

[8] W. Cochran and G. Cox, Experimental Designs. New York, NY,
USA: Wiley, 1957.

[9] T. Y. Chen and R. Merkel, “An upper bound on software testing effec-
tiveness,” ACM Trans. Softw. Eng. Methodol., vol. 17, no. 3, pp. 1–27,
2008.

[10] A. Arcuri and L. Briand, “Adaptive random testing: An illusion of ef-
fectiveness?,” in Proc. 20th Int. Symp. Software Testing and Analysis
(ISSTA'11), 2011, pp. 265–275.

[11] Y. Zhou, O. Grygorash, and F. Thomas, “Clustering with minimum
spanning trees,” Int. J. Artif. Intell. Tools, vol. 20, no. 01, pp. 139–177,
2011.

[12] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” Adv.
Comput. Sci., vol. 3321, no. 1, pp. 320–329, 2004.

[13] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for cogni-
tively diverse tests: Towards universal test diversity metrics,” in Proc.
2008 IEEE Int. Conf. Software Testing Verification and Validation
Workshop (ICSTW'08), 2008, pp. 178–186.

[14] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases
to achieve effective & scalable prioritisation incorporating expert
knowledge,” in Proc. 18th Int. Symp. Software Testing and Analysis
(ISSTA'09), 2009, pp. 201–211.

[15] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Al-
gorithms. Cambridge, MA, USA: MIT Press, 2001.



SHI et al.: MEASURING THE DIVERSITY OF A TEST SET WITH DISTANCE ENTROPY 27

[16] R. Gallager, P. Humblet, and P. Spira, “A distributed algorithm for
minimum-weight spanning trees,” ACM Trans. Program. Lang. Syst.,
vol. 5, no. 1, pp. 66–77, 1983.

[17] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 1, pp. 379–423, 623–656, 1948.

[18] L. Yang and R. Jin, Distance Metric Learning: A Comprehensive
Survey Michigan State Univ., East Lansing, MI, USA, Tech. Rep.,
2006.

[19] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-
imentation with testing techniques: An infrastructure and its potential
impact,” Empir. Softw. Eng.: Int. J., vol. 10, no. 4, pp. 405–435, 2005.

[20] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection:
Help for the practicing programmer,” IEEE Comput., vol. 11, no. 4, pp.
34–41, 1978.

[21] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?,” in Proc. 27th Int. Conf. Software Engi-
neering (ICSE'05), 2005, pp. 402–411.

[22] A. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf, “An exper-
imental determination of sufficient mutant operators,” ACM Trans.
Softw. Eng. Methodol., vol. 5, no. 2, pp. 99–118, 1996.

[23] L. Zhang, S. Hou, J. Hu, T. Xie, and H. Mei, “Is operator-based mutant
selection superior to random mutant selection?,” in Proc. 32nd ACM/
IEEE Int. Conf. Software Engineering (ICSE'10), 2010, pp. 435–444.

[24] J. Cohen, Statistical Power Analysis for the Behavioral Sciences.
Mahwah, NJ, USA: Lawrence Erlbaum, 1988.

[25] A. Namin and J. Andrews, “The influence of size and coverage on
test suite effectiveness,” in Proc. 18th Int. Symp. Software Testing and
Analysis (ISSTA'09), 2009, pp. 57–68.

[26] K. Aaltonen, P. Ihantola, and O. Seppälä, “Mutation analysis vs. code
coverage in automated assessment of students' testing skills,” in Proc.
ACM Int. Conf. Companion Object Oriented Programming Systems
Languages and Applications Companion (OOPSLA'10), 2010, pp.
153–160.

[27] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proc. 36th Int. Conf. Software Engi-
neering (ICSE'14), 2014, pp. 435–445.

[28] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, “Regression muta-
tion testing,” in Proc. 2012 Int. Symp. Software Testing and Analysis
(ISSTA'12), 2012, pp. 331–341.

[29] D. Schuler and A. Zeller, “Covering and uncovering equivalent mu-
tants,” Softw. Test., Verif., Rel., vol. 23, no. 5, pp. 353–374, 2013.

[30] B. Nikolik, “Test diversity,” Inf. Softw. Technol., vol. 48, no. 11, pp.
1083–1094, 2006.

[31] O. T. C. D. of Adaptive Random Testing, “On test case distributions
of adaptive random testing,” in Proc. 19th Int. Conf. Software Engi-
neering and Knowledge Engineering (SEKE'07), 2007, pp. 141–144.

[32] M. Johnson, L. Moore, and D. Ylvisaker, “Minimax and maximin dis-
tance designs,” J. Statist. Plan. Inference, vol. 26, no. 2, pp. 131–148,
1990.

[33] Y. Ledru, A. Petrenko, and S. Boroday, “Using string distances for
test case prioritisation,” in Proc. 2009 IEEE/ACM Int. Conf. Automated
Software Engineering (ASE'09), 2009, pp. 510–514.

[34] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing test
cases with string distances,” Autom. Softw. Eng., vol. 19, no. 1, pp.
65–95, 2012.

[35] H. Hemmati, A. Arcuri, and L. Briand, “Reducing the cost of model-
based testing through test case diversity,” in Proc. 22nd IFIP WG 6.1
Int. Conf. Testing Software and Systems (ICTSS'10), 2010, pp. 63–78.

[36] H. Hemmati, A. Arcuri, and L. Briand, “Empirical investigation of the
effects of test suite properties on similarity-based test case selection,”
in Proc. 2011 4th IEEE Int. Conf. Software Testing, Verification and
Validation (ICST'11), 2011, pp. 327–336.

[37] H. Hemmati and L. Briand, “An industrial investigation of similarity
measures for model-based test case selection,” in Proc. 2010 IEEE
21st Int. Symp. Software Reliability Engineering (ISSRE'10), 2010, pp.
141–150.

[38] P. Brooks and A. Memon, “Introducing a test suite similarity metric
for event sequence-based test cases,” in Proc. 2009 IEEE Int. Conf.
Software Maintenance (ICSM'09), 2009, pp. 243–252.

[39] V. Agrawal, “An information theoretic approach to digital fault
testing,” IEEE Trans. Comput., vol. C-30, no. 8, pp. 582–587, 1981.

[40] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying bug
signatures using discriminative graph mining,” in Proc. 18th Int. Symp.
Software Testing and Analysis (ISSTA'09), 2009, pp. 141–152.

[41] S. Roychowdhury and S. Khurshid, “A family of generalized entropies
and its application to software fault localization,” in Proc. 6th IEEE
Int. Conf. Intelligent Systems (IS'12), 2012, pp. 368–373.

[42] S. Yoo, M. Harman, and D. Clark, “Fault localization prioritization:
Comparing information theoretic and coverage based approaches,”
ACM Trans. Softw. Eng. Methodol., vol. 22, no. 3, pp. 19:1–19:29,
2013.

[43] Tools for mutation analysis [Online]. Available: https://github.com/
qingkaishi/mutation.git

Qingkai Shi got a B.Eng. from Nanjing University in June 2012. He is a post-
graduate student in the Software Institute, Nanjing University, under the super-
vision of Prof. Zhenyu Chen and Prof. Baowen Xu.
His research interest is in program analysis and testing. He visited the Hong

Kong University of Science and Technology as a visiting postgraduate student
under the supervision of Prof. Charles Zhang from 2013 to 2014.

Zhenyu Chen (M’09) received his bachelor and Ph.D. in mathematics from
Nanjing University in 2001 and 2006, respectively.
He is currently an Associate Professor at the Software Institute, Nanjing Uni-

versity. He worked as a Postdoctoral Researcher at the School of Computer Sci-
ence and Engineering, Southeast University, China. His research interests focus
on software analysis and testing. He has about 70 publications in journals and
proceedings including TOSEM, TSE, JSS, SQJ, IJSEKE, ISSTA, ICST, QSIC,
etc. He has served as PC co-chair of QSIC 2013, AST2013, IWPD2012, and the
program committee member of many international conferences. He has won re-
search funding from several competitive sources such as NSFC.

Chunrong Fang is a Ph.D. student at the Software Institute, Nanjing University
and a visiting Ph.D. student at the University of Maryland, College Park under
the supervision of Prof. Atif Memon. He obtained his B.Eng. with honours from
Nanjing University.
He has published extensively at premium conferences and in journals such

as JSS and SEKE. His current research interest focuses on quality assurance for
mobile programs.

Yang Feng received his B.Eng. and M.Eng. from Nanjing University. He is a
Ph.D. student at the Software Institute at Nanjing University.
With the guidance of Profs. Baowen Xu and Zhenyu Chen, he focuses on

building more intelligent tools to assist software engineering tasks. His cur-
rent research interests include software testing, debugging, program analysis,
and program comprehension. He also has a strong interest in crowdsourcing
techniques, especially crowdsourcing testing, debugging, and task assignment
strategies.

Baowen Xu (M’98) received the B.S., M.S., and Ph.D. degrees in computer sci-
ence fromWuhan University, Huazhong University of Science and Technology,
and Beihang University in 1982, 1985 and 2002, respectively.
He is a Professor in the Department of Computer Science and Technology

at Nanjing University. His main research interests are programming languages,
software testing, software maintenance, and software metrics. He has published
extensively in premiere software engineering conferences and journals such as
TOSEM, TSE, JSS, ICST, QSIC, COMPSAC, etc.


