
Verifying Synchronization for Atomicity
Violation Fixing

Qingkai Shi, Jeff Huang,Member, IEEE, Zhenyu Chen,Member, IEEE, and Baowen Xu,Member, IEEE

Abstract—Atomicity is a fundamental property to guarantee the isolation of a work unit (i.e., a sequence of related events in a

thread) from concurrent threads. However, ensuring atomicity is often very challenging due to complex thread interactions. We

present an approach to help developers verify whether such work units, which have triggered bugs due to certain violations of

atomicity, are sufficiently synchronized or not by locks introduced for fixing the bugs. A key feature of our approach is that it

combines the fortes of both bug-driven and change-aware techniques, which enables it to effectively verify synchronizations by

testing only a minimal set of suspicious atomicity violations without any knowledge on the to-be-isolated work units, thus being more

efficient and practical than other approaches. Besides, unlike existing approaches, our approach effectively utilizes all the inferred

execution traces even they may not be completely feasible, such that the verification algorithm can converge much faster. We

demonstrate via extensive evaluation that our approach is much more effective and efficient than the state-of-the-arts. Besides, we

show that although there have existed sound automatic fixing techniques for atomicity violations, our approach is still necessary and

useful for quality assurance of concurrent programs, because the assumption behind our approach is much weaker. We have also

investigated one of the largest bug databases and found that insufficient synchronizations are common and difficult to be found in

software development.

Index Terms—Atomicity violations, insufficient synchronization, fix, dynamic trace analysis, maximal sound verification

Ç

1 INTRODUCTION

ATOMICITY is a guarantee of the isolation of a work unit,
which is a sequence of related events in a thread, from

other concurrently executing threads. Synchronizations are
commonly used for achieving atomicity [1], [2], [3], but are
very challenging to be placed sufficiently [4]. Our investiga-
tion in one of the largest bug databases, Apache Jira,1 shows
that 26.3 percent problematic synchronizations are insuffi-
cient synchronizations; due to non-determinism, 70.0 per-
cent of them cannot be found within a year after they were
first introduced into the program (Section 6.5). Figs. 1 and 2
present two typical insufficient synchronizations in real
world programs. In Fig. 1, developers try to use synchroni-
zation to eliminate a multi-variable atomicity violation, but
a critical event in the to-be-isolated work unit is excluded
from the critical section. In Fig. 2, although the work units
are synchronized by locks, the lock instances are not equiva-
lent at runtime.

Previous research has proposed many bug detection
techniques [5], [6], [7], [8], [9], [10], [11], [12] to combat
atomicity violations. These techniques are bug-driven,
using bug patterns to recognize all potential atomicity

violations, and thus can determine whether an atomicity
violation still exists after developers fix the program by
synchronization, thereby indirectly verifying whether the
newly introduced synchronizations are sufficient or not.
However, these techniques usually report a large number
of atomicity violations including false alarms,2 and it is
hard for developers to understand which are harmful
and thus should be eliminated [13]. On the other hand,
recent change-aware techniques a.k.a. incremental testing
techniques [14], [15], [16] cannot provide any guarantees
for verifying synchronization, and even may miss insuffi-
cient synchronizations (i.e., cause false negatives). That is
because they are not aware of the bug-patterns, but only
target at code changes (including fixes) which may be
irrelevant to bugs.3

To overcome the weakness of the state-of-the-arts, we
propose a new approach to help developers determine
whether some work units, which should be atomic but are
not and have triggered bugs due to certain atomicity viola-
tions (with single variable or multi-variables), are synchro-
nized sufficiently or not based on dynamic execution traces.
A key observation behind our approach is that when devel-
opers encounter a buggy execution containing atomicity
violations, but do not eliminate them by sufficient synchro-
nizations, then some buggy schedule fragments that violate
atomicity in the execution will still exist. Thus, like the tradi-
tional bug-driven techniques discussed above, we can make
use of the buggy execution to compute all the possible

1. https://issues.apache.org/jira

� Q. Shi, Z. Chen, and B. Xu are with the State Key Lab. for Novel Software
Technology, Nanjing University, Nanjing, China.
E-mail: sqk08@software.nju.edu.cn, {zychen, bwxu}@nju.edu.cn.

� J. Huang is with Texas A&M University, College Station, TX 77843.
E-mail: jeff@cse.tamu.edu.

Manuscript received 30 Aug. 2014; revised 23 June 2015; accepted 5 Sept.
2015. Date of publication 9 Sept. 2015; date of current version 21 Mar. 2016.
Recommended for acceptance by T. Bultan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2015.2477820

2. For example, over 1,300 suspicious atomicity violations were
reported for the program Jigsaw in [12].

3. Ref. [13] reported that developers usually do not fully understand
a bug before fixing, for example, 27 percent of the incorrect fixes are
made by developers who never touch the source code.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 3, MARCH 2016 285

0098-5589� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



buggy schedule fragments according to a complete set of
atomicity violation patterns [4], and test them against the
legal executions of the synchronized program, thereby
verifying whether the synchronizations are sufficient or not.
Besides, our approach is also change-aware, which can
significantly reduce the number of buggy schedule frag-
ments to test.

In our approach, taking advantage of existing SMT solv-
ers [17], we encode the buggy execution as well as the pat-
terns of atomicity violations as constraints to compute a
minimal set of the schedule fragments that may violate
atomicity of the work units. This is different from the tradi-
tional bug-driven techniques that need to report all such
schedule fragments [6], [7], [8], [12]; thus our approach can
be more efficient for verifying synchronization. To ease the
presentation, we will call such schedule fragments as suspi-
cious violations in the paper. We then generate new traces for
the synchronized program, also using the SMT solver,
under the constraints of must-happen-before and lock-mutual-
exclusion [18], to test the computed suspicious violations. To
make our algorithm converge quickly and more effective,
we try to test a maximal number of suspicious violations
every time we generate a new trace, and fully utilize the
generated traces, even they might not be completely feasi-
ble. Underpinned by a sound and maximal theoretical
model and several effective optimizations, our approach
achieves several novel features:

(1) It can effectively verify synchronization without any
knowledge on the to-be-isolated work units whose
atomicity property is violated in the observed buggy
execution. This is important, because developers
usually do not have enough knowledge about the
bug before they synchronize the program [13].

(2) It only tests a minimal set of suspicious violations to
verify synchronizations, thus being very efficient
(Section 3.3.1).

(3) It does not report false positive. And it does not miss
any insufficient synchronization, as long as there

exists a feasible trace, which can be generated based
on the input trace, can manifest it (Section 3.3.2).

(4) It can dramatically speed up the verification process
with the strategies that�1 group and prioritize suspi-
cious violations (Section 4.1), and�2 reschedule gen-
erated traces heuristically (Section 4.2).

We anticipate three typical application scenarios of our
approach. First, during in-house development, when an
execution fails due to atomicity violations, developers
would fix their programs with synchronizations. And then
our approach can be used with the failed execution trace
directly for verifying if the synchronizations for fix are suffi-
cient. Second, when a bug is reported by the users to the
bug database, and the developer would fix it with synchro-
nization. Before fixing, developers usually need to repro-
duce the bug to confirm that it is a real bug. Therefore, since
reproducing a bug is a pre-condition of fixing, we must
have had the original buggy trace before verifying synchro-
nization. The third application scenario is to verify an exist-
ing synchronization. This can be done by firstly removing
the existing synchronizations to create an artificial bug.
Then we can consider the original synchronizations as fixes
for the artificial bug, and verify the synchronizations using
our approach. Recently, there have existed a lot of research
on bug reproduction through record and replay, such as
[19], [20], [21], [22]. These techniques make it possible to
record buggy executions in a compact form and with low
runtime overhead. For long-running programs, we can
break up the execution so that each execution segment has a
tractable size. In our empirical study, we used the recent
lightweight record/replay technique LEAP [19] to record the
input buggy executions.

We have implemented our technique in a prototype tool,
SWAN,4 for Java programs, and evaluated it on a range of
large complex multithreaded applications and compared it
with two state-of-the-art techniques [5], [14]. The evaluation
results show that SWAN is able to detect real insufficient syn-
chronizations using three generated traces on average (effec-
tiveness), and it is much more effective and efficient than the
other techniques (progressiveness). Even when there are hun-
dreds of threads, insufficient synchronization can also be

Fig. 1. Tomcat Bug-46384. The atomicity violation leads to an inconsis-
tency between membership and service. Developers initially commit-
ted an insufficient fix (see the arrows in the top), which was not
discovered until three months later. The correct fix is shown in the bot-
tom of the figure.

Fig. 2. SLING Bug-2812. The insufficient synchronization using a object
field (handler), which is always different for different objects, to syn-
chronize the codes. It will make the global object (handlerMap) broken.

4. SWAN is the acronym of “Synchronization Was A Nightmare”.

286 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 3, MARCH 2016



detected using less than 10 generated traces (scalability).
More importantly, SWAN can help improve the quality of
synchronizations introduced by recent automatic fixing
techniques that become unsound if developers cannot
understand the root cause of a bug before fixing (necessity).
In addition, our empirical study on Apache Jira shows that
insufficient synchronization is common and is difficult to be
found during in-house development (potentiality). We high-
light our contributions as follows:

(1) We present a sound and maximal constraint-based
model to verify synchronizations, by testing a mini-
mal set of suspicious violations, for work units with
single- or multi-variable atomicity violations without
the strong assumption about the knowledge of to-be-
isolated work units (Section 3).

(2) We present two optimizations to make our approach
more effective and scalable (Section 4).

(3) We implement and evaluate SWAN with several large
programs from popular open source projects. The
results demonstrate the effectiveness, progressive-
ness, scalability, and the necessity of our approach.
Moreover, our empirical study suggests that develop-
ers are badly in need of such an approach (Section 6).

2 OVERVIEW

We first present an overview of SWAN (Fig. 3) using a simple
example (Fig. 4). In the example, two work units, u ¼ he1; e2;
e4; e5i and u0 ¼ he8i, should be synchronized to enforce
atomicity. Suppose that developers encounter a buggy exe-
cution (modeled as a trace), tb ¼ he1; e2; e4; e8; e5i, in which a

remote write event e8 sets the shared variable to Null, and
causes the program to throw a NullPointerException

at the local event e5. However, developers do not synchro-
nize the work units sufficiently, excluding two events e1
and e2 of the work unit u from the critical section (see the
comments in Fig. 4). Note that the event e1 and e2 can also
cause atomicity violations, e.g., he1; e8; e2i.

Given the original buggy trace and the synchronization
information provided in the patches, in the pre-processing

phase (see the pre-processing phase in Fig. 3), we firstly
replay the original buggy execution on the patched program
to record a copy of the input buggy trace, which will also
contain the patched synchronization information, i.e., where
the patched synchronizations are performed, and what the
locking objects are at runtime. To ensure successful replay,
when encountering the patched synchronizations, we let
the program skip them, but still record the synchronization
events into the trace. In this example, the trace we record in
the pre-processing phase is t0b ¼ he1; e2; ea3; e4; ea

0
7 ; e8; e5;

er
0
9 ; e

r
6i, in which superscripts a=r and a0=r0 are used to label

the two new pairs of lock acquiring and releasing events.
Compared to the original buggy trace tb, it has only four
more synchronization events. However, t0b is invalid for the
patched program, because the critical sections hea3; e4; e5; er6i
and hea07 ; e8; e5; er

0
9 i are not mutually exclusive. Our approach

starts from the trace t0b, and reorders the events in it to gen-
erate valid traces that contain suspicious violations to
verify if the patched synchronizations are sufficient. This
pre-processing phase is straightforward, and will not be
repeated in the following sections.

We next extract the suspicious violations from t0b accord-
ing to the atomicity violation patterns [4]. We extract suspi-
cious violations from t0b other than tb, because t

0
b contains the

information of the patched synchronizations, which will
help eliminate invalid suspicious violations. Let Oi denote
the order of ei in the trace, Ti the thread of ei,Mi the memory
accessed by ei, and Ai the access type; then we can encode
the pre-processed buggy trace t0b as constraintFt0

b
, i.e.,

Ft0
b
¼

^
O1 < O8 ^O2 < O8;
ðO4 < O8 ^O5 < O8Þ _ ðO8 < O4 ^O8 < O5Þ;
A2 ¼ A4 ¼ A5 ¼ read ^A1 ¼ A8 ¼ write;
M1 ¼M2 ¼M4 ¼M5 ¼M8;
T1 ¼ T2 ¼ T4 ¼ T5 6¼ T8;

8>>>><
>>>>:

which includes the orders, threads, accessed memories, and
access types of all read and write events. Note that the critical
sections hea3; e4; e5; er6i and hea

0
7 ; e8; e

r0
9 i are not mutually exclu-

sive in t0b. For such interactive critical sections,5 we explore
two possible order relations between them, i.e., ðO4 < O8^
O5 < O8Þ _ ðO8 < O4 ^O8 < O5Þ. For other events that
may form high-level data races,6 we will only explore their

Fig. 3. The framework and usage of SWAN.

Fig. 4. A simple example with atomicity violations. The original buggy
trace is indicated by the arrows.

5. We will give a precise definition of interactive critical sections in
Definition 2 in the next section.

6. Events that may form high-level data races means the event pairs
that belong to different threads, but access to the same memory location
and one of the accesses is write. These event pairs can be obtained by
simply traversing the trace instead of using a complex race detector.

SHI ET AL.: VERIFYING SYNCHRONIZATION FOR ATOMICITY VIOLATION FIXING 287



order relations that have existed in t0b. For example, only
O1 < O8 is contained in Ft0

b
, because he1; e8i v t0b, and e1; e8

do not belong to interactive critical sections. This decision is
made based on the intuition that if a bug-triggering atomic-
ity violation is not sufficiently synchronized, it will still
exist in certain executions of the patched program. As an
example that will be shown subsequently, he2; e8; e5i is a
bug-triggering atomicity violations in tb and is not synchro-
nized sufficiently. Thus, it will still exist in certain execu-
tions of the patched program.

We then encode the patterns of single-variable atomicity
violation (Fpattern) using three variable events ex, ey, ez,
as well as constraints between them. Similarly, for multi-
variable atomicity violations, we can use four or more
variable events. To ease the presentation, here we only
consider single-variable atomicity violations

Fpattern ¼
^ Ox < Oy < Oz

ðAx ¼ read ^Ay ¼ write ^Az ¼ readÞ _ � � �
Mx ¼My ¼Mz ^ Tx ¼ Tz 6¼ Ty

ex; ey; ez 2 t0b:

8>><
>>:

As a whole, we can solve the constraints, Ft0
b
^Fpattern, to

get the suspicious violations. The solutions of the con-
straints are the values of Oi; Ti;Mi and Ai for all events in t0b
and all variable events. One of the solutions for the variable
events is fex ¼ e2; ey ¼ e8; ez ¼ e5g, meaning that the sched-
ule fragment he2; e8; e5imay violate atomicity.

Then we can generate traces to test the extracted suspi-
cious violation based on its order constraint (i.e., Fhe2;e8;e5i ¼
O2 < O8 < O5), as well as the lock-mutual-exclusion con-
straints (Flock) that require critical sections protected by the
same lock mutually exclusive, and the must-happen-before
constraints (Fmhb) that enforce those must-be-satisfied order
relations. That is, we will solve the following constraints
(Fmhb ^Flock ^Fhe2;e8;e5i), and generate new traces by

sorting events based on the solution (i.e., the values of
order variables)

Fmhb ¼ O1 < O2 < Oa
3 < O4 < O5 < Or

6 ^Oa0
7

< O8 < Or0
9 ;

Flock ¼ Or0
9 < Oa

3 _Or
6 < Oa0

7 ;

Fhe2;e8;e5i ¼ O2 < O8 < O5:

If the above constraints have no solution, we can confirm
that the suspicious violation he2; e8; e5i has been eliminated
w.r.t. the input trace. Otherwise, we will rerun the program
following the generated trace to validate the suspicious
violation.7 The generated new trace for the example is

t ¼ he1; e2; ea
0

7 ; e8; e
r0
9 ; e

a
3; e4; e5; e

r
6i. Clearly, it is feasible and

rescheduling it will cause the failure again, which indicates
that the synchronization is insufficient.

Note that, when extracting suspicious violations, we
do not get the suspicious violation he1; e8; e2i, which can
be reported by the traditional techniques that attempt to
exhaustively report all suspicious violations [6], [7], [8],
[12]. Although we miss such suspicious violations, the

suspicious violations extracted by our approach are suffi-
cient, and also necessary, for verifying synchronization, no
matter the missed ones are real bugs or not. Therefore, our
approach is more efficient. We will prove the sufficiency
and necessity in the next section.

Because new synchronizations are added into the pro-
gram, in practice, not all the traces generated based on the
original buggy trace are guaranteed to be feasible. This
may affect the effectiveness of synchronization verifica-
tion. In our practical approach, we design a heuristic strat-
egy to fully utilize such infeasible traces to minimize the
risk of false negatives. Moreover, for real world programs
with a large number of threads and synchronization oper-
ations, there may exist enormous suspicious violations to
test, which makes the approach hard to scale. To address
such challenges, we have designed a few optimizations
that make our approach practical for real world large com-
plex programs.

In the next two sections, we first present the theoretical
model of our synchronization verification technique. We
then present our practical approach with the optimizations.

3 THEORY

In our approach, every program execution is modeled as a
trace of events, which must obey some basic constraints
such as the data/control flow of the program and the syn-
chronization semantics. We first give the definition of the
problem we address in this paper and a detailed constraint
modeling of our approach. We then prove the sufficiency
and necessity of the extracted suspicious violations, as well
as the soundness and maximality of the trace generation
algorithm. Finally we discuss the theoretical complexity of
our algorithm to summarize this section.

3.1 Events and Traces

Concurrent object, such as shared memory locations, locks,
etc., is a data object shared by threads [23]. An event is an
operation performed on such a concurrent object with a
group of attributes. For clarity, we consider the following
attributes for each event ei:

� Ti: the thread ei belongs to;
� Mi: the memory location accessed by ei;
� Ai: the access type of ei, which is an element in {read,

write, acquire, release, fork(tp; tq), join(tp; tq)};
� Si: the location of the instruction (that ei corresponds

to) in the source code.
In the definition above, fork(tp; tq) is the operation that

forks a new thread tp in thread tq, and join(tp; tq) is the oper-
ation that waits for the termination of a thread tp in thread
tq. acquire and release are two synchronization operations,
corresponding to acquiring and releasing locks, respec-
tively. In this paper, another synchronization operation wait
is treated as two consecutive release-acquire events, and each
notify event is enforced to be between the two consecutive
release-acquire events, and notifyAll is considered as multiple
notify events.

The variable Si is used to map a concurrency bug report
to the events. It will also be used in one of our optimization
approaches described in Section 4.1.7. We will further discuss the issue in Section 5.2.

288 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 3, MARCH 2016



Besides, we associate each event ei with an order
variable:

� Oi: the order of the event ei in the to-be-computed
schedule or schedule fragment.

For example, O1 < O2 means that event e1 should be
scheduled before e2, and O1 ¼ O2 means the two events can
be scheduled concurrently.

A trace is abstracted as a sequence of events, t ¼ heii.
Note that events in a trace are distinguished from each
other, even though their corresponding instructions in the
source codes are the same. As an example, instructions in
a loop may be executed multiple times, but we associate
different events to each instruction in the loop for differ-
ent iterations. A legal trace (which corresponds to a con-
sistent program execution) must satisfy two basic
constraints [18]:

� must-happen-before: (a) If two events ei and ej belong
to the same thread, and ei occurs before ej in some
execution, then ei must-happen-before ej. (b) A fork
event ei must-happen-before the first event of the
thread ei forks; and the last event of a thread must-
happens-before the corresponding join event.

� lock-mutual-exclusion: Two critical section protected
by the same lock must be mutually exclusive at
runtime. Suppose L is the set of locks that a trace t

contains, then we define the set of critical sections
that protected by the same lock l 2 L as CSl ¼ ftl ¼
hel;acq; . . . ; el;reli v t :�1 Ml;acq ¼Ml;rel ¼ l 2 L;�2Al;acq ¼
acquire ^Al;rel ¼ release;�3 8ei; ej 2 tl; Ti ¼ Tj;�4 8
hel;acq; ei; el;reli v t; Ti ¼ Tl;acq ) hel;acq; ei; el;reli v tlg.

3.2 Problem Definition

Following previous research [4], we define an atomic set as
a set of shared memories that must be accessed atomically
to keep consistency. According to the definition, atomic sets
should be always disjoint with each other.8 A work unit u in
a program is a sequence of events that operate on an atomic
set in a thread, and should be isolated from other concur-
rent work units on the same atomic set. A sufficient synchro-
nization guarantees the atomicity, i.e., isolation, of each
work unit on the same atomic set. On the other side, we say
a work unit u ¼ he1; e2; . . . ; eni is insufficiently synchronized,
if and only if there exists another work unit u0 ¼ he01;
e02; . . . ; e

0
ni on the same atomic set such that there exists an

event e0i 2 u0, as well as a feasible trace t of the program
such that he1; e0i; eni v t.

Then, what we will address in the paper is the problem
of synchronization verification, which is defined as follows.

Definition 1 (Synchronization verification). Given a buggy
trace which violates the atomicity of some unknown work
units, and a synchronization that is expected to enforce their
atomicity, the synchronization verification problem in this
paper is to verify whether these work units are sufficiently
synchronized in sequential consistency memory model.

3.3 Constraint Model & Algorithm

Both of the two phases of SWAN (see Fig. 3), violation extrac-
tion and trace generation, are modeled as constraint solving
problems in our approach.

3.3.1 Extracting Suspicious Violations

In the first phase, we extract a minimal set of the schedule
fragments that may violate atomicity, i.e., suspicious viola-
tions, from the pre-processed buggy trace according to
atomicity violation patterns. We encode the buggy trace t as
constraint Ft , and use the variable events ei; ej; ek (for sin-

gle-variable) and ei; ej; ek; el (for multi-variable) to formulate

the patterns of atomicity violations as constraint Fpattern.

Besides, these variable events must be from t. We then use
an SMT solver to solve the conjunction of these constraints
to get all single- and multi-variable suspicious violations,
respectively:

Ft ^Fpattern ^ ei; ej; ekð; elÞ 2 t: (1)

The solutions of the constraints are the values of
Ai; Ti;Mi and Oi for each event in t ¼ he1; e2; . . .i and each
variable event. Each solution of the constraint implies one
suspicious violation. For example, for a single-variable
atomicity violation pattern, suppose we get a solution
that satisfies Ai ¼ A1 ^ Ti ¼ T1 ^Mi ¼M1 ^Oi ¼ O1, then
ei ¼ e1. Similarly, for example, ej ¼ e2 and ek ¼ e3. In this
case, ðhe1; e2i; he2; e3iÞ will be a suspicious violation
extracted from the trace.

Constraint of trace t (Ft). The constraint of a given trace t

contains the threads, memories, access types, and order
relations of events that may form high-level data races,
which are the bases of suspicious violations in t.

Since any suspicious violation is a schedule fragment
between two different threads, we can model the constraint
Ft as the disjunction of constraints between different threads,
i.e.,Ft(Ti;Tj :

Ft ¼
_

Ti 6¼Tj^ei;ej2t
Ft(Ti;Tj

in which Ft(Ti;Tj contains two parts:

Ft(Ti;Tj ¼ F1
t(Ti;Tj

^F2
t(Ti;Tj

:

(A) Constraints for interactive critical sections F1
t(Ti;Tj

:
Remember that the input of our approach is a buggy trace
with newly-introduced synchronizations. Thus some critical
sections protected by the same lock may be not mutually
exclusive in the input trace. We call such critical sections
interactive critical sections, and define it as below.

Definition 2 (Interactive critical sections). Two critical sec-
tions t1; t2 2 CSl are interactive in a trace t iff. 9e1; e2 2 t1;
e3 2 t2 : he1; e3; e2i v t.

To ease presentation, we denote the set of interactive crit-
ical sections protected by a lock l as CS�l � CSl. For any race
pair, ei and ej, between interactive critical sections, we con-
sider both of the two possible order relations between them,

8. Suppose fa; bg, fb; cg are two atomic sets, but contains the same
memory location b. Because a and b should be accessed atomically, b
and c should be accessed atomically, then all of them should be
accessed atomically, which means they belong to the same atomic sets.

SHI ET AL.: VERIFYING SYNCHRONIZATION FOR ATOMICITY VIOLATION FIXING 289



i.e. Oi < Oj and Oj < Oi. Then the constraints of these race

pairs F1
t(Ti;Tj

can be encoded as following:

F1
t(Ti;Tj

¼
^
l2L

t1 ;t22CS�l
t1 6¼t2

F1
t1;t2
_F2

t1;t2

� �
;

where t1 and t2 is a pair of interactive critical sections in

threads Ti and Tj, and F1
t1;t2

and F2
t1;t2

describe the

two possible orders between the two interactive critical
sections:

F1
t1;t2
¼

^
ei2t1 ;ej2t2

Ai¼ai ;Aj¼aj2fread;writeg
ai¼write_aj¼write

Oi < Oj;
Ai ¼ ai;
Aj ¼ aj;
Mi ¼Mj;
Ti 6¼ Tj;

8>>>><
>>>>:

F2
t1;t2
¼

^
ei2t1 ;ej2t2

Ai¼ai ;Aj¼aj2fread;writeg
ai¼write_aj¼write

Oj < Oi;
Ai ¼ ai;
Aj ¼ aj;
Mi ¼Mj;
Ti 6¼ Tj:

8>>>><
>>>>:

(B) Constraints for other race pairs F2
t(Ti;Tj

: For events that
do not belong to interactive critical sections, we only care
about the order relations existing in the input trace. For
example, if ei and ej are a race pair that does not belong to
interactive critical sections and hei; eji v t, Ft will only con-
tain their order relation in t, i.e. Oi < Oj, without the other
possible order Oj < Oi. Note that even so, the extracted
suspicious violations are sufficient, and also necessary, for
the synchronization verification problem defined in Defini-
tion 1 (see Theorem 1). Then we can model the second part
of Ft(Ti;Tj as follows:

F2
t(Ti;Tj

¼
^

8l2L;t1 ;t22CS�l ::ðei2t1^ej2t2Þ
hei;ejivt

Ai¼ai;Aj¼aj2fread;writeg
ai¼write_aj¼write

Oi < Oj;
Ai ¼ ai;
Aj ¼ aj;
Mi ¼Mj;
Ti 6¼ Tj:

8>>>><
>>>>:

In the worst case, for each pair of threads Ti and Tj the
size of Ft(Ti;Tj is quadratic in the size of events in the

threads.
Atomicity violation patterns (Fpattern). An atomicity viola-

tion (involving one or more variables) happens when an
unserializable schedule breaks the atomicity property of
some work units. Such unserializable schedules must satisfy
one of the constraints in Table 1. These constraints corre-
spond to the set of atomicity violation patterns defined
in [4], which is proved to be complete. For example, the
atomicity violation in Fig. 1 matches with the sixth con-
straint (ID=6) in Table 1.

Algorithm. Algorithm 1 shows how we extract suspicious
violations from an input buggy trace based on Constraint
(1). For each atomicity violation pattern (Line 2), we itera-
tively solve F (initially, it is Constraint (1)) to get suspicious
violations (Lines 4-27). Every time we get a suspicious viola-
tion ’, we add a constraint to F to prevent obtaining the
same solution (Line 24). For example, when we get a suspi-
cious violation, ðhe1; e2i; he2; e3iÞ, the constraint :ðOi ¼ O1^
Oj ¼ O2 ^Ok ¼ O3Þ will be added to F to avoid duplicate

solutions. Meanwhile, we also add its order constraint into
a set C (Line 25) for the next phase, trace generation. For
instance, the order constraints of ðhe1; e2i; he2; e3iÞ will be
put intoC, i.e.C C [ fO1 < O2 < O3g.

Since we do not consider must-happen-before constraint in
Constraint (1), Algorithm 1 may compute some spurious sus-
picious violations, which do not obey the basic constraint, but
can be transformed to their valid counterparts by switching
the orders of their race pairs (Lines 14-22). Fig. 5 provides
an example of such spurious suspicious violations ðhe3; e4i;
he4; e1iÞ, in which O3 < O1, but e1 must-happen-before e3.
Nonetheless, it can be transformed to its valid counterpart,
i.e., ðhe1; e4i; he4; e3iÞ, by switching the orders of both he3; e4i
and he4; e1i. Let us explain a little more about how the spuri-
ous suspicious violation is generated in our approach. First,
in this example, we assume he4; e1i is a subsequence of the
input trace, and is not in the interactive critical sections;
thus O4 < O1 is in Ft . Besides, we assume e3 and e4 are in
the interactive critical sections, and thus O3 < O4 _O4 <
O3 is in Ft . Then we will get one solution such that

TABLE 1
Constraints of Single-Variable (1-5) and Multi-Variable (6-8) Atomicity Violation

ID Order
Constraints

Thread
Constraints

Memory Access Constraints Description

Memory access pair for single-variable atomicity violations: ðhei; eji; hej; ekiÞ

1

Oi < Oj < Ok Ti ¼ Tk 6¼ Tj Mi ¼Mj ¼Mk

Ai ¼ read, Aj ¼ write, Ak ¼ read Expect to get the same value but
do not.

2 Ai ¼ write, Aj ¼ read, Ak ¼ write A temporary result between local
writes is seen to other threads.

3 Ai ¼ write, Aj ¼ write, Ak ¼ read A local read get an unexpected
remote value.

4 Ai ¼ read, Aj ¼ write, Ak ¼ write Remote write is lost.
5 Ai ¼ write, Aj ¼ write, Ak ¼ write

Memory access pair formulti-variable atomicity violations: ðhei; eji; hek; eliÞ
6

Oi < Oj ^Ok < Ol Ti ¼ Tl 6¼ Tj ¼ Tk

Mi ¼Mj Ai ¼ Aj ¼ Ak ¼ Al ¼ write Inconsistent final values.
7 6¼ Ai ¼ Al ¼ write, Aj ¼ Ak ¼ read Observed values of shared

variables are inconsistent.8 Mk ¼Ml Ai ¼ Al ¼ read, Aj ¼ Ak ¼ write

290 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 3, MARCH 2016



O3 < O4 < O1, which results in the spurious suspicious vio-
lation. In fact, a spurious suspicious violation must contain a
high-level data race between a pair of interactive critical sec-
tions. That is because, if newly introduced synchronizations
do not lead to interactive critical sections, the input trace twill
still be feasible without any reordering and Ft will only con-
tain existing order relations in t. Then the suspicious viola-
tions we get from Algorithm 1 must be subsequences of t,
thus obeying themust-happen-before constraint.

Algorithm 1. Extract Suspicious Violations

Input:
t ¼ he1; e2; . . .i is the input buggy trace.

Output:
C ¼ constraint set of suspicious violations.

1 C ? ;
2 for each Fpattern in Table 1 do
3 F Ft ^Fpattern ^ ei; ej; ekð; elÞ 2 t;
4 while F is solvable do
5 Get a solution after solving F;
6 Get the suspicious violation ’ based on the solutions:
7 e.g.
8 Ai ¼ A1 ^ Ti ¼ T1 ^Mi ¼M1 ^Oi ¼ O1 ) ei ¼ e1
9 Aj ¼ A2 ^ Tj ¼ T2 ^Mj ¼M2 ^Oj ¼ O2 ) ej ¼ e2
10 Ak ¼ A3 ^ Tk ¼ T3 ^Mk ¼M3 ^Ok ¼ O3 ) ek ¼ e3
11 ) ’ ðhe1; e2i; he2; e3iÞ;
12 F’  Oi ¼ O1 ^Oj ¼ O2 ^Ok ¼ O3;
13 C’  O1 < O2 < O3;
14 if ’ ðhei; eji; hej; ekiÞ is a single-variable suspicious

violation and Oi > Ok and ei; ej or ej; ek are in interactive
critical sections then

15 ’ ðhek; eji; hej; eiiÞ;
16 end
17 if ’ ðhei; eji; hek; eliÞ is a multi-variable suspicious

violation and Ol < Oi and ei; ej; ek or ej; ek; el are in
interactive critical sections then

18 ’ ðhej; eii; hel; ekiÞ;
19 end
20 if ’ ðhei; eji; hek; eliÞ is a multi-variable suspicious

violation andOj < Ok and ek; el; ei or el; ei; ej are in inter-
active critical sections then

21 ’ ðhej; eii; hel; ekiÞ;
22 end
23 if ’ is not eliminated by synchronization then
24 F F ^ :F’;
25 C C [ fC’g;
26 end
27 end
28 end
29 returnC;

A difference between Algorithm 1 and traditional atom-
icity violation detection techniques [6], [7], [8], [12] is that
the F2

t(Ti;Tj
only cares about one of the two possible orders

of a race pair, thereby reducing a large number of suspi-
cious violations. The sufficiency and necessity of the
extracted suspicious violations is proved as below, which
shows that Algorithm 1 can extract a minimal set of suspi-
cious violations for synchronization verification.

Theorem 1 (Sufficiency and necessity). Given a suspicious
violation ’ ¼ ðhei; eji; hek; eliÞ and its counterpart ’0 ¼
ðhel; eki; hej; eiiÞ, suppose that if 8l 2 L; t1; t2 2 CSl : :
ðei; el 2 t1 ^ ek; ej 2 t2Þ, ’ or ’0 must exist in some feasible
traces of the program. Then suspicious violations computed by
Algorithm 1 are sufficient and necessary for the synchroniza-
tion verification problem defined in Definition 1.9

Algorithm 1 can be considerably parallelized. That is
because suspicious violations of different patterns, threads
and shared memories are independent on each other, and
thus we can extract suspicious violations concurrently
for different patterns, threads and shared memories. The
parallelization strategy enables the phase to complete in
an acceptable time. We will show the empirical results in
Section 6.

3.3.2 Trace Generation & Rescheduling

To verify synchronization, we then generate traces to test
every suspicious violation in C, with the guard of must-hap-
pen-before relation (Fmhb) and lock-mutual-exclusion condition
(Flock). Therefore, we can solve the following constraints to
generate a legal trace that contains one or more suspicious
violations:

Fmhb ^Flock ^
� ^
%�C;’2%

’
�
: (2)

The solutions of the constraints are the values of order vari-
ables Oi, corresponding to all events ei in the trace. To gen-
erate new traces, the events are reordered according to the
values of order variables.

Must-happen-before constraints (Fmhb). Given a trace
t ¼ heii, according to the requirements of must-happen-before
relation described in the previous section, Fmhb contains
two parts: the program order constraint and the thread fork
and join order constraint:

F1
mhb ¼

^
Ti¼Tj^hei;ejivt

Oi < Oj;

F2
mhb ¼

^
ðAi¼forkðtp;tqÞ^Tj¼tpÞ_ðAj¼joinðtp;tqÞ^Ti¼tpÞ

Oi < Oj:

Although the must-happen-before relation is transitive, we
need not to encode its transitivity because “< ” is also tran-

sitive. Therefore, the size of F1
mhb is linear in the length of t.

In most cases, we only have constant number of fork and

join events. Therefore, F2
mhb has constant-level size.

Fig. 5. A single-variable spurious suspicious violation (left), and its valid
counterpart (right).

9. Please find all proofs in the paper in appendices.

SHI ET AL.: VERIFYING SYNCHRONIZATION FOR ATOMICITY VIOLATION FIXING 291



Lock constraints (Flock). The locking semantics require that
critical sections protected by the same lock in t should be
mutually exclusive at runtime. That is, except the first
acquire event, each acquire event must follow an release event
on the same lock. As defined before, L is the set of locks,
and CSl is the set of critical sections that protected by the
lock l, then

Flock ¼
^
l2L

tl1 ;tl22CSl
Tl1 6¼Tl2 :

ðOl1;rel < Ol2;acq _Ol2;rel < Ol1;acqÞ

Since Flock contains every pair of critical sections that share

the same lock, the size of Flock is OðjLj � jCSlj2Þ.
Algorithm. Algorithm 2 shows how we use Constraint

(2) to verify synchronization. The objective of this algo-
rithm is to generate a set of traces such that each suspi-
cious violation can be tested against these traces at least
once. The loop body of the algorithm (Lines 3-17) contains
two main parts. In the first part (Line 3-4), we select a
group of suspicious violations from C, which is expected
to be contained in the generated trace (Line 6), and tested
during rescheduling (Line 7). In the best case, the selected
group contains all the suspicious violations. In the worst
case, we may need to generate traces specifically for each
suspicious violation in C.

Algorithm 2. Synchronization Verification

Input:
C ¼ constraint set of suspicious violations.

Output:
R 2 fPass; Failg: FAIL indicates the sync. is not sufficient.

1 F Fmhb ^Flock;
2 while F is solvable and PC 6¼ ? do
3 PC  f% 2 powersetðCÞ n f?g : F ^ ð

V
’2% ’Þ is solvableg;

4 %b  select-and-pop-a-group-from(PC); //%b 2 PC,
Section 4.1

5 repeat
6 t  solve(F ^ ð

V
’2%b ’Þ); // generate a trace t

7 ðR; %0b; tf ; ttÞ  reschedule(t); //Alg: 3 or Alg. 4,
Section 4.2

8 ifR ¼ FAIL then
9 return FAIL;
10 else
11 F F ^ :Ftf tt ; // avoid duplicate traces
12 C C n %0b; // remove those that have been checked
13 if %0b \ %b 6¼ ? then
14 break; // break to select another group
15 end
16 end
17 until F ^ ð

V
’2%b ’Þ is unsolvable

18 end
19 return PASS;

The second part (Lines 5-17) starts by solving the con-
junction of the basic constraints (Fmhb ^Flock) and the con-
straints of the selected suspicious violations (

V
%�C;’2% ’),

of which the solutions are values of the order variables Oi.
A new trace t can be generated by sorting events based on
the values of their order variables (Line 6). Each generated
trace is rescheduled to observe whether the program will

fail again (Line 7). If so, the synchronization is insufficient
(Lines 8-9). Otherwise, more traces will be generated for
verification.

A basic rescheduling method is to run the program
completely based on the longest feasible10 sub-trace tf of
the generated trace t (tf v t), and stop rescheduling once
no events in t can be scheduled. Algorithm 3 shows the basic
rescheduling method and how it computes tf . In the algo-
rithm, we always try to schedule as many events of each
thread as possible. For example, when t indicates ei should
be executed next, but the real event to execute in Ti is not ei,
we will stop rescheduling any event in Ti, because t

becomes infeasible for Ti. Algorithm 3 also outputs tt,
which contains the remaining events (in the order in which
they appeared in t) that cannot be rescheduled.

Algorithm 3. Basic Rescheduling Method

Input:
t : a legal trace.

Output:
R 2 fPass; Failg: FAIL indicates the sync. is not sufficient.
%0b : suspicious violations tested at runtime.
tf : the longest feasible sub-trace of t.
tt : the unscheduled event sequence.

1 tf  hi; tt  hi; T  ? ;R Pass;
3 for each ei 2 t do
3 if ei can be scheduled and Ti =2 T then
4 tf  tfei; execute ei;
5 if ei exposes the bug thenR Fail; break; end
6 else
7 tt  ttei, T  T [ fTig;
8 end
9 end
10 return ðR; %0b; tf ; ttÞ;

After rescheduling, the negated order constraint of tftt
is added to the basic constraints to avoid generating dupli-
cate traces (Line 11 in Algorithm 2), and the suspicious
violations that have been checked are removed (Line 12 in
Algorithm 2).

Theorem 2 (Soundness). Every insufficient synchronization
reported by Algorithm 2 is real.

Theorem 3 (Maximality). Algorithm 2 does not miss any
insufficient synchronization, as long as there exists a feasible
trace (that can be generated based on the input trace) for mani-
festing it.

Theorem 4 (Complexity). Let the number of thread be a, the
number of shared variables b, and the number of read and
write events of each shared variable in each thread N . Algo-

rithm 2 needs to generate at most Oð2a2�b�N2Þ traces to test
each suspicious violation.

The above theorems show that Algorithm 2 is sound and
maximal, but may generate explosive number of traces in
the worst case. In the next section (Section 4), we present
the heuristics that make our approach practical for complex
real world programs.

10. A feasible trace is defined as a trace that can be produced by a
given program, and any prefix of a feasible trace is also a feasible trace
[24].

292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 3, MARCH 2016



4 PRACTICAL APPROACH

Firstly, we present a grouping and prioritizing strategy that
enables our approach to quickly test multiple suspicious
violations every time we generate a trace. We then present
our re-design of the basic rescheduling method in Algo-
rithm 3 to fully utilize all the generated traces, even though
they may not be completely feasible, so that more suspi-
cious violations can be tested each time.

4.1 Prioritizing & Grouping Suspicious Violations

Recall that we generate traces by solving Constraint (2), i.e.,
Fmhb ^Flock ^ ð

V
%�C;’2% ’Þ, which shows that we can gener-

ate a single trace to test multiple suspicious violations
simultaneously. In the original algorithm (Algorithm 2),
there is no strategy to guide which suspicious violations
should be tested preferentially and grouped together. How-
ever, the order between suspicious violations may greatly
influence the number of traces we need to generate for veri-
fication and hence impact the performance of the algorithm.
For example, if we know which suspicious violation can
expose the insufficient synchronization, we can generate
traces for it more preferentially than others. Since such bug
knowledge is usually unavailable [13], we have designed a
prioritizing and grouping strategy, such that every gener-
ated trace can contain a maximal number of suspicious vio-
lations that are more likely to be harmful, thus our
approach being able to expose insufficient synchronization
faster and being more scalable.

The new strategy addresses this issue by assigning a pri-
ority to each suspicious violation following the rules below:

Rule 1: The suspicious violations that are more likely to
be harmful should be tested preferentially.

In our approach, we extracted all suspicious violations,
in which most of them are harmless, and should not be
tested more preferentially than the seemingly harmful ones.
Therefore, to predict harmful suspicious violations, we
employ an automatic approach [25] to infer atomic sets [4],
which denotes a set of shared memories that should keep
consistent during some work units. The violation of the con-
sistency property of shared memories from the same atomic
set is the root cause of multi-variable atomicity violations.
Clearly, the suspicious violations involving variables in the
same atomic set are more likely to be harmful, and thus we
assign a relatively high priority score (PSh) to them. Sup-
pose the priority score of other suspicious violations is
PSl < PSh.

Rule 2: If testing a suspicious violation implies testing
more other violations, the suspicious violation should be
tested preferentially.

Since the order relations between events are transitive, a
suspicious violation may implies many other suspicious
violations. Testing them preferentially can avoid much
redundant work because we do not need to test the implied
suspicious violations individually. The implication relation
() ) between suspicious violations is defined as follows.

Definition 3 (Implication relation ) ). A suspicious violation
ðhei; eji; hek; eliÞ implies another one ðhep; eqi; her; esiÞ iff one
of the following conditions is satisfied. ) is a partial relation;
we use ) ð’Þ to present the set of untested suspicious viola-
tions that a suspicious violation ’ implies.

� hei; eji ) hep; eqi ^ hek; eli ) her; esi;
� hei; eji ) her; esi ^ hek; eli ) hep; eqi.
Here, hei; eji ) hep; eqi iff ep and ei are the same event or

ep must-happen-before ei, and meanwhile ej and eq are the
same event or ej must-happen-before eq.

Based on Rule 1, we inductively define the priority of a
suspicious violation ’ as S’i2) ð’ÞPSð’iÞ, because covering ’

in a generated trace means that all the suspicious violations
in ) ð’Þ will also be contained in the trace. Here, PSð’iÞ
means the priority score of ’i.

The priorities are dynamic, and can be changed depend-
ing on the rescheduling results.

Rule 3: The priority of a suspicious violation that seems
infeasible should be reduced.

Even though a suspicious violation is contained in a gen-
erated trace, if it is infeasible, it cannot be tested during
rescheduling. Obviously, testing an infeasible suspicious
violation will waste resources. Since we cannot decide
whether a suspicious violation is feasible or not in traces
without running the program, every time after reschedul-
ing, if a suspicious violation ’ is not tested during resched-
uling because of the infeasibility of a generated trace, the
priority score will be reduced by a constant D1, meaning
that ’ is more likely to be infeasible.

Rule 4: If a suspicious violation has been tested, the
priority of other similar ones should be reduced.

In programs that frequently call libraries, or in stress test-
ing when there are many duplicate threads, there will exist
lots of suspicious violations on the same program locations.
If one suspicious violation has been tested and does not
trigger bugs, the other suspicious violations on the same
program locations will be less likely to be harmful. As dis-
cussed in Rule 1, suspicious violations that are more seem-
ingly harmful should be tested preferentially, which will
improve the possibility of triggering bugs.

Recall that we associated another attribute Si to each
event ei to represent its location (i.e., line numbers and
source files) in the program. With this variable, we define
the “similarity” relation as below.

Definition 4 (Location equivalence relation �). A suspicious
violation ðhei; eji; hek; eliÞ is locationally-equivalent toan-
other one ðhep; eqi; her; esiÞ iff. one of the following conditions
is satisfied. � is an equivalence relation; we use � ð’Þ to pres-
ent the equivalence class of a suspicious violation ’.

� Si ¼ Sp ^ Sj ¼ Sq ^ Sk ¼ Sr ^ Sl ¼ Ss;
� Si ¼ Sr ^ Sj ¼ Ss ^ Sk ¼ Sp ^ Sl ¼ Sq.

In our strategy, if any suspicious violation ’i 2� ð’Þ is
tested during rescheduling, the priorities of the untested
suspcious violations in � ð’Þ will be reduced by a constant
D2, to indicate that a similar (i.e. locationally equivalent)
one has been tested.

Effectiveness & correctness. Our strategy always prioritizes
the suspicious violations that:�1 are more likely to be harm-
ful (Rule 1); �2 imply more other suspicious violations
(Rule 2); �3 are more likely to be feasible (Rule 3); �4 have
fewer similar suspicious violations that have been tested
(Rule 4). Because we do not remove any suspicious viola-
tion, our heuristic strategy does not affect the guarantees of

SHI ET AL.: VERIFYING SYNCHRONIZATION FOR ATOMICITY VIOLATION FIXING 293



our approach. In our implementation, we set the parameters
as PSh ¼ 10;PSl ¼ 7;D1 ¼ 1 and D2 ¼ 1. We present the
empirical results in Section 6.

4.2 Heuristic Rescheduling

The basic rescheduling algorithm (Algorithm 3) only uti-
lizes the feasible part tf of a generated trace t, and discards
the infeasible part tt similar to existing techniques [11], [12].
With such a rescheduling algorithm, the suspicious viola-
tions that contain events in tt will not be tested, thus limit-
ing the effectiveness of our approach.

Our observation is that a generated trace, if it is not
completely feasible, can become feasible by adding only a
few events into tt, or removing only a few events from tt.
That is because when fixing bugs, developers are usually
very careful and only synchronize a few lines of code to
avoid excessive performance degradation, thus only affect-
ing a few local control flows [26], especially when the syn-
chronization is insufficient or the synchronized atomicity
violations are harmless.

Therefore, in this section, we look for a transformation
that can transform an infeasible generated trace t to a
feasible one that contains almost all events in t such that
we can test as many suspicious violations as possible
with a generated trace. However, the following theorem
shows that finding such a transformation is undecidable
in general.

Theorem 5 (Undecidability). Given a trace t of a program P
and an insufficiently-synchronized version of the program P 0,
it is undecidable to transform t to a feasible one t0 for P 0 such
that t0 contains the schedule fragments that violate the atomic-
ity property of the to-be-isolated work units.

Therefore, we in turn design the greedy rescheduling
algorithm (see in Algorithm 4), which transforms the gener-
ated trace to a feasible one dynamically at runtime by add-
ing or removing events in the generated trace. The greedy
rescheduling algorithm aims to remove as few events from
the generated trace as possible, so that most suspicious vio-
lations contained in the generated trace can be tested. We
implement the rescheduling algorithm based on a static
control flow analysis, which can determine whether an
event is reachable from another one (Line 7) in the control
flow graph. Only when an event in the generated trace can-
not be scheduled and it is not reachable from any event that
can be executed next, it will be removed (Line 11), because
only at that time, we can confirm that the event is impossi-
ble to be scheduled in the future. If it is still reachable, we
will suspend the thread and wait for the chance to schedule
it (Line 7-9).

Effectiveness & correctness. Similar to other greedy algo-
rithms, the greedy rescheduling algorithm may output a
locally optimal solution which removes as few events as
possible, thus testing as many suspicious violations in a
generated trace as possible. As we argued before, synchro-
nization for atomicity violations usually affect only tiny
parts of the control flows in practice [26], and most parts of
the generated trace are feasible for the synchronized pro-
gram. Therefore, the locally optimal solution usually is also
the globally optimal solution in practice, which enables us
to fully utilize the generated traces, and thus being able

to test far more suspicious violations than traditional techni-
ques that discard infeasible traces [11], [12]. Since the greedy
rescheduling approach only works when traces become
infeasible, it not only does not affect the theoretical guaran-
tees, but also can greatly improve the efficiency and effec-
tiveness of our approach.

Algorithm 4.Heuristic Rescheduling Method

Input:
t : a legal trace.

Output:
R 2 fPass; Failg: FAIL indicates the sync. is not sufficient.
%0b : suspicious violations tested at runtime.
tf : the longest feasible sub-trace of t.
tt : the unscheduled event sequence.

1 tf  hi; tt  hi;R Pass;
2 for each ei 2 t do
3 if ei can be scheduled then
4 tf  tfei; execute ei;
5 if ei exposes the bug thenR Fail; break; end
6 else
7 E"  events that can be scheduled next;
8 if 9e" 2 E" : T" ¼ Ti ^ reachableðe"; eiÞ then
9 execute e";
10 goto Line 3; // retry to schedule ei
11 else
12 tt  ttei;
13 end
14 end
15 end
16 return ðR; %0b; tf ; ttÞ;

5 DISCUSSION

In this section, we discuss the practicality of our approach.

5.1 Input Buggy Trace

Both the pattern search and the trace generation phases of
our approach depend on the input buggy trace. Although
we proposed heuristics to fully utilize the infeasible traces
(Section 4.2), our approach is still sensitive to the original
trace in theory. That is, a different input trace may exercise
different program paths, which may contain events that are
not synchronized. We can integrate symbolic techniques
such as [27] to explore more executions to test the suspi-
cious violations extracted from the input buggy trace. How-
ever, considering the expensive cost of symbolic techniques,
they may limit the usefulness. Nevertheless, the most likely
traces in practice, which can expose an insufficiently syn-
chronized work unit, are those that are close to the input
buggy one. Therefore, using the input buggy trace to gener-
ate traces allows our approach to bias the results toward
real insufficient synchronization that are most likely to
cause problems in practice.

5.2 Oracles

In our approach, we assume that developers can determine
whether a rescheduling execution violates the atomicity of
the same work units. Automatic techniques such as meta-
morphic approaches [28], invariant-based approach [29],

294 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 3, MARCH 2016



etc. can help with addressing such oracle problem. In prac-
tice, this problem may not be too difficult. For example,
when a Java program crashes, it will throw an exception
which indicates which line threw the exception. Besides,
programs usually print necessary logs in debug mode at
runtime. These logs can help developers determine whether
two bugs are caused due to the same reason. Moreover,
even though developers cannot distinguish different buggy
executions, when a program fails during rescheduling, our
approach warns that there still exist bugs in the program
and provides a corresponding trace, which can help devel-
opers further analyze and debug.

5.3 Deadlocks

Our approach focuses on generating and fully utilizing
traces to expose insufficient synchronizations introduced by
developers. Besides insufficient synchronization, develop-
ers may also introduce deadlocks during synchronization.
Determining whether a fix (i.e., synchronization) introduces
deadlocks or not is not the gist of our approach. In fact,
detecting deadlocks has been actively studied in the litera-
tures, e.g., [30], [31]. Our approach can integrate with any of
them to help developers avoid both deadlocks and insuffi-
cient synchronizations.

6 EVALUATION

We have implemented a prototype tool, SWAN, based on
Soot [32] for Java programs. Our implementation is publicly
available.11 In this section, we evaluate SWAN with the fol-
lowing research questions:

� RQ1. Effectiveness. Can SWAN expose real insuffi-
cient synchronizations?

� RQ2. Progressiveness. Is SWAN more effective than
the state-of-the-art techniques?

� RQ3. Scalability. Can SWAN scale to complex execu-
tions that contain large numbers of threads?

� RQ4. Necessity. Considering recent automatical
atomicity violation fix techniques, is SWAN still neces-
sary and useful in practice?

� RQ5. Potentiality. Does insufficient synchronization
commonly exist? How long does it usually take to
verify a synchronization in the real world?

To perform unbiased evaluation, we evaluated SWAN

using several real insufficient synchronizations from open-
source Apache projects,12 and compared with two recent
techniques to show its progressiveness. For the third
research question, we implemented a recent automatic fix
technique for atomicity violations, and verified the synchro-
nizations introduced by the fix technique under different
assumptions. To assess the scalability of SWAN, we used the
Dacapo benchmark, which contains a set of real world
applications with non-trivial memory loads and has self-
configured thread numbers [33]. Also, we conducted an
investigation on Apache Jira, which contains bug reports
(> 200; 000) of almost all Apache projects, to illustrate the
good potentiality of SWAN. All experiments are conducted
on a two-core 3.07 GHz HP machine with 4 GB memory
running Ubuntu 12.04.

6.1 Effectiveness

We have applied SWAN to eight real bugs caused by insuffi-
cient synchronizations (shown in Table 2). The bugs we
selected contain both single-variable and multi-variable
atomicity violations, and also the two cases of insufficient
synchronizations illustrated in Figs. 1 and 2. At Column 8,
we report the time from when an insufficient synchroniza-
tion was performed to when it was found and reported (i.e.
an old bug was reopened or a new bug was reported). Most
of these bugs took more than one year to discover such
insufficient synchronizations. However, with SWAN, devel-
opers only need three minutes on average (Column 9) to
reschedule less than five traces (Column 10) to successfully
verify their synchronizations (Column 11). Note that the
time reported on Column 8 includes the time cost in all
phases of SWAN, i.e., the time for suspicious violation extrac-
tion, trace generation, and rescheduling.

6.2 Progressiveness

To further evaluate the effectiveness of SWAN, we imple-
mented two dynamic techniques, ASSERTFUZZER and CAPP,
and compared them with SWAN. ASSERTFUZZER [5] is an
active testing technique that detects both single- and multi-
variable atomicity violations. CAPP [14] is a change-aware
regression testing technique, which focuses on preemption
prioritization and exploits code changes and their impacts.

TABLE 2
Experimental Results for RQ1—Effectiveness

ID Bug Typey Description Application LOC #Thread Time
$

(Months)
Time with SWAN

(Seconds)
#Run
#Trace

Success?

1 SLING2812 MV nonequivalent AuthCore 1.1.0 6.5K 6 31.7 39.4 1 Y
2 Derby4723 SV lock objects Derby 10.5.1.1 1064K 4 54.7 90.7 1 Y
3 FOP1594 SV Fop 0.95 186K 4 14.7 44.9 3 Y

4 Tomcat46384 MV insufficient Tomcat 5.5.27 535K 11 2.6 96.3 4 Y
5 Derby3308 MV sync. with Derby 10.2.2.0 816K 4 15.6 125 4 Y
6 Derby1573 SV equivalent Derby 10.2.1.6 815K 4 5.8 189 4 Y
7 Derby3909 MV lock objects Derby 10.2.2.0 816K 11 63.1 410 4 Y
8 Derby4124 SV Derby 10.4.2.0 981K 8 44.5 261 4 Y

ySV: single-variable atomicity violation. MV: multi-variable atomicity violation.
$
Time: the time from when an insufficient synchronization is performed to when it is found.

11. http://swan.qingkaishi.com 12. http://www.apache.org

SHI ET AL.: VERIFYING SYNCHRONIZATION FOR ATOMICITY VIOLATION FIXING 295



We repeated the experiment for RQ1 using ASSERTFUZZER

and CAPP. The results of this evaluation are shown in
Table 3. In the table, the data in the first column are the IDs
of benchmark programs, which have been shown in Table 2.
The #Run column shows the execution times for synchroni-
zation verification, if the insufficient synchronization can be
detected. The Success? column shows whether a technique
can successfully detect an insufficient synchronization in 20
execution times. The evaluation shows that SWAN only needs
to repeat executing programs at most four times to verify all
these synchronizations, while ASSERTFUZZER and CAPP can-
not detect half of them in 20 executions. For the cases ASSERT-

FUZZER and CAPP succeed, they usually need at least three
times of execution times compared to SWAN.

Why SWAN is more effective? ASSERTFUZZER is a recent
bug-driven technique that attempts to exhaustively test all
suspicious violations using bug patterns at runtime. SWAN

only tests a subset of them, actually a minimal set of suspi-
cious violations, to verify synchronizations, and thus is
more efficient. On the other hand, CAPP is a recent change-
aware testing technique, which care about code changes,
but is not aware of how to connect code changes with bugs.
Therefore, it cannot provide any guarantees for verifying
synchronization, and was less effective than SWAN.

6.3 Scalability

The scalability of SWAN depends on the number of traces
that will be generated for verification. If a program needs to
be rescheduled too many times to verify a synchronization,
our approach will be not so interesting.

Obviously, the number of generated traces depends on
the complexity of an input trace. An input trace that con-
tains more write operations on shared memories has more
high-level data races, thus being more difficult to verify syn-
chronizations (Theorem 4). Hence, we select three represen-
tative programs from the Dacapo benchmark suite in the
evaluation, which have different percentages of write opera-
tions. The three programs are (1) Avrora, a program that
contains the highest proportion of write operations (70 per-
cent read, 30 percent write) in Dacapo; (2) Tsp, which has
the normal percentage of read and write operations (89 per-
cent read, 11 percent write); (3) and Moldyn, in which almost
all the operations accessing shared memory locations are
read operations (99 percent read, 1 percent write).

We studied the number of traces generated by SWAN

using 4 to 128 threads for each program. For each thread
number, we first record a trace of its execution, and

extracted all suspicious violations from it. We then ran-
domly select one of the extracted suspicious violations as
the target to synchronize, and insert synchronization to sim-
ulate the fixes. To avoid bias, we repeated our approach 100
times for each thread number, and calculated the average
number of traces generated by SWAN.

The results of the evaluation are shown in Fig. 6, which
show that the growth rate of the number of generated traces
is very slow. More importantly, the maximal number of
traces generated by our algorithm does not exceed 6, which
means developers can verify their synchronizations very
efficiently, and our approach can scale well to programs
that contain hundreds of threads.

6.4 Necessity

Recently, there have existed several automatic fixing techni-
ques for atomicity violations, which can provide soundness
guarantees [1], [2], [3]. In this case, it is a natural question
that, is our approach still necessary and useful in practice?
For this research question, we implemented one of the most
recent fixing techniques, Axis [3] (other techniques are simi-
lar), and used SWAN to verify the synchronization intro-
duced by Axis in two contexts using the same benchmarks
described before.

In the first context, we provided Axis with the complete
information about the to-be-isolated work units, including
all involved variables and statements. Using SWAN, we vali-
dated the soundness of Axis, which guarantees to eliminate
a given atomicity violation.

Considering that it is usually impossible for a developer
to obtain a complete information of a bug [13], in the
second context, we randomly hide some information of
the to-be-isolated work units. To make the experiment more
comprehensible, we conducted a case study of the bug
report FOP-1594 shown in Fig. 7. The bug contains three
suspicious violations he1; e8; e2i, he2; e8; e4i and he1; e8; e4i
that satisfy the constraints in Table 1. Providing either the
first or the second one (but not both) to Axis will lead to
insufficient synchronization (Figs. 7b and 7c), because Axis
can only fix the input atomicity violations but have no addi-
tional component to inspect whether the input information
is complete or not. Interestingly, the insufficient synchroni-
zation introduced by Axis in Fig. 7c is the same as that in
the bug report FOP-1594, and SWAN successfully exposed it.

In summary, recent automatic fixing techniques can
guarantee to synchronize atomicity violations sufficiently,
but this is true under the assumption that the input bug
information is complete. This assumption is too strong in
practice [13]. In contrast, SWAN is able to find all these insuf-
ficient synchronizations with a weaker and more practical

TABLE 3
Comparison

ID SWAN ASSERTFUZZER CAPP

#Run Success? #Run Success? #Run Success?

1 1 Y 8 ð" 7Þ Y 7 ð" 6Þ Y
2 1 Y 6 ð" 5Þ Y 10 ð" 9Þ Y
3 3 Y 9 ð" 6Þ Y - N
4 4 Y - N 9 ð" 5Þ Y
5 4 Y 18 ð" 14Þ Y 11 ð" 7Þ Y
6 4 Y - N 19 ð" 15Þ Y
7 4 Y - N - N
8 4 Y 13 ð" 9Þ Y - N

Fig. 6. Scalability. Traces versus Threads.

296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 3, MARCH 2016



assumption that developers are not required to point out
where the bug-triggering atomicity violations locate and
which variables are involved in. Therefore, our approach is
still necessary and useful, and to some extent, more practi-
cal than existing automatic fixing techniques.

6.5 Potentiality

Previous work [34] has shown that about 2/3 of non-
deadlock concurrency bugs are atomicity violations, which
can be fixed by synchronizations. And because the develop-
ers and the code reviewers often may not have sufficient rel-
evant knowledge on bugs, they usually cannot completely
fix bugs, or even introduce new bugs [13].

To further understand the potentiality of our approach
in the real world, we investigated the bug database of
Apache projects, i.e., Apache Jira, which contains more
than 200; 000 bugs, to study the characteristics of insuffi-
cient synchronization.

To effectively collect concurrency bugs related to syn-
chronization, similar to the previous work [34], we used
a large set of keywords like “race”, “synchronization”,
“concurrency”, “lock”, “atomic” and their variations to
search for related bug reports. From the thousands of bug
reports that we obtained, we manually checked them and
got 133 related bugs that have clear descriptions. Unfortu-
nately, such manual work cannot be replaced by automatic
techniques. To minimize subjectivity, we tried our best to
conduct a double verification of the total synchronization-
related bugs that we obtained by manual search.

In the 133 bug samples, 71.0 percent bugs are synchro-
nized correctly, and the others are problematic,13 which
contains many insufficient synchronization (7.5 percent in

the total, and 26.3 percent in the problematic samples). We
also studied the days that developers needed to verify syn-
chronization for atomicity violations. We found that even
though some bugs were fixed correctly by synchronization,
they still cost more than a month (31.6 percent) or even a
year (5.3 percent) to confirm the correctness. Our investiga-
tion also reveals that it is difficult to find insufficient syn-
chronization because insufficient synchronizations can
indeed reduces the occurrence possibility of an atomicity
violation. Only 30 percent of the insufficient synchroniza-
tions could be found in a year after they were introduced
into the program.

In summary, insufficient synchronizations are pervasive
in real world programs, and manually reasoning such insuf-
ficient synchronizations is time-consuming. An automatic
synchronization verification technique like ours will be very
useful for improving the effectiveness of concurrency bug
fixing in practice.

7 RELATED WORK

We summarize the related work in this section, and com-
pare them with ours.

Fixing techniques. Synchronization is the most commonly-
used method [1], [2], [3] to eliminate atomicity violations,
which is an important class of concurrency errors [34]. All
these fix techniques depend on the assumption that their
inputs are the exact bug-triggering atomicity violations, oth-
erwise unnecessary and insufficient synchronization will be
introduced. However, although these techniques usually
design strategies to avoid deadlocks, only a few of them [1],
[2] use simple methods to test whether work units are suffi-
ciently synchronized or not. Our approach has a weaker
and more practical assumption that we only has a bug-trig-
gering execution without any other knowledge about the to-
be-isolated work units, which can help improve the quality
of synchronizations introduced by these techniques.

Predictive techniques. A large number of techniques have
been proposed for detecting or predicting concurrency
bugs, including predictive trace analysis techniques [12],
[35], [36], which analyze traces of a program and report
suspicious read/write patterns in the program; active test-
ing techniques [5], [10], [11], which test a program by
weaving threads to expose bugs with high possibility;
static analysis techniques [37], which statically analyze a
whole program for bug prediction; and model checking
techniques [38], [39], [40], which detects concurrency bugs
by searching schedule space exhaustively with a given
model. However, these techniques may waste resources
on unrelated codes when used for verifying synchroniza-
tion. Our approach can help developers determine
whether the work units, which have triggered a bug due
to atomicity violation, have been synchronized sufficiently
or not by testing only a minimal set of suspicious viola-
tions, even though they do not know where the bug
is [13]. In addition, unlike existing techniques, such as
[11], [12], our approach fully utilizes infeasible traces,
which improves both the effectiveness and efficiency.

Regression testing techniques. Regression testing techni-
ques for concurrent programs usually take code changes
into consideration like our approach. These techniques are

Fig. 7. Case study. (a) Three kinds of arrows indicate three possible bug-
triggering atomicity violations (Table 1), in which III is the root cause. (b)
The insufficient sync. introduced by Axis, when I is the input. (c) The
insufficient sync. introduced by Axis, when II is the input. It is the same
as that in the bug report FOP-1594.

13. The synchronization that may affect performance, but not cor-
rectness is not considered problematic in this paper.

SHI ET AL.: VERIFYING SYNCHRONIZATION FOR ATOMICITY VIOLATION FIXING 297



also known as change-aware or incremental testing techni-
ques. Typically, such techniques include regression model
checking [15] and delta execution [26], which focus on how
to speed up regression testing for concurrent programs;
change-aware preemption prioritization [14], which focuses
on preemption prioritization by exploiting code changes
and their impacts; and mutual replay techniques [16], which
can allow a recorded execution of an application to be
replayed with a patched version of the application, but can-
not provide any guarantee for synchronization verification.
The weakness of these techniques are their strong assump-
tion on code changes. That is to say, they only focus on code
changes that are assumed to be related with the bugs to fix.
A recent report [13] shows that there may not exist any rela-
tion between code changes and bugs, because developers
may not understand a bug before fixing. Our approach
introduces bug-driven approaches into change-aware tech-
niques, and can dramatically improve the effectiveness of
synchronization verification.

Using SMT solvers. The idea using constraints and SMT
solvers for concurrent program analysis has been explored
before our approach. It is a widely-used method to encode
traces as constraints, by solving which concurrency bugs
like data races and deadlocks can be exhaustively detected
[18], [36], [41], [42], [43], [44]. In addition, Cerny et al. [45]
proposed semantics-preserving program transformations
(like lock inserting and instruction reordering) by encoding
traces as constraints, which can help developers fix concur-
rency bugs and improve execution efficiency. Huang et al.
[22] encoded a buggy execution as constraints. Solving the
constraints using SMT solvers can yield a trace that can
reproduce the concurrency bug. The work in [46] encoded
both control-flow and data-flow information into con-
straints, and generated both traces and the input data to
drive concurrent program testing. In addition, Deshmukh
[47], [48] proposed a static approach to encode lock orders
as constraints to detect deadlocks caused by incorrect usage
of libraries. Our approach is different from the above ones,
because it is applied in a different application scenario,
where a buggy trace and its corresponding fix information
are encoded together as constraints. We solve the con-
straints to get a minimal set of suspicious atomicity viola-
tions, and generate new traces containing them to verify if a
fix is sufficient.

8 CONCLUSION

We have presented a synchronization verification technique
as well as a tool prototype, SWAN, to help developers avoid
insufficient synchronization by testing a minimal set of
suspicious violations. Our technique combines the fortes
of both bug-driven and change-aware techniques, which
enables SWAN to effectively verify synchronization with
a weaker and more practical assumption than existing tech-
niques that developers usually do not know what variables
are involved in bug-triggering atomicity violations before
they synchronize the program. SWAN is based on a
sound and maximal model and is practical through a few
optimizations. Our evaluation on real world programs
demonstrates the effectiveness, progressiveness, scalability,
necessity and potentiality of our approach.

APPENDIX A
PROOF OF THEOREM 1: SUFFICIENCY

AND NECESSITY

Proof. (Sketch) Firstly, all suspicious violations we extract
conform to the unserializable interleaving patterns in
Table 1, which are proved to be complete [4]. Clearly,
searching for all these patterns are both sufficient and
necessary, because we do not have any knowledge about
the atomicity violations in the program.

Secondly, to prove the sufficiency, we only need to
prove that if two work units are not synchronized suffi-
ciently, there must exist at least one harmful atomicity
violation of the work units that can be extracted by
Algorithm 1.

Suppose the bug-triggering atomicity violation in
the input trace t is ’ ¼ ðhei; eji; hek; eliÞ. If it involves
only a single variable, then ej ¼ ek. Then we discuss

two cases.
Case 1: ’ is not eliminated by the newly-introduced

synchronization. In this case, there must exist a trace of
the program that can contain ’, and since hei; eji;
hek; eli v t, the orders Oi < Oj and Ok < Ol will be con-
tained in Ft; thus Algorithm 1 can extract it.

Case 2: ’ is eliminated by the newly-introduced
synchronization, and there exist another harmful
atomicity violation ’0 ¼ ðhep; eqi; her; esiÞ that belongs

to the same work units and is not eliminated. Accord-
ing to the patterns of atomicity violations, ’00 ¼ ðhes; eri;
heq; epiÞ must also be an atomicity violation that

belongs to the same work units and is not eliminated.
Suppose the interactive critical sections that eliminate
’ is t1 and t2, t1; t2 2 CS�l . In this case, one of the race

pairs, hep; eqi and her; esi, must belong to t1 and t2. Oth-

erwise, ’0 and ’00 do not belong to the same work units
with ’.

There are five sub-cases to discuss (see Fig. 8). In
Cases 2.1, 2.2 and 2.3 (Figs. 8a, 8b and 8c), er and es do
not belong to the interactive critical sections, then ’0 and
’00 must be a multi-variable atomicity violation because
ep 6¼ es ^ eq 6¼ er.

For Cases 2.1 and 2.2, since we explore both Op < Oq

and Oq < Op in Ft , then if Or < Os in the input trace,
our approach can get ’0, otherwise, our approach can
get ’00.

For Case 2.3, it must be Os < Or in the input trace,
otherwise t1 and t2 must be mutually exclusive in the
input trace, thus contradicting to our assumption that t1
and t2 has eliminated ’. Since Oq < Op is contained in

Ft, our approach can get ’00.
In Cases 2.4 and 2.5, (Figs. 8d and 8e), er belongs to

one of the interactive critical sections. Then ’0 may be a
single-variable atomicity violation (er ¼ eq) or a multi-

variable atomicity violation (er 6¼ eq).
For Case 2.4, if Or < Os in the input trace, since we

explore both Op < Oq in Ft, we can get ’0 in our
approach. Otherwise, we will get ’00, which is spurious,
and will be transformed to its valid counterpart ’0 at
Lines 14-22 in Algorithm 1. Similarly, for Case 2.5, we
can get ’00 in our approach.

298 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 3, MARCH 2016



Finally, we prove the necessity. Case 1 shows that
the order relations in F2

t(Ti;Tj
is necessary. Case 2 shows

that order relations in F1
t(Ti;Tj

is necessary. Since we do

not have any knowledge on the to-be-isolated work
units and do not know what suspicious violations are
harmful, any suspicious violations composed by the
two kinds of order relations are necessary for verifying
synchronizations. tu

APPENDIX B
PROOF OF THEOREM 2: SOUNDNESS

Proof. (Sketch) Soundness is straightforward, because we
reschedule the generated traces, and when the program
fails, we can report a real insufficient synchronization. tu

APPENDIX C
PROOF OF THEOREM 3: MAXIMALITY

Proof. (Sketch) Theorem 1 has shown that the sufficiency of
the extracted suspicious atomicity violations. Then the
maximality is straightforward, because Algorithm 2 gen-
erates traces that satisfy Constraint (2), and only removes
tested traces, and Algorithm 3 does not miss reschedul-
ing any generated feasible trace. tu

APPENDIX D
PROOF OF THEOREM 4: COMPLEXITY

Proof. (Sketch) In the worst case, there exist Oða2 � b�N2Þ
high-level data races in the trace, and we need to gener-
ate all legal traces that obey Fmhb ^Flock ^F’. Since
each high-level race has two possible orders to schedule,

in theory, it can generate Oð2a2�b�N2Þ traces. tu

APPENDIX E
PROOF OF THEOREM 5: UNDECIDABILITY

Proof. (Sketch) Firstly, finding such a best transformation
requires running P 0 because predicting the executions
of a program is undecidable. Suppose the introduced
synchronization in P 0 changes some control flow in the
program, which results in an infinite loop, then finding t0

is undecidable, because it is undecidable to detect an
infinite loop. tu

ACKNOWLEDGMENTS

The authors wish to express deep appreciation to the anony-
mous reviewers for their insightful and constructive com-
ments on an early draft of this paper. This research is
supported, in part, by National Basic Research Program
of China (973 Program 2014CB340702), National Natural
Science Foundation of China (Grant No. 61170067,
61373013). The author, J. Huang, is partially supported by
the Google Faculty Research Award. Z. Chen and B. Xu are
the corresponding authors.

REFERENCES

[1] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomic-
ity-violation fixing,” in Proc. 32nd ACM SIGPLAN Conf. Program.
Language Des. Implementation, 2011, pp. 389–400.

[2] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated con-
currency-bug fixing,” in Proc. 10th USENIX Conf. Operating Syst.
Des. Implementation, 2012, pp. 221–236.

[3] P. Liu and C. Zhang, “Axis: Automatically fixing atomicity viola-
tions through solving control constraints,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 299–309.

[4] M. Vaziri, F. Tip, and J. Dolby, “Associating synchronization con-
straints with data in an object-oriented language,” in 33rd ACM
SIGPLAN-SIGACT Symp. Principles Program. Languages, 2006,
pp. 334–345.

[5] Z. Lai, S.-C. Cheung, and W. K. Chan, “Detecting atomic-set seri-
alizability violations in multithreaded programs through active
randomized testing,” in Proc. 32nd ACM/IEEE Int. Conf. Softw.
Eng., 2010, pp. 235–244.

[6] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing atomicity viola-
tion bugs from their hiding places,” in Proc.14th Int. Conf. Architec-
tural Support Program. Languages Operating Syst., 2009, pp. 25–36.

[7] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “AVIO: Detecting atomicity
violations via access interleaving invariants,” in Proc. 12th Int.
Conf. Architectural Support Program. Languages Operating Syst.,
2006, pp. 37–48.

[8] C. Flanagan and S. N. Freund, “Atomizer: A dynamic atomicity
checker for multithreaded programs,” in Proc. 31st ACM
SIGPLAN-SIGACT Symp. Principles Program. Languages, 2004,
pp. 256–267.

[9] L. Wang and S. D. Stoller, “Accurate and efficient runtime detec-
tion of atomicity errors in concurrent programs,” in Proc. 11th
ACM SIGPLAN Symp. Principles Practice Parallel Program., 2006,
pp. 137–146.

[10] C.-S. Park and K. Sen, “Randomized active atomicity violation
detection in concurrent programs,” in Proc. 16th ACM SIGSOFT
Int. Symp. Found. Softw. Eng., 2008, pp. 135–145.

[11] F. Sorrentino, A. Farzan, and P. Madhusudan, “PENELOPE:
Weaving threads to expose atomicity violations,” in Proc. 18th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2010, pp. 37–46.

[12] J. Huang and C. Zhang, “Persuasive prediction of concurrency
access anomalies,” in Int. Symp. Softw. Testing Anal., 2011, pp. 144–
154.

[13] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N. Bairavasun-
daram, “How do fixes become bugs?” in Proc. 19th ACM SIGSOFT
Symp. 13th Eur. Conf. Found. Softw. Eng., 2011, pp. 26–36.

[14] V. Jagannath, Q. Luo, and D. Marinov, “Change-aware preemp-
tion prioritization,” in Proc. Int. Symp. Softw. Testing Anal., 2011,
pp. 133–143.

Fig. 8. Cases for proving Theorem 1. The critical sections must be inter-
active in the input trace, because we assume that the bug-triggering
atomicity violation is eliminated by the critical sections.

SHI ET AL.: VERIFYING SYNCHRONIZATION FOR ATOMICITY VIOLATION FIXING 299



[15] G. Yang, M. B. Dwyer, and G. Rothermel, “Regression model
checking,” in Proc. IEEE Int. Conf. Softw. Maintenance, 2009,
pp. 115–124.

[16] N. Viennot, S. Nair, and J. Nieh, “Transparent mutable replay for
multicore debugging and patch validation,”in Proc. 18th Int. Conf.
Architectural Support Program. Languages Operating Syst., 2013,
pp. 127–138.

[17] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors
and arrays,” in Proc. 19th Int. Conf. Comput. Aided Verification,
2007, pp. 519–531.

[18] J. Huang, P. O. Meredith, and G. Rosu, “Maximal sound predic-
tive race detection with control flow abstraction,” in Proc. ACM
SIGPLAN Conf. Program. Language Des. Implementation, 2014,
pp. 36–47.

[19] J. Huang, P. Liu, and C. Zhang, “Leap: Lightweight deterministic
multi-processor replay of concurrent Java programs,” in Proc. 18th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2010, pp. 207–216.

[20] T. Elmas, J. Burnim, G. C. Necula, and K. Sen, “Concurrit: A
domain specific language for reproducing concurrency bugs,” in
Proc. 34th ACM SIGPLAN Conf. Program. Language Des. Implemen-
tation, 2013, pp. 153–164.

[21] J. Zhou, X. Xiao, and C. Zhang, “Stride: Search-based determin-
istic replay in polynomial time via bounded linkage,” in Proc. 34th
Int. Conf. Softw. Eng. 2012, 892–902.

[22] J. Huang, C. Zhang, and J. Dolby, “CLAP: Recording local execu-
tions to reproduce concurrency failures,” in Proc. 34th ACM
SIGPLAN Conf. Program. Language Des. Implementation, 2013,
pp. 141–152.

[23] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness con-
dition for concurrent objects,” ACM Trans. Program. Languages
Syst., vol. 12, no. 3, pp. 463–492, 1990.

[24] T. F. Şerb�anuţ�a, F. Chen, and G. Roşu, “Maximal causal models
for sequentially consistent systems,” in Proc. 3rd Int. Conf. Runtime
Verification, 2012, pp. 136–150.

[25] P. Liu, J. Dolby, and C. Zhang, “Finding incorrect compositions of
atomicity,” in Proc. 9th Joint Meet. Found. Softw. Eng., 2013,
pp. 158–168.

[26] J. Tucek, W. Xiong, and Y. Zhou, “Efficient online validation with
delta execution,” in Proc. 14th Int. Conf. Architectural Support Pro-
gram. Languages Operating Syst., 2009, pp. 193–204.

[27] C. Wang, R. Limaye, M. Ganai, and A. Gupta, “Trace-based sym-
bolic analysis for atomicity violations,” in Proc. 16th Int. Conf. Tools
Algorithms Construction Anal. Syst., 2010, vol. 6015, no. 1, pp. 328–
342.

[28] H. Liu, F. Kuo, D. Towey, and T. Chen, “How effectively does
metamorphic testing alleviate the oracle problem?” IEEE Trans.
Softw. Eng., vol. 40, no. 1, pp. 4–22, Jan. 2014.

[29] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer, “Inferring better
contracts,” in Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 191–200.

[30] Y. Cai and W. K. Chan, “MagicFuzzer: Scalable deadlock detec-
tion for large-scale applications,” in Proc. 34th Int. Conf. Softw.
Eng., 2012, pp. 606–616.

[31] D. Marino, C. Hammer, J. Dolby, M. Vaziri, F. Tip, and J. Vitek,
“Detecting deadlock in programs with data-centric syn-
chronization,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 322–331.

[32] R. Vall�ee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V.
Sundaresan, “Soot: A Java bytecode optimization framework,” in
Proc. Conf. Centre Adv. Stud. Collaborative Res., 1999, p. 13.

[33] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A.
Phansalkar, D. Stefanovi�c, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The DaCapo benchmarks: Java benchmarking
development and analysis,” in Proc. 21st Annu. ACM SIGPLAN
Conf. Object-Oriented Program. Syst. Languages Appl., 2006, pp. 169–
190.

[34] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug character-
istics,” in Proc. 13th Int. Conf. Architectural Support Program. Lan-
guages Operating Syst., 2008, pp. 329–339.

[35] F. Chen, T.-F. Serbanuta, and G. Rosu, “jpredictor,” in Proc. ACM/
IEEE 30th Int. Conf. Softw. Eng., 2008, pp. 221–230.

[36] V. Kahlon and C. Wang, “Universal causality graphs: A precise
happens-before model for detecting bugs in concurrent pro-
grams,” in Proc. 22nd Int. Conf. Comput. Aided Verification, 2010,
pp. 434–449.

[37] C. Flanagan and S. Qadeer, “A type and effect system for atom-
icity,” in Proc. Conf. Program. Language Des. Implementation, 2003,
pp. 338–349.

[38] S. Burckhardt, R. Alur, and M. M. Martin, “CheckFence: Checking
consistency of concurrent data types on relaxed memory models,”
in Proc. 28th ACM SIGPLAN Conf. Program. Language Des. Imple-
mentation, 2007, pp. 12–21.

[39] O. Shacham, M. Sagiv, and A. Schuster, “Scaling model checking
of dataraces using dynamic information,” J. Parallel Distrib. Com-
put., vol. 67, no. 5, pp. 536–550, 2007.

[40] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I.
Neamtiu, “Finding and reproducing Heisenbugs in concurrent
programs,” in Proc. 8th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2008, pp. 267–280.

[41] C. Wang, M. Ganai, and A. Gupta, “Symbolic predictive analysis
for concurrent programs,” Formal Aspects Comput., vol. 23, no. 6,
p. 256, 2011.

[42] Y. Smaragdakis, J. Yi, C. Flanagan, J. Evans, and C. Sadowski,
“Sound predictive race detection in polynomial time,” in Proc.
39th Annu. ACM SIGPLAN-SIGACT Symp. Principles Program. Lan-
guages, 2012, pp. 387-400.

[43] A. Gupta, T. A. Henzinger, A. Radhakrishna, R. Samanta, and T.
Tarrach, “Succinct representation of concurrent trace sets,” in
Proc. 42nd Annu. ACM SIGPLAN-SIGACT Symp. Principles Pro-
gram. Languages, 2015, pp. 433–444.

[44] J. Huang, Q. Luo, and G. Rosu, “GPredict: Generic predictive con-
currency analysis,” in Proc. 37th Int. Conf. Softw. Eng., 2015,
pp. 847–857.

[45] P. Cerny, T. A. Henzinger, A. Radhakrishna, L. Ryzhyk, and T.
Tarrach, “Efficient synthesis for concurrency by semantics-pre-
serving transformations,” in Proc. 25th Int. Conf. Comput. Aided
Verification, 2013, pp. 951–967.

[46] A. Farzan, A. Holzer, N. Razavi, and H. Veith, “Con2colic
testing,” in Proc. 9th Joint Meet. Found. Softw. Eng., 2013, pp. 37–47.

[47] J. V. Deshmukh, E. A. Emerson, and S. Sankaranarayanan,
“Symbolic modular deadlock analysis,” Autom. Softw. Eng.,
vol. 18, nos. 3/4, pp. 325–362, 2011.

[48] J. Deshmukh, E. A. Emerson, and S. Sankaranarayanan, “Symbolic
deadlock analysis in concurrent libraries and their clients,”
in Proc. 24th IEEE/ACM Int. Conf. Autom. Softw. Eng., 2009,
pp. 480–491.

Qingkai Shi received the BEng degree from
Nanjing University in June, 2012. He is a post-
graduate student inthe Software Institute, Nanjing
University, under the supervision of Prof. Zhenyu
Chen and Prof. Baowen Xu. His research interest
is program analysis and testing. He visited the
Hong Kong University of Science and Technol-
ogy as a visiting postgraduate student under the
supervision of Prof. Charles Zhang from 2013
to 2014.

Jeff Huang received the PhD degree from the
Hong Kong University of Science and Technol-
ogy in 2012 and the postdoc from the Univer-
sity of Illinois at Urbana-Champaign in 2014.
He is an assistant professor at Texas A&M Uni-
versity. His research focuses on developing
practical techniques and tools for improving
software reliability and performance. He has
published extensively in premiere software
engineering conferences and journals such as
TOSEM, PLDI, OOPSLA, ICSE, FSE, ISSTA,

etc. He is a member of the IEEE.

300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 3, MARCH 2016



Zhenyu Chen received the bachelor’s and PhD
degrees in mathematics from Nanjing University.
He is currently an associate professor at Soft-
ware Institute, Nanjing University. He was a post-
doctoral researcher at the School of Computer
Science and Engineering, Southeast University,
China. His research interests focus on software
analysis and testing. He has about 70 publica-
tions at major venues including TOSEM, TSE,
JSS, SQJ, IJSEKE, FSE, ISSTA, ICST, QSIC,
etc. He has served as a PC co-chair of QSIC

2013, AST2013, IWPD2012, and the program committee member of
many international conferences. He has won research funding from sev-
eral competitive sources such as NSFC. He is a member of the IEEE.

Baowen Xu received the BS, MS, and PhD
degrees in computer science fromWuhan Univer-
sity, Huazhong University of Science and Tech-
nology, and Beihang University, respectively. He
is a professor in the Department of Computer Sci-
ence and Technology, Nanjing University. His
main research interests include programming lan-
guages, software testing, software maintenance,
and software metrics. He has published exten-
sively in premiere software engineering conferen-
ces and journals such as TOSEM, TSE, FSE,

JSS, ICST, QSIC, COMPSAC, etc. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SHI ET AL.: VERIFYING SYNCHRONIZATION FOR ATOMICITY VIOLATION FIXING 301



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


