
Precise and Scalable Static Bug Finding

for Industrial-Sized Code

by

Qingkai Shi

A Thesis Submitted to

The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

in Department of Computer Science and Engineering

24 April 2020, Hong Kong

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this

thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to

reproduce the thesis by photocopying or by other means, in total or in part, at the

request of other institutions or individuals for the purpose of scholarly research.

Qingkai Shi

24 April 2020

Precise and Scalable Static Bug Finding

for Industrial-Sized Code

by

Qingkai Shi

This is to certify that I have examined the above PhD thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the PhD qualifying examination committee have been made.

Dr. Charles Zhang, Thesis Supervisor

Department of Computer Science and Engineering

Prof. Dit-Yan YEUNG, Department Head

Department of Computer Science and Engineering

24 April 2020, Hong Kong

Acknowledgments

In the long journey of PhD study, with greatest fortunate, I have been helped,

supported, and guided by many people. I am profoundly grateful to them.

I would like to thank my advisor, Dr. Charles Zhang, for the priceless guidance

and help throughout these years. He taught me how to identify problems, solve

problems, present ideas, write papers, manage time, and collaborate with others. It

is his patience and commitment that changes me from an average man to a qualified

PhD. I am very proud of working with him.

I would also like to thank the committee members of my PhD qualification

examination, my thesis proposal defense, and my final thesis defense. They are Prof.

Xiangyu Zhang from Purdue University, Prof. Weichuan Yu from the Department

of Electronic and Computer Engineering, as well as professors from my major

department, the Department of Computer Science and Engineering: Prof. Shing-Chi

Cheung, Prof. Cunsheng Ding, Prof. Fangzhen Lin, Dr. Wei Wang, and Dr. Shuai

Wang. Their valuable and insightful comments not only helped me a lot to improve

the quality of my research and the thesis, but also inspired me to conduct better

future research.

I am grateful for the help and friendship with which all friends and colleagues

provide me. They have been my family in the Hong Kong University of Science and

Technology, in no particular order: Jeff Huang, Xiao Xiao, Jinguo Zhou, Gang Fan,

Rongxin Wu, Yepang Liu, Heqing Huang, Peisen Yao, Wensheng Tang, Yongchao

Wang, Yiyuan Guo, Yushan Zhang, Chengpeng Wang, Yuandao Cai, Maryam

Masoudian, Anshunkang Zhou, Hungchun Chui, Linjie Huang, Jiajun Gong, Lili Wei,

Ming Wen, Yongqiang Tian, and Yuqing Quan.

Finally, my deepest gratitude goes to my family for their support and love, which

have been a true inspiration and encouragement that pull me out of frustration and

let me complete my PhD study.

My work is partially supported by the Hong Kong PhD fellowship scheme PF14-

11387, a collaborative research grant from Microsoft Research, Asia, as well as Hong

Kong GRF16214515, GRF16230716, GRF16206517, ITS/368/14FP, ITS/215/16FP,

and ITS/440/18FP grants.

iv

Contents

Title Page i

Authorization Page ii

Signature Page iii

Acknowledgments iv

Table of Contents v

List of Figures ix

List of Tables xi

List of Abbreviations xii

Abstract xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Organization . 4

2 Preliminaries and Background 6

2.1 Preliminaries . 6

v

2.1.1 Data Flow Analysis . 6

2.1.2 Sparse Value-Flow Analysis 8

2.2 Background . 11

2.2.1 Scaling up Static Bug Finding with High Precision 11

2.2.2 Scaling up Static Bug Finding for Multiple Checkers 12

2.2.3 Scaling up Static Bug Finding via Parallelization 13

3 Scaling up Sparse Value-Flow Analysis with High Precision 15

3.1 Introduction . 15

3.1.1 The Pointer Trap . 15

3.1.2 Escaping from the Pointer Trap 16

3.2 Overview . 18

3.2.1 Semantic-Preserving Transformation 18

3.2.2 Inter-procedural Bug Detection 20

3.3 A Holistic Design . 20

3.3.1 Decomposing the Cost of Data Dependence Analysis 21

3.3.2 Symbolic Expression Graph 23

3.3.3 Global Value-Flow Analysis 28

3.4 Implementation . 32

3.4.1 Checkers . 32

3.4.2 Soundness . 33

3.5 Evaluation . 34

3.5.1 Comparing to Static Value-Flow Analyzer 34

3.5.2 Study of the Taint Analysis 38

3.5.3 Comparing to Other Static Analyzers 38

3.6 Conclusion . 40

vi

4 Scaling up Sparse Value-Flow Analysis for Multiple Checkers 41

4.1 Introduction . 41

4.1.1 The Extensional Scalability Problem 41

4.1.2 Conquering the Extensional Scalability Problem 42

4.2 Overview . 44

4.2.1 Mutual Synergy . 44

4.2.2 A Running Example . 46

4.3 Value-Flow Properties . 47

4.3.1 Property Specification . 47

4.3.2 Property Examples . 49

4.4 Inter-property-aware Analysis . 50

4.4.1 A Näıve Static Analyzer . 50

4.4.2 Optimized Intra-procedural Analysis 51

4.4.3 Modular Inter-procedural Analysis 55

4.5 Implementation . 57

4.5.1 Path-sensitivity and Parallelization 58

4.5.2 Properties to Check . 59

4.5.3 Soundness . 59

4.6 Evaluation . 59

4.6.1 Comparing to Static Value-Flow Analyzer 61

4.6.2 Comparing to Other Static Analyzers 64

4.6.3 Detected Real Bugs . 66

4.7 Conclusion . 67

5 Scaling up Sparse Value-Flow Analysis via Parallelization 68

5.1 Introduction . 68

5.1.1 The Limit of Parallelization 68

vii

5.1.2 Breaking the Limit of Parallelization 69

5.2 Overview . 71

5.2.1 The IFDS/IDE Framework . 71

5.2.2 An Example . 74

5.3 Pipelined Bottom-up Analysis . 76

5.3.1 Preliminaries . 76

5.3.2 Partition Criteria . 77

5.3.3 Pipelineable Summary-Set Partition 78

5.3.4 Pipeline Scheduling . 81

5.3.5 ε-Bounded Partition and Scheduling 82

5.3.6 Pipelining Sparse Value-Flow Analysis 84

5.4 Implementation . 85

5.4.1 Parallelization . 85

5.4.2 Taint Analysis . 86

5.4.3 Soundness . 87

5.5 Evaluation . 87

5.5.1 Study of the Null Analysis . 89

5.5.2 Study of the Taint Analysis 91

5.5.3 Discussion . 92

5.6 Conclusion . 92

6 Conclusion and Future Work 94

6.1 Conclusion . 94

6.2 Future Work . 95

Publications 98

References 101

viii

List of Figures

1.1 The workflow of sparse value-flow analysis. 2

2.1 Constant propagation. 8

2.2 Constant propagation using a sparse analysis. 9

3.1 The “layered” design of SVFA. 17

3.2 The “holistic” design of SVFA. 19

3.3 Rules of the semantic-preserving transformation. 24

3.4 The complete SEG of the function bar. 25

3.5 An example to illustrate our inter-procedural analysis. 28

3.6 The architecture of Pinpoint. 33

3.7 Time cost: building SEG vs. building FSVFG. 36

3.8 Memory cost: building SEG vs. building FSVFG. 36

3.9 Memory cost: SEG- vs. FSVFG-based checkers. 37

3.10 Scalability of an SEG-based checker. 37

4.1 Path overlapping and contradiction among different properties on the

value-flow graph. 44

4.2 The workflow of our approach. 45

4.3 An example to illustrate our method. 45

4.4 Merging the graph traversal. 54

4.5 An example to show the inter-procedural analysis. 57

ix

4.6 Comparing the time and the memory cost to Pinpoint. 62

4.7 The growth curves of the time and the memory overhead when com-

paring to Pinpoint. 63

4.8 Comparing the time and the memory cost to Clang and Infer. 65

4.9 A null-dereference bug in ImageMagick. 67

5.1 Conventional parallel design of bottom-up program analysis. Each

rectangle represents the analysis task for a function. 69

5.2 The analysis task of each function is partitioned into multiple sub-tasks.

All sub-tasks are pipelined. 69

5.3 Data flow functions and their representation in the exploded super-graph. 71

5.4 An example of the exploded super-graph for a null-dereference analysis. 72

5.5 The pipeline parallelization strategy. 75

5.6 The summary dependence graph for a caller-callee function pair, f

and g. 81

5.7 Different scheduling methods when one thread available for each function. 82

5.8 Bounded partition and its scheduling method. 83

5.9 Simplifying the exploded super-graph to speedup the analysis. 85

5.10 Pipelining bottom-up data flow analysis using a thread pool. 86

5.11 Speedup vs. The number of threads. 90

5.12 The CPU utilization rate vs. The elapsed time. 91

x

List of Tables

3.1 Results of the use-after-free checker. 39

3.2 Results of the SEG-based taint analysis. 40

3.3 Results of Infer and Clang. 40

4.1 Pattern expressions used in the specification. 48

4.2 Rules of making analysis plans for a pair of properties. 52

4.3 Properties to check. 58

4.4 Subjects for evaluation. 60

4.5 Effectiveness (Catapult vs. Pinpoint). 61

4.6 Effectiveness (Catapult vs. Clang, and Infer). 61

5.1 Subjects for evaluation. 88

5.2 Running time (seconds) and the speedup over the conventional method. 89

5.3 Results of the taint analysis on MySQL. 92

xi

List of Abbreviations

CVE Common Vulnerabilities and Exposures

FSVFG Full-Sparse Value-Flow Graph

LoC Lines of Code

SEG Symbolic Expression Graph

SVFA Sparse Value-Flow Analysis

SVFG Sparse Value-Flow Graph

xii

Precise and Scalable Static Bug Finding

for Industrial-Sized Code

by Qingkai Shi

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Abstract

Software bugs cost developers and software companies a great deal of time and

money. Although previous work has reported many success stories for using static

bug-finding tools, it is still difficult to find bugs hidden behind sophisticated pointer

operations, deep calling contexts, and complex path conditions with a low false-

positive rate, while sieving through millions of lines of code in just a few hours. In

this thesis, we present our novel designs of sparse value-flow analysis to tackle a wide

range of software bugs caused by improper value flows. The proposed approach has

been commercialized and deployed in many of the global 500 companies. It also has

reported hundreds of real bugs for open-source software systems.

The first problem addressed in the thesis is referred to as the pointer trap: a

precise points-to analysis limits the scalability of sparse value-flow analysis and an

imprecise one seriously undermines its precision. To solve the problem, we present

Pinpoint, a holistic approach that decomposes the cost of high-precision points-to

analysis by precisely discovering local data dependence and delaying the expensive

inter-procedural analysis through memorization. Such memorization enables the on-

demand slicing and, thus, improves the scalability with high precision. Experiments

show that Pinpoint can check millions of lines of code in less than five hours with a

false positive rate lower than 30%.

The second problem addressed in the thesis is known as the extensional scalability

problem, which happens when we simultaneously check many value-flow properties

with high precision. A major factor to this deficiency is that the core static analysis

engine is oblivious of the mutual synergy among the properties being checked, thus

inevitably losing many optimization opportunities. Our work is to leverage the

inter-property awareness and to capture redundancies and inconsistencies when many

properties are considered together. The evaluation results demonstrate that the

approach, Catapult, is more than 8× faster than Pinpoint but consumes only 1/7 of

the memory when checking twenty value-flow properties together.

The third problem addressed in the thesis is how to improve the parallelism of

static bug finding over the conventional parallel designs. Conventionally, bottom-up

program analysis has been easy to parallelize because functions without caller-

callee relations can be analyzed independently. However, functions with caller-callee

relations have to be analyzed sequentially because the analysis of a function depends

on the analysis results of its callees. We present Coyote, a framework of bottom-up

analysis, in which the analysis task of a function is partitioned into multiple sub-

tasks. These sub-tasks are pipelined and run in parallel, even though the caller-callee

relations exist. The evaluation results of Coyote demonstrate significant speedup

over a conventional parallel design.

xiv

Chapter 1

Introduction

1.1 Motivation

Software bugs cost developers and software companies a great deal of time and

money. For instance, the Heartbleed bug1 discovered in 2014 affected around 500,000

websites and hundreds of products from Cisco and Juniper. To tame such beasts

hidden in software, developers from industry usually use static bug-finding tools to

check possible bugs before a product is released.

Techniques following the design of conventional data-flow analysis and symbolic

execution, such as the IFDS/IDE framework [95], Saturn [127], and Calysto [8],

propagate data-flow facts to all program points following the control-flow paths.

These “dense” analyses are known to have performance problems [90, 121, 21, 117].

For example, Babic and Hu [8] reported that it takes 6 to 11 hours for Saturn and

Calysto to check the null-dereference bugs for programs of only 685 KLoC.

Sparse value-flow analysis (SVFA) mitigates this performance problem by tracking

the flow of values via data dependence on sparse value-flow graphs (SVFG), thus

eliminating the unnecessary value propagation [21, 117, 110, 116, 76]. Unfortunately,

despite this tremendous progress, we still observe the difficulty of applying value-flow

analysis at industrial scale — finding bugs hidden behind sophisticated pointer

operations, deep calling contexts, and complex path conditions with low false positive

rates, while sieving through millions of lines of code in just a few hours.

Figure 1.1 illustrates the workflow of SVFA, where the first step is to resolve

pointer relations so that we can build data dependence hidden behind pointer

1Heartbleed Bug: http://heartbleed.com

1

http://heartbleed.com

Section 1.1 Qingkai Shi

Points-to
Analysis

Sparse
Value-Flow

Analysis

Building
Sparse Value-
Flow Graph

points-to
relations

program SVFG bug
reports

SMT
solver

Challenge 1: Building precise SVFG
Solution 1: Pinpoint (Chapter 3)

Challenge 3: Checking bugs in parallel
Solution 3: Coyote (Chapter 5)

Challenge 2: Checking multiple bug types
Solution 2: Catapult (Chapter 4)

Figure 1.1: The workflow of sparse value-flow analysis.

operations. The second step is to build the SVFG based on the resolved data

dependence relations, followed by a reachability analysis on the SVFG with the help

of an SMT solver. We observe that, to make SVFA scalable and precise, we need to

address the following problems in the state-of-the-art techniques.

(1) The Pointer Trap. The first problem is to build precise data dependence

through a points-to analysis. Existing techniques discover data dependence through

an independent points-to analysis. However, since a highly precise points-to analysis

is difficult to scale to millions of lines of code [61], these approaches often give up the

flow- or the context-sensitivity in the points-to analysis and avoid using SMT solvers

to determine path-feasibility, such as in the cases of Fastcheck [21] and Saber [117].

Choosing a scalable but imprecise points-to analysis blows up the SVFG with false

edges, overloads SMT solvers, and generates many false warnings, which we refer to

as the pointer trap. In practice, we observe that developers have very low tolerance

to such compromises because forsaking any of the following goals — scalability,

precision, the capability of finding bugs hidden behind deep calling contexts and

intensive pointer operations — creates major obstacles of adoption.

(2) The Extensional Scalability Problem. Modern static analyzers often

need to simultaneously check a few dozen or even hundreds of value-flow properties.

For instance, Fortify,2 a commercial static code analyzer, checks nearly ten thousand

value-flow properties from hundreds of unique categories. We observe that checking

these properties together with a high precision causes serious scalability issues, which

we refer to as the extensional scalability problem. To the best of our knowledge, a

very limited number of existing static analyses have studied how to statically check

2Fortify Static Analyzer: https://microfocus.com/products/static-code-analysis-sast

2

https://microfocus.com/products/static-code-analysis-sast

Section 1.2 Qingkai Shi

multiple program properties at once, despite that the problem is very important at

an industrial setting. A major factor to this problem, as we observe, is that the

core static analysis engine is oblivious of the mutual synergy, i.e., the overlaps and

inconsistencies, among the properties being checked, thus inevitably losing many

optimization opportunities.

(3) The Limit of Parallelization. In multi-core era, we often take advantage

of parallelization to scale up a program analysis. Conventionally, since our approach

works in a bottom-up manner (i.e., before analyzing a function, all its callee functions

are analyzed and summarized as function summaries [127, 8, 108, 18, 126, 20, 37, 22,

38]), it has been easy to parallelize the analyses of functions that do not have caller-

callee relations. However, functions with caller-callee relations have to be analyzed

sequentially because the analysis of a caller function depends on the analysis results,

i.e., function summaries, of its callee functions. Otherwise, when analyzing the caller

function, we may miss some effects of the callees due to the incomplete function

summaries. With regard to the limitation of parallelization, McPeak et al. [80]

pointed out that the parallelism often drops off at runtime and, thus, the CPU

resources are usually not well utilized.

1.2 Contribution

With the aim of achieving the industrial requirement of static bug finding,

i.e., checking millions of lines of code in 5 to 10 hours with less than 30% false

positives [80, 13], this thesis makes three major contributions to scaling up path-

sensitive static bug finding. Specifically, we present the following works in the thesis

to address the aforementioned problems.

(1) Escaping from the Pointer Trap. We advocate a novel holistic approach

to SVFA, nameed Pinpoint. In the approach, instead of hiding points-to analyses be-

hind points-to query interfaces, we create an analysis slice, including points-to queries,

value flows, and path conditions, that is just sufficient for the checked properties.

In this manner, we can escape from the pointer trap by precisely discovering local

data dependence first and delaying the expensive inter-procedural data dependence

analysis through symbolically memorizing the non-local data dependence relations

and path conditions. At the bug detection step, only the relevant parts of these

mementos are further “carved out” in a demand-driven way to go for a high precision.

3

Section 1.3 Qingkai Shi

Experiments show that Pinpoint can check two million lines of code within 1.5 hours.

The overall false positive rate is also very low, ranging from 14.3% to 23.6%.

(2) Conquering the Extensional Scalability Problem. We advocate an

inter-property-aware design, namely Catapult, so that the core static analysis engine

can exploit the mutual synergy among different properties for optimization. To check

a value-flow property, users of our framework need to explicitly declare a simple

property specification, which picks out source and sink values, respectively, as well

as the predicate over these values for the satisfaction of the property. Surprisingly,

given a set of properties specified in our property model, our static analyzer can

automatically understand the overlaps and inconsistencies of the properties to check.

Based on the understanding, before analyzing a program, we can make dedicated

analysis plans so that, at runtime, the analyzer can share the analysis results on

path-reachability and path-feasibility among different properties to reduce redundant

graph traversals and unnecessary invocations of the SMT solver. The experimental

results demonstrate that Catapult is more than 8× faster than Pinpoint but consumes

only 1/7 of the memory when checking twenty common value-flow properties together.

(3) Breaking the Limit of Parallelization. To break the limit of paralleliza-

tion caused by the calling dependence, we present Coyote, a framework of bottom-up

data flow analysis that breaks limits of function boundaries, so that functions with

calling dependence can be analyzed in parallel without additional synchronizations.

Our key insight is that many analysis tasks of a function only depend on partial

analysis results of its callee functions. Our basic idea is to partition the analysis

task of a function into multiple sub-tasks, so that we can pipeline the sub-tasks to

generate function summaries. We formally prove the correctness of our approach and

apply it to a null analysis and a taint analysis to show its generalizability. Overall,

our pipeline strategy achieves 2× to 3× speedup over a conventional parallel design

of bottom-up analysis. Such speedup is significant enough to make many overly

lengthy analyses useful in practice.

1.3 Organization

The remainder of the thesis is organized as follows. Chapter 2 introduces the

preliminaries and surveys the related work of static program analysis for bug finding.

Chapter 3 presents the technique that allows us to escape from the “pointer trap”

and path-sensitively check a value-flow property in millions of lines of code within

4

Section 1.3 Qingkai Shi

only several hours. Chapter 4 introduces how we conquer the extensional scalability

problem by utilizing the mutual synergy among the procedures of checking different

value-flow properties. Chapter 5 further introduces how we scale up static bug finding

by relaxing the calling dependence between functions, so that the parallelism of bug

finding can be significantly improved. We conclude this thesis and discuss our future

work towards static bug finding in Chapter 6.

5

Chapter 2

Preliminaries and Background

2.1 Preliminaries

The thesis focuses on a technique of static bug finding, known as sparse value-flow

analysis. Basically, sparse value-flow analysis is a kind of optimized data flow analysis.

The latter propagates program information along control flows while the former

propagates along data dependence to skip unnecessary control flows. To be clear,

in this section, we first explain some basic concepts and terminologies of data flow

analysis, followed by an introduction to sparse value-flow analysis.

2.1.1 Data Flow Analysis

Data flow analysis [67] is a well known technique for collecting information about

how a possible set of values, also known as data flow facts, propagate in the control

flow graph of a program. Formally, a control flow graph is defined as below.

Definition 2.1 (Control Flow Graph [1]). A control flow graph G = (V,E) is a

directed graph with a distinguished entry vertex and a distinguished exit vertex.

The entry vertex does not have any predecessors and can reach every vertex. The

exit vertex does not have any successors and it is reachable from every vertex.

A data flow problem is to determine how data flow facts propagate in a control

flow graph. Formally, it is defined as below.

Definition 2.2 (Data Flow Problem [1]). A data flow problem is a five-tuple,

D = (L,u, G,M, c), where

6

Section 2.1 Qingkai Shi

• L is the domain of data flow facts and (L,u) is a semi-lattice.

• G = (V,E) is a control flow graph.

• M : V 7→ (L 7→ L) is a map from the vertices to a set of transfer functions.

• c ∈ L is the data flow fact associated with the entry (exit) vertex if it is a

forward (backward) data flow problem.

For a forward data flow problem, the maximal fixed point solution is the maximal

fixed point of the following equations over the set of variables {xu : u ∈ V } [1]:

∀u ∈ (V \ {entry}), v → u ∈ E : xu = M(u)(
l

v→u

xv); xentry = M(entry)(c)

For a backward data flow problem, the maximal fixed point solution is the maximal

fixed point of the following equations over the set of variables {xu : u ∈ V } [1]:

∀v ∈ (V \ {exit}), v → u ∈ E : xv = M(v)(
l

v→u

xu); xexit = M(exit)(c)

Example 2.1 (Constant Propagation). Figure 2.1 shows how a data flow analysis

addresses the problem of constant propagation, a forward data flow problem. The

right side of the figure shows the semi-lattice of a single value, which is defined on

the set L = Z ∪ {UNDEF,NAC}. Here, UNDEF means a value is undefined and

NAC means Not A Constant. The meet operation, u, of the semi-lattice defines how

to merge data flow facts at a merge point of multiple control flow paths. The meet

operation follows the rules below.

• ∀v ∈ L : UNDEF u v = v. At a merge point of two paths, if a variable is

UNDEF along a path but has a value v ∈ L along the other, the variable will

still have the value v after merging.

• ∀v ∈ L : NACu v = NAC. At a merge point of two paths, if a variable is NAC

along one of the two paths, the variable will be NAC after merging.

• ∀v ∈ L : v u v = v. At a merge point of two paths, if a variable has the same

value along the two paths, the variable will keep the value after merging.

• ∀v1, v2 ∈ Z : v1 6= v2 ⇒ v1 u v2 = NAC. At a merge point of two paths, if a

variable has different constant values along the two paths, the variable will be

NAC after merging.

7

Section 2.1 Qingkai Shi

entry

x = 1

y = 2

if (x == 1)

print(y)

y = 3

print(x)

exit

{x = UNDEF, y = UNDEF}

{x = 1, y = NAC}

{x = 1, y = 2}

{x = 1, y = UNDEF}

{x = 1, y = 2} {x = 1, y = 2}

{x = 1, y = NAC}

{x = 1, y = NAC}

{x = 1, y = 3}

The semi-lattice

UNDEF

NAC

… -3 -2 -1 0 +1 +2 +3 …

Figure 2.1: Constant propagation.

The left side of the figure shows how data flow facts are propagated via the

transfer functions and the merging operations. At the very beginning, both of the

variables, x and y, are undefined. After the first statement, the variable x is defined

to be the constant 1. At the merge point, since the data flow facts, y = 3 and y = 2,

hold for the two merging paths, respectively, the value of the variable y becomes

NAC because y = 2 u 3 = NAC according to the semi-lattice.

2.1.2 Sparse Value-Flow Analysis

The basic idea of sparse value-flow analysis is to skip irrelevant statements when

propagating data flow facts in a data flow analysis. Typically, we can first transform

a program to its static single assignment (SSA) form [28] where each variable only has

one definition and def-use relations are explicitly encoded. Figure 2.2 demonstrates

the SSA form of the program in Figure 2.1. Specially, at the merge point, a φ

function is inserted to merge the value of the variable y from different paths. Using

the SSA form, the data flow analysis in Example 2.1 then can propagate constant via

def-use chains instead of control flows. As a result, it is not necessary to maintain all

data flow facts at every program point. Thus, the analysis performance is improved.

For example, we do not need to maintain the data flow fact x = 1 at the statements

like y = 2. Wegman and Zadeck [121] proved that the SSA form improves the time

complexity of constant propagation from O(|E| × |V |2) to O(|V |) in practice.

8

Section 2.1 Qingkai Shi

entry

x1 = 1

y1 = 2

if (x1 == 1)

y3=𝜙(y1, y2)
print(y3)

y2 = 3

print(x1)

exit

{x1 = 1}{y1 = 2}

{y3 = NAC}
{y2 = 3}

{x1 = 1}

Figure 2.2: Constant propagation using a sparse analysis.

In addition to constant propagation, many classic data flow analysis can be per-

formed in a “sparse” fashion based on the SSA form of a program. Typical examples

include pointer analysis [55, 56], static bug-finding [117], and so on. However, in

modern software, SSA form cannot effectively encode def-use relations hidden by

intensive pointer operations, such as the relation between the variable a and the

variable b in the code *p=a; q=p; b=*q. To encode such indirect def-use relations,

sparse value-flow graph has been introduced in recent studies [74, 117, 108], which is

the fundamental data structure of our techniques in the thesis.

With no loss of generality, we assume the code in each function is in SSA form.

We say the value of a variable a flows to a variable b if a is assigned to b directly (via

an assignment, such as b=a) or indirectly (via pointer dereferences, such as *p=a;

q=p; b=*q). In addition, the value of a variable a directly flows to a statement if a

is used in the statement. Formally, sparse value-flow graph is defined as below.

Definition 2.3 (Sparse Value-Flow Graph). A sparse value-flow graph (SVFG) is

a directed graph G = (V,E), where V and E are defined as following:

• V is a set of vertices, each of which is denoted by v@s, meaning that the

variable v is defined or used in the statement s. When it does not cause any

confusion, we directly write v or s in short.

• E ⊆ V × V is a set of edges, each of which represents a data dependence

relation or value flow. (v1@s1, v2@s2) ∈ E means that the value of v1@s1 flows

to v2@s2.

9

Section 2.1 Qingkai Shi

A sparse value-flow analysis is to analyze the value flows in the SVFG, which

underpins the inspection of a very broad category of software bugs, such as the

memory safety problems (e.g., null dereference, double free, etc.), resource usage

problems (e.g., memory leak, file usage, etc.), and security problems (e.g., the use of

tainted data). In addition, there are a large and growing number of domain-specific

value-flow properties that cannot be violated. For instance, mobile software requires

that the personal information cannot be passed to untrusted code [6], and, in web

applications, tainted database queries are not allowed to be executed [118]. Fortify,

a commercial static code analyzer, checks nearly ten thousand value-flow problems

from hundreds of unique categories. Value-flow problems exhibit a very high degree

of versatility, which poses great challenges to the effectiveness of general-purpose

program analyzers.

Value-flow problems checked in our static analyzer are related to well-known

type-state problems [113, 114]. Type states, which are usually described as a finite

state machine with an error state, define valid sequences of operations that can be

performed upon an instance of a given type. When a program execution transits a

state on the sate machine to the error state, a type-state problem happens. Generally,

we can regard a value-flow problem as a type-state problem with a limited number of

states. In addition to value-flow problems and type-state problems, there are many

other types of bugs. For instance, a divide-by-zero bug is caused by problematic

arithmetic operations in a program. An infinite loop bug is caused by incorrect

reasoning on the loop condition. These bugs cannot be detected by a common

value-flow or type-state analyzer.

With the development of software technology, we believe the number of bug types

will also grow very quickly. Nevertheless, value-flow problems have covered a wide

range of program bugs as discussed above. Thus, a scalable value-flow analyzer is

really necessary and useful in practice. Modeling a program issue as a value-flow

problem has at least three advantages [21]:

• Efficiency. We can utilize the sparseness of value-flow graph to avoid tracking

unnecessary value propagation in a control flow graph, thereby achieving better

performance.

• Concise bug reports. Since unrelated program points are skipped, the bug

reports only contain a few relevant program statements and path conditions

that cause the error to happen.

10

Section 2.2 Qingkai Shi

• Analysis refinement. We can first use simple graph reachability techniques like

depth-first search to identify potential vulnerable value flows and then employ

more expensive reasoning on path conditions, in a demand-driven manner, to

confirm the feasibility of bugs.

2.2 Background

In what follows, we discuss the representative related work in three groups: scaling

up static bug finding with high precision, scaling up static bug finding for multiple

checkers, and scaling up static bug finding via parallelization.

2.2.1 Scaling up Static Bug Finding with High Precision

For the existing techniques for static bug finding, one major factor to the paradox

between high scalability and high precision, as we observe, is related to the pointer

analysis – a precise pointer analysis limits the scalability and an imprecise one

seriously undermines the precision. To the best of our knowledge, all existing static

bug-finding techniques utilizing value flows rely on a pre-computed points-to analysis

to build data dependence. Since a precise pointer analysis is expensive [61], they

usually adopt a flow-insensitive analysis to avoid getting stuck in the pre-computation

phase [76, 110, 116, 40, 21, 117, 30]. In contrast, the holistic design proposed in

Chapter 3 of this thesis allows us to avoid an expensive pointer analysis but keep

fully path-sensitive for bug finding.

There are also techniques adopting client- or demand-driven pointer analysis to

reduce redundancy in static bug finding techniques. Client-driven pointer analysis

[53, 54, 87] only performs higher-precision analysis in some parts of a program and

cannot achieve the precision of inter-procedural path-sensitivity. In contrast, we can

compute path-sensitive results in any part of the whole program. Demand-driven

points-to analysis [58, 111, 103, 133, 128, 6] is in a fixed precision but computes

only the necessary part of the solution. Existing approaches are not path sensitive.

P/Taint [50] also integrates pointer analysis with value-flow analysis, but in a different

manner: the value-flow analysis is implemented as an extension of the pointer analysis

while our approach decomposes the cost of pointer analysis for value-flow analysis.

In addition to pointer analysis, there are also many other factors to the defi-

ciency of existing static bug detectors. Abstraction based approach like SLAM [9],

11

Section 2.2 Qingkai Shi

BLAST [59], and SATABS [26] adopt abstract refinement to improve scalability. How-

ever, the scalability degrades with the refinement of abstraction. CBMC [25, 26] also

suffers from the scalability issue because it feeds constraints to an SAT solver regard-

less of whether they are relevant or not. Do et al. [39] proposed an approach built on

the IFDS framework [95]. It is similar to our approach as it does local analysis first

and then gradually extends to the whole project. Magic [20], Saturn [37, 126, 127],

Calysto [8], Compass [38], and Blitz [22] are similar to our approach in terms of

compositional analysis. However, these approaches have been demonstrated to be

inefficient in detecting bugs that can be modeled as value-flow paths because, as

discussed before, they are non-sparse techniques and unnecessary data-flow facts are

tracked along control flows [90, 21, 117].

2.2.2 Scaling up Static Bug Finding for Multiple Checkers

To the best of our knowledge, a very limited number of existing static analyses

have studied how to statically check multiple program properties at once, despite

that the problem is very important at an industrial setting. Goldberg et al. [49] make

unsound assumptions and intentionally stop the analysis on a path after finding the

first bug. Apparently, the approach will miss many bugs, which violates our design

goal. Different from our approach that reduces unnecessary program exploration

via cross-property optimization, Mordan and Mutilin [84] studied how to distribute

computing resources, so that the resources are not exhausted by a few properties.

Cabodi and Nocco [17] studied the problem of checking multiple properties in the

context of hardware model checking. Their method has a similar spirit to our

approach as it also tries to exploit the mutual synergy among different properties.

However, it works in a different manner specially designed for hardware. In order to

avoid state-space explosion caused by large sets of properties, some other approaches

studied how to decompose a set of properties into small groups [19, 5]. Owing to the

decomposition, we cannot share the analysis results across different groups.

There are also some static analyzers such as Semmle [7] and DOOP [15] that

take advantage of Datalog engines for multi-query optimization. However, they are

usually not path-sensitive and their optimization methods are closely related to the

sophisticated datalog specifications. In this thesis, we focus on value-flow properties

that can be simply described as conventional graph reachability queries and, thus,

cannot benefit much from the datalog engines.

12

Section 2.2 Qingkai Shi

Clang1 and Infer2 currently are two of the most famous open-source static analyzers

with industrial strength. Clang is a symbolic-execution-based, exhaustive, and

whole-program static analyzer. As a symbolic execution, it suffers from the path-

explosion problem [68]. To be scalable, it has to make unsound assumptions as in

the aforementioned related work [49], limit its capability of detecting cross-file bugs,

and give up full path-sensitivity by default. Infer is an abstract-interpretation-based,

exhaustive, and compositional static analyzer. To be scalable, it also makes many

trade-offs: giving up path-sensitivity and discarding sophisticated pointer analysis in

most cases. Similarly, Tricoder, the analyzer in Google, only works intra-procedurally

in order to analyze large code base [100, 101].

In the past decades, researchers have proposed many general techniques that

can check different program properties but do not consider how to efficiently check

them together [95, 9, 25, 20, 127, 37, 8, 38, 22, 116, 108]. Thus, we study different

problems. In addition, there are also many techniques tailored only for a special

program property, including null dereference [76], use after free [129], memory

leak [126, 21, 117, 43], and buffer overflow [71], to name just a few. Since we focus

on the extensional scalability issue for checking multiple properties, our approach is

different from them.

2.2.3 Scaling up Static Bug Finding via Parallelization

Parallel and distributed algorithms for data flow analysis is an active area of

research. In order to utilize the modular structure of a program to parallelize the

analyses in different functions, developers usually implement a data flow analysis in a

top-down fashion or a bottom-up manner. Top-down approaches work by processing

the call graph of a program downwards from callers while bottom-up approaches

work by processing the call graph upwards from callees. In our opinion, the top-down

approach and the bottom-up approach are two separate schools of methodologies

to implement program analysis. Bottom-up approaches analyze each function only

once and generate summaries reusable at all calling contexts. Top-down approaches

generate summaries that are specific to individual calling contexts and, thus, may

need to repeat analyzing a function. For analyses that need high precision like

path-sensitivity, repetitively analyzing a function is costly. Thus, we may expect

better performance from bottom-up analysis when high precision is required.

1Clang Static Analyzer: https://clang-analyzer.llvm.org
2Infer Static Analyzer: http://fbinfer.com

13

https://clang-analyzer.llvm.org
http://fbinfer.com

Section 2.2 Qingkai Shi

Albarghouthi et al. [3] presented a generic framework to distribute top-down

algorithms using a map-reduce strategy. Parallel worklist approaches, a kind of

top-down analysis, operate by processing the elements on an analysis worklist in

parallel [36, 98, 48]. These approaches are different from ours because our static

analyzer works in a bottom-up manner. Compared to top-down analysis, bottom-up

analysis has been traditionally easier to parallelize. Existing static analyses, such as

Saturn [127], Calysto [8], Pinpoint [108], and Infer [18], have utilized the function-level

parallelization to improve their scalability. However, none of them presented any

techniques to further improve its parallelism. McPeak et al. [80] pointed out that

the CPU utilization rate may drop in the dense part of the call graph where the

parallelism is significantly limited by the calling dependence. Although they presented

an optimized scheduling method to mitigate the performance issue, the calling

dependence was not relaxed and the function-level parallelism was not improved. We

believe that their scheduling method is complementary to our approach and their

combination has the potential for the greater scalability.

In contrast to top-down and bottom-up approaches, partition-based approaches [51,

78, 41, 83, 24, 72, 11, 62] do not utilize the modular structure of a program but

partition the state space and distribute the state-space search to several threads or

processors. Another category of data flow analyses (e.g., [15, 4, 57]) are mod-

eled as Datalog queries rather than the graph reachability queries in our ap-

proach. They can benefit from parallel Datalog engines to improve the scalabil-

ity [66, 105, 47, 65, 106, 107, 79, 131, 125, 124].

Recently, some other parallel techniques have been proposed. Many of them focus

on pointer analysis [75, 42, 115, 81, 88, 92] rather than general data flow analysis.

Mendez-Lojo et al. [82] proposed a GPU-based implementation for inclusion-based

pointer analysis. EigenCFA [91] is a GPU-based flow analysis for higher-order

programs. Graspan [120] and Grapple [134] turn sophisticated code analysis into big

data analytics. They utilize recent advances on solid-state disks to parallelize and

scale program analysis. These techniques are not designed for compositional data

flow analysis and, thus, are different from our approach.

In addition to automatic techniques, Ball et al. [10] used manually created

harnesses to specify independent device driver entry points so that an embarrassingly

parallel workload can be created.

14

Chapter 3

Scaling up Sparse Value-Flow
Analysis with High Precision

3.1 Introduction

Sparse value-flow analysis (SVFA) underpins many recent techniques in statically

finding bugs such as null pointer deference [8, 63, 64], memory leak [117, 21, 116,

126], use-after-free and double-free [21, 44, 35]. It is known to be more scalable

than conventional data-flow analysis because it tracks the flow of values via data

dependence on the sparse value-flow graph (SVFG), thus eliminating the unnecessary

value propagation along control flows. However, we observe that the state-of-the-art

SVFAs still compromise the following goals – scalability, precision, the capability of

finding bugs hidden behind deep calling contexts and intensive pointer operations –

which creates major obstacles of adoption.

3.1.1 The Pointer Trap

Existing SVFAs follow a “layered” design, which depends on an independent

pointer analysis to build SVFG. However, since a highly precise pointer analysis is

difficult to scale to millions of lines of code [61], these “layered” SVFA techniques

often give up the flow- or the context-sensitivity in the pointer analysis and avoid

using SMT solvers to determine path-feasibility, such as in the cases of Fastcheck [21]

and Saber [117]. Choosing a scalable but imprecise pointer analysis blows up the

SVFG with false edges, overloads SMT solvers, and generates many false warnings,

which we refer to as the “pointer trap”.

15

Section 3.1 Qingkai Shi

In this work, we make no claims of breakthroughs to the innate scalability limita-

tions of pointer analysis and solving path conditions using SMT solvers. However,

we note that the conventional “layered” approaches can significantly exacerbate the

impact of these limitations on the perceived performance of SVFA, for which we are

able to address. Our key insight is that an independent pointer analysis is unaware of

the high-level properties being checked and, thus, causes a great deal of redundancy

in computing pointer relations.

Let us illustrate this insight using the example in Figure 3.1(a), which contains

an inter-procedural use-after-free bug, triggered when the “freed” pointer c in the

function bar propagates to the dereference site at Line 9 of the function foo. Following

a representative “layered” approach [21], we first build a global SVFG labeled with

path conditions. To determine the value flow incurred by the expression f=*ptr at

Line 8 of the function foo, a pointer analysis, whether exhaustive or demand-driven,

is needed to discover that the pointer ptr can point to the five variables, a, b, c, d, and

e, resolving the corresponding calling contexts of the function bar and the function

qux, as well as checking the satisfiability of the five path conditions for the pointer

relations. After building the SVFG, to find the use-after-free bug, we can traverse the

graph from the vertex free(c), generating a value-flow path, (free(c), c, f, print(*f)),

that may trigger the bug with the associated path condition: θ1 ∧ θ2 ∧ θ3.

To summarize, in the above example, the “layered” conventional approach com-

putes over five inter-procedural pointer relations, two calling contexts and six path

conditions. However, if we take a “holistic” view across the layers of SVFA: pointer

analysis, SVFG construction, and bug detection, it is easy to discover that, in this

example, only the pointer relation between ptr and c is needed, one calling context

between bar and foo required, and one path condition, θ1 ∧ θ2 ∧ θ3, to be solved.

3.1.2 Escaping from the Pointer Trap

In this work, we advocate a novel “holistic” approach to SVFA, in which, instead

of hiding pointer analyses behind pointer query interfaces, we create an analysis slice,

including pointer queries, value flows, and path conditions, that is just sufficient

for the checked properties. We present Pinpoint, a technique that decomposes the

cost of high-precision pointer analysis by precisely discovering local data dependence

first and delaying the expensive inter-procedural data dependence analysis through

symbolically memorizing the non-local data dependence relations and path conditions.

16

Section 3.1 Qingkai Shi

1. void foo(int *a) {
2. int **ptr = malloc();
3. *ptr = a;
4. if (𝜃1)
5. bar(ptr);
6. else
7. qux(ptr);
8. int *f = *ptr;
9. if (𝜃2) print(*f);
10. }

11. void bar(int **q) {
12. int *c = ...;
13. if (bool 𝜃3 = (*q ≠ 0)) {
14. *q = c; free(c);
15. } else {if (bool 𝜃4=...) *q = b; }
16. }
17. void qux(int **r) {
18. if (𝜃5) *r = d;
19. else *r = e;
20. }

(a)

foo

barqux

(free(c), c, f, print(*f))

𝜃1∧𝜃3∧𝜃2

Independent Global
Points-to Analysis

Inter-procedural
Bug Detection

f

print(*f)
a

b

c

e

d

free(c)

𝜃1∧¬𝜃3∧¬𝜃4 ¬𝜃1∧¬𝜃5

𝜃1∧¬𝜃3∧ 𝜃4 ¬𝜃1∧𝜃5

𝜃1∧𝜃3

𝜃3

𝜃2

Global SVFG

(b)

Figure 3.1: The “layered” design of SVFA.

At the bug detection step, only the relevant parts of these mementos are further

“carved out” in a demand-driven way to go for a high precision.

The local analysis in Pinpoint is cheap due to a lightweight pointer analysis

that identifies infeasible paths without an expensive SMT solver. In addition, to

enable the inter-procedural and context-sensitive analysis, we only clone the memory

access-path expressions that are rooted at a function parameter and incur certain

side-effects. These clones serve as the context-sensitive “conduits” to allow values of

interests flow in and out of the function scope on demand when answering value-flow

queries. Summaries and path conditions are not cloned but memorized instead by

our intra-procedural SVFG called the symbolic expression graph (SEG). Program

properties are then checked by stitching together and traversing relevant SEGs.

Along the way, data dependence relations hidden behind deep calling contexts, as

well as the feasibility of the vulnerable paths, are determined altogether at the SMT

solving stage.

Like many of the bug finding techniques [76, 126, 8, 117], Pinpoint is soundy

[77]. However, it is comparatively much more scalable without sacrificing much

precision and recall. We have used Pinpoint to check critical safety properties, such

as use-after-free, double-free, and taint issues, on a large set of popular open-source

17

Section 3.2 Qingkai Shi

C/C++ systems. Although these systems have been checked by numerous free and

commercial tools, we are still able to report and confirm over 40 previously-unknown

use-after-free and double-free vulnerabilities, some of which are so serious and even

assigned with CVE IDs. We show that Pinpoint has good scalability as it can build

high precision SVFG up to >400X faster with only 1/4 memory space, compared

to the state of the art. In addition, it is able to complete the inter-procedurally

path-sensitive checking of a 2 MLoC code-base in 1.5 hours, fastest in terms of scale

and precision, to the best of our knowledge. In summary, this chapter makes the

following contributions:

• An efficient approach to building precise data dependence without an expensive

global pointer analysis.

• A new type of SVFG, i.e., symbolic expression graph, which enables efficient

path-sensitive analysis.

• A demand-driven and compositional approach to detecting bugs that can be

modeled as value-flow paths.

• An implementation and an experiment that evaluates Pinpoint’s scalability,

precision, and recall.

3.2 Overview

To find the use-after-free vulnerability in Figure 3.1(a), our analysis, Pinpoint,

runs in two steps: a semantic-preserving transformation that allows us to build

precise SVFG and a graph traversal for inter-procedural bug detection.

3.2.1 Semantic-Preserving Transformation

Our analysis begins with an intra-procedural pointer analysis to analyze each

function in a bottom-up manner, where we discover data dependence and function

side-effects. Here, side-effects has a broader meaning, including both referencing and

modifying non-local memory locations in a function. We then perform a semantic-

preserving transformation of each function to explicitly expose side-effects on its

interface, i.e., its parameters and return values.

18

Section 3.2 Qingkai Shi

1. void foo(int *a) {
2. int **ptr = malloc()
3. *ptr = a;
4. if (𝜃1) {
5. int *K = *ptr;
6. int *L = bar(ptr, K);
7. *ptr = L;
8. } else {
9. int *M = qux(ptr);
10. *ptr = M;
11. }
12. int *f = *ptr;
13. if (𝜃2) print(*f);
14.}

15. int* bar(int **q, int *X) {
16. *q = X;
17. int *c = ...;
18. if (bool 𝜃3 = (*q ≠ 0)) {
19. *q = c; free(c);
20. } else { if (bool 𝜃4=...) *q = b; }
21. int* Y = *q;
22. return Y;
23. }
24. int* qux(int **r) {
25. …
26. int* Z = *r;
27. return Z;
28. }

(a)

foo

bar
qux

(free(c), c, Y, ret Y, L, f, print(*f))

𝜃1∧𝜃3∧𝜃2

Local
Points-to Analysis

Inter-procedural
Bug Detection

Local SEGs
(conditions omitted)

(b)

a

K

X

c

YL

f

print(*f)

foo bar

bar(p, K)

ret YM

b

free(c)

Figure 3.2: The “holistic” design of SVFA.

For instance, as illustrated in Figure 3.2(a), our pointer analysis identifies the

side-effect incurred by the formal parameter q of the function bar: a load statement

*q6=0 and two store statements *q=c and *q=b. We transform the function bar so

that the value stored in the non-local memory, *q, is explicitly passed in via an

extra formal parameter X and returned via an extra return value Y . To reflect the

change of the signature of the function bar, its call site is transformed correspondingly

as shown in Lines 5-7. The transformation of the function qux is similar. These

transformations in the function foo set the stage for the same local pointer analysis

for the function foo.

Based on both the local pointer analysis results and the transformed program, we

build our local SVFG for each function, referred to as the symbolic expression graph

(SEG), as shown in Figure 3.2(b). For example, to build data dependence for the

variable f at Line 12, we first obtain the local points-to set, {(L, θ1), (M,¬θ1)} of

the pointer ptr. Here, the points-to set means that, in the condition θ1, the pointer

ptr points-to the variable L and, otherwise, it points-to the variable M . Note that

we do not invoke SMT solvers on path conditions θ1 and ¬θ1 at this point but store

them compactly in SEG, detailed later in the following sections.

19

Section 3.3 Qingkai Shi

3.2.2 Inter-procedural Bug Detection

To detect the use-after-free vulnerability, we traverse the SEG in Figure 3.2(b)

and obtain a complete value-flow path, (free(c), c, Y, return Y, L, f, print(*f)), with

a conjunction of all path conditions. Its feasibility is finally checked by an SMT

solver. Notice that this path automatically prunes away the unrelated points-to

target, M , together with its associated path condition, ¬θ1. Moreover, the path

condition, θ1, of the other target, L, is checked as part of the overall path condition

of the vulnerability. To sum up, Pinpoint only computes one inter-procedural data

dependence relation and solves one path condition.

In the next section, we formally present the function transformation rules and

the construction algorithms for SEG. We will also explain how SEG facilitates the

generation of function summaries, which enable fast inter-procedural analysis for

bug detection.

3.3 A Holistic Design

The key design goal of Pinpoint is to escape from the pointer traps incurred by the

conventional layered design of SVFAs [110, 116, 76, 21, 117]. In this section, we first

explain how we decompose the pointer analysis so that the cheap data dependence is

built first. We then define the symbolic expression graph (SEG) and explain SEG

enables the demand-driven checking of properties, which simultaneously resolves the

inter-procedural, context- and path-sensitive pointer relations.

To present our approach formally, we use the following simple call-by-value

language similar to the previous work [38, 37]:

Program P := F +

Function F := f (v1, v2, · · ·) { S; }

Statement S := v1 ← v2 | v ← φ(v1, v2, · · ·) | v1 ← v2 binop v3 | v1 ← unop v3

| v1 ← ∗(v2, k ∈ N+) | ∗ (v1, k ∈ N+)← v2

| if (v) then S1; else S2 | return v | r ← f(v1, v2, · · ·)

| S1;S2

binop := + | − | ∧ | ∨ | > | = | 6= | · · ·

unop := − | ¬ | · · ·

20

Section 3.3 Qingkai Shi

Statements in this language include common assignments, φ-assignments (assum-

ing the SSA form), binary and unary operations, loads, stores, branches, returns,

calls, and sequencing. With no loss of generality, we assume each function has only

one return statement. We name the variable r at a call statement the “receiver” of the

callee’s return value. The operational semantics of most statements are standard and

omitted. Specially, in a load/store statement, ∗(v, k ∈ N+) means v is dereferenced

k times, where k is a positive integer. We write ∗v as a shorthand when k = 1.

3.3.1 Decomposing the Cost of Data Dependence Analysis

Building precise SVFGs requires to resolve data dependence through expensive

context- and path-sensitive pointer analysis. Our solution is to perform a “quasi”

path-sensitive and intra-procedural pointer analysis to resolve both the local data

dependence and the function side-effects (also known as MOD/REF sets [8, 127]).

Through a connector model, we compute the inter-procedural data dependence path-

and context-sensitively in a demand-driven way, which significantly alleviates the

cost of path and context explosion.

(1) A Quasi Path-Sensitive Pointer Analysis. We first perform a local

pointer analysis for each function in a “quasi” path-sensitive manner, without

expensive SMT solvers, but is able to prune most points-to relations that involve

infeasible paths. The conditions of feasible paths are recorded to determine the

feasibility of a value-flow path that may lead to a bug at the bug finding stage. In

our experiment, we observed that about 70% of the path conditions constructed

during the pointer analysis are satisfiable. Therefore, if we employ a full SMT solver

at this local stage, the constraints of feasible points-to relations will be solved again

at the bug finding stage, causing a great deal of redundancy, as illustrated by our

motivating example.

Our solution is to introduce a linear-time constraint solver to filter out the “easy”

unsatisfiable path conditions, i.e., the ones including apparent contradictions such as

a∧¬a. This is because, based on our observations, more than 90% of the unsatisfiable

path conditions are easy constraints. The linear time constraint solver works in the

way of continuously collecting positive and negative atomic constraints,1 denoted by

P (C) and N(C), respectively, during the construction of a constraint C. If there

exists an atomic constraint a ∈ P (C)∩N(C), it means the constraint C contains an

1An atomic constraint is a bool-type expression without logic operators ∧,∨, and ¬. For example,
x = y + 1 and z are two atomic constraints in (x = y + 1) ∧ ¬z.

21

Section 3.3 Qingkai Shi

apparent contradiction a ∧ ¬a and, thus, is unsatisfiable. P (C) and N(C) are built

using the following rules:

C = a⇒P (C) = {a}, N(C) = ∅

C = ¬C1 ⇒P (C) = N(C1), N(C) = P (C1)

C = C1 ∧ C2 ⇒P (C) = P (C1) ∪ P (C2), N(C) = N(C1) ∪N(C2)

C = C1 ∨ C2 ⇒P (C) = P (C1) ∩ P (C2), N(C) = N(C1) ∩N(C2)

Because the time complexity of the solver is linear to the number of atomic

constraints, we pay a very low price to replace 90% of constraints that would

otherwise require a full SMT solver. The path conditions found feasible by our

linear time solver will be compactly encoded in our new type of SVFG, i.e., SEG,

introduced later in Section 3.3.2.

(2) A Connector Model for Inter-procedural Data Dependence Anal-

ysis. The outcome of the pointer analysis is used to build the local data dependence

obtained through pointer operations, e.g., connecting the load statement p ← ∗q
to the store statement ∗u ← w if ∗q and ∗u are aliased. However, q and u could

point-to non-local memory locations passed in by function invocations. Conven-

tional summary-based approaches record the load and store statements that access

non-local memory locations as the side-effect or the MOD/REF summary [8, 127],

which is then cloned and instantiated at every call site of the summarized function

in the upper-level callers. Due to a large number of the load and store statements

in programs, the size of the side-effect summary can quickly explode and become a

significant obstacle to scalability [2].

We noticed that the IFDS/IDE approaches solve this problem much more effi-

ciently [95], in which the summary edges are built after analyzing each function,

transferring the input data flow facts to the output without re-analyzing the function.

These input-to-output fast tracks are used on-demand to the relevant data-flow

problems and, therefore, avoid blindly inlining the unused data flow results to the

callers. This idea inspires us to build the “connectors” for representing the input

and output side-effects for each function.

For example, in Figure 3.2, the vertices X and Y are the input and output

connectors for the function bar. Each input or output connector represents a memory

location read from or write to via some load or store statements. At a call site, we

build the call-site connectors, which work as actual parameters and return-value

receivers. For example, the vertices K and L are the call-site connectors for the call

22

Section 3.3 Qingkai Shi

statement at Line 6. Then we can connect the vertex K to the vertex X and the

vertex L to the vertex Y path- and context-sensitively if they are involved in building

the inter-procedural data dependence. As described later, this connector model is

sufficient to run a standard value-flow analysis for checking a value-flow property.

In Pinpoint, the input and output connectors are implemented by two kinds of

auxiliary variables: the auxiliary formal parameter and the auxiliary return value.

Definition 3.1 (Auxiliary Variables). An auxiliary formal parameter is a local

variable that stands for a non-local memory location referenced through a pointer

expression ∗(p, k ∈ N+), where p is a formal parameter. An auxiliary return value is

defined similarly but the non-local memory location is modified.

Figure 3.3 defines the rules for inserting the auxiliary variables to represent

the input and output connectors for functions and call sites. The code starting

with I is the target to transform and the result of each rule is the transformation

result. In addition to the connectors, we also insert the load and store statements

to model the relations between an auxiliary variable and corresponding actual or

formal parameters, just as illustrated in Figure 3.2.

(3) Summary. In summary, the quasi path-sensitive pointer analysis and

the connector model enable a holistic design: the pointer analysis is aware of its

subsequent clients, including both the construction of SVFG and the subsequent

analysis. Thus, the expensive context- and path-sensitive computations in the

pointer analysis are delayed until the bug-finding phase. This holistic result cannot

be achieved by an independent pointer analysis, whether exhaustive or demand-

driven, in the conventional “layered” design. This is because, being unaware of

the properties being checked, an independent pointer analysis always performs the

expensive path- and context-sensitive computations for building the inter-procedural

data dependence, which will be computed again in the bug detection phase.

3.3.2 Symbolic Expression Graph

Our analysis is based on a new type of SVFG, the symbolic expression graph

(SEG), which enables the efficient and fully path-sensitive analysis through the

following features. First, it compactly and precisely encodes all the conditional

and unconditional data dependence, as well as the control dependence. Second, it

enables the convenient query of the “efficient path conditions [110]” to provide the

23

Section 3.3 Qingkai Shi

I f(v1, v2, · · ·){· · · ; return v0; }
Fi is an auxiliary formal parameter of f
Fi = ∗(vj, k) at the beginning of f(j > 0)

Rp is an auxiliary return value of f
Rp = ∗(vq, r) at the end of f(q ≥ 0)

f(v1, v2, · · · , F1, F2, · · ·) {
∗(vj, k)← Fi; /* for all (i, j, k). */
· · · ;
Rp ← ∗(vq, r); /* for all (p, q, r). */
return {v0, R1, R2, · · · };

}

(a)

I u0 ← f(u1, u2, · · ·)
f(v1, v2, · · · , F1, F2, · · ·){· · · ; return {v0, R1, R2, · · · }; }

Fi = ∗(vj, k)(j > 0); Rp = ∗(vq, r)(q ≥ 0)

Ai ← ∗(uj, k); /* for all (i, j, k). */
{u0, C1, C2, · · · } ← f(u1, u2, · · · , A1, A2, · · ·);
∗(uq, r)← Cp; /* for all (p, q, r). */

(b)

Figure 3.3: Rules of the semantic-preserving transformation.

full support of path-sensitive analysis. Finally, it is separately built for each function,

not only saving time costs, but also enabling the efficient compositional analysis.

(1) Definition. Formally, we define the symbolic expression graph, a new kind

of SVFG, as below.

Definition 3.2. The symbolic expression graph (SEG) of a function consists of

two sub-graphs, i.e., Gd = (V ∪ O, Ed,Ld) and Gc = (V , Ec,Lc), describing the data

dependence and the control dependence, respectively:

• V is a set of vertices, each of which is denoted by v@s, meaning the variable v

defined or used at a statement s. If v is defined at s, we write v@s as v for

short, because v is defined exactly once in SSA form and the abbreviation will

not cause ambiguity. Vb ⊆ V is the set of all boolean variables in V. O is a

set of binary or unary operator vertices, each of which represents a symbolic

expression.

24

Section 3.3 Qingkai Shi

X

c

Y

Y@return Y

b

c@free(c)

≠

0

𝜃3

true

𝜃3

n

m

𝜃4

∧

¬ ¬∧ m

n

q q@*q = bq@*q = c

true
true false

Figure 3.4: The complete SEG of the function bar.

• Ed ⊆ (V ∪ O) × (V ∪ O) is a set of directed edges, each of which represents

a data dependence relation. The labeling function, Ld : Ed 7→ {true} ∪ Vb,
represents the condition on which a data dependence relation holds. Specially,

a directed edge (v1@s1, o) ∈ V ×O ⊆ Ed, labeled by true, means the variable v1

defined at the statement s1 is used as an operand of the operator o. A directed

edge (o, v1@s1) ∈ O×V ⊆ Ed, labeled by true, means the result of the operator

o defines the variable v1 at the statement s1.

• Ec ⊆ V × Vb is a set of directed edges, each of which represents a control

dependence relation. The labeling function, Lc : Ec 7→ {true, false}, implies

that only if v2@s2 = Lc((v1@s1, v2@s2)), v1@s1 is reachable.

Following Definition 3.2, we build the SEG for each function. As an example,

the SEG of the function bar in Figure 3.2 is shown in Figure 3.4. Solid edges in the

figure represent data dependence. The label true for unconditional data dependence

is omitted. Dashed edges represent control dependence.

In SEG, the definition and the use of all variables, as well as operators, are modeled

as vertices, which are similar to those in the conventional approaches [21, 116, 117].

Vertices for operators are used to represent symbolic expressions, as illustrated

in Example 3.1. These operator vertices enable us to efficiently query symbolic

expressions (e.g., a = b+ c) instead of simple def-use relations (e.g., b and c are used

to define a). Thus, they can help construct path conditions.

25

Section 3.3 Qingkai Shi

Example 3.1. As shown in Figure 3.4, the expression “X 6= 0” is explicitly

presented by an operator vertex “ 6=” and two other vertices standing for its operands,

i.e., “X” and “0”.

Following the previous work [45], each directed edge in SEG represents either a

data dependence relation or a control dependence relation, labeled with the condition

on which the dependence holds. The data dependence concealed by pointer operations

are collected by the pointer analysis. For each φ-assignment, v ← φ(v1, v2, · · ·), the

condition for selecting vi is known as the gated function, which can be computed in

almost linear time [119]. Example 3.2 shows two concrete examples for unconditional

and conditional data dependence in SEG, respectively. Control dependence represents

the branch conditions on which a statement is reachable at runtime [45]. The control

dependence of a statement is in the form v or ¬v where v is a branch-condition

variable. Example 3.3 shows a concrete example of control dependence in SEG.

Example 3.2. In Figure 3.4, the data dependence edge (q, ∗q = b) does not have

any label, because the dependence is unconditional (∗q = b always depends on q).

The data dependence edge (b, Y) is labeled m, because the dependence is conditional:

m ⇒ Y = b. According to the pointer analysis, m is equal to ¬θ3 ∧ θ4, which is

encoded in the graph using the same method described in Example 3.1.

Example 3.3. In Figure 3.4, the control dependence of the statement ∗q = b is θ4

and, thus, there is an Lc-labeled edge from the statement to θ4 (labeled true). In

addition, the control dependence of the statement defining θ4 is ¬θ3 and, thus, there

is an Lc-labeled edge from θ4 to θ3 (labeled false).

(2) Querying “efficient path conditions” on SEG. The design of SEG

enables us to conveniently query the “efficient path condition [110]” of a value-flow

path, which is much more succinct than those computed according to the definition

of path condition [68]. Intuitively, an efficient path condition only contains the

necessary data dependence and control dependence so that the value-flow path is

feasible at runtime. The following is an example.

Example 3.4. Based on the SEG in Figure 3.4, the “efficient path condition” on

which the statement “return Y ” is reachable is true, because there are no control-

dependence edges outgoing from the vertex Y@return Y . It does not contain any

unnecessary branch-condition variables like θ3 and θ4. In comparison, if we follow

26

Section 3.3 Qingkai Shi

the canonical definition [68] to compute the path condition of the same statement, it

will be the disjunction of the path conditions of all paths from the entry to the exit

of the function, i.e., θ3 ∨ (¬θ3 ∧ θ4) ∨ (¬θ3 ∧ ¬θ4), which is verbose and inefficient.

Given a value-flow path, π=(v1@s1, · · · , vn@sn), in Gd, the basic idea of comput-

ing the “efficient path condition” is to conjunct the data dependence and control

dependence associated with this path. For a given vertex, v@s, in SEG, we introduce

two functions, DD(v@s) (see Example 3.5) and CD(v@s) (see Example 3.6), to com-

pute the constraints that describe the data dependence and the control dependence,

respectively. The path condition of the path π is computed as following:

PC(π) =
∧

i=1···n

CD(vi@si) ∧
∧

i=2···n

(vi−1@si−1 = vi@si)

∧
∧

i=2···n

Ld((vi−1@si−1, vi@si))

∧
∧

i=2···n

DD(Ld((vi−1@si−1, vi@si)))

(3.1)

As shown in the above equation, a path condition includes following parts: (1)

CD(vi@si) represents the condition on which si is reachable at runtime; (2) vi−1@si−1 =

vi@si describes the fact that the value stored in vi−1@si−1 flows to vi@si; (3) the

remaining part represents the condition on which the value flow from vi−1@si−1 to

vi@si is feasible.

Example 3.5. Assume we are computing the data dependence of Y shown in

Figure 3.4. DD(Y) will result in the constraint: (n ⇒ Y = X) ∧ (m ⇒ Y =

b)∧ (θ3 ⇒ Y = c)∧ DD(n) ∧ DD(X) ∧ DD(m) ∧ DD(b) ∧ DD(θ3) ∧ DD(c). This

is because the sources of incoming edge of Y are X, b, and c, labeled by n, m, and

θ3, respectively. Also, we should recursively compute the data dependence of n, X,

m, b, θ3, and c.

Example 3.6. To compute the control dependence of q@ ∗ q = b, shown in

Figure 3.4, CD(q@ ∗ q = b) results in the constraint: θ4 ∧ ¬θ3∧ DD(θ4) ∧ DD(θ3).

This is because there is a true-labeled control-dependence edge from the vertex to

θ4 and a false-labeled control-dependence edge from the θ4 to θ3. Also, we should

recursively compute the data dependence of θ3 and θ4.

27

Section 3.3 Qingkai Shi

① t@s5=f@s11 ② DD(f@s11)
i.e., f@s11=(e@s9 ≠0)

∅
{e}

③ e@s9=c@s5∧DD(c@s5) ∅
{a}

i.e., e@s9=c@s5∧c@s5=c@s1

PC((a@s1, a@s6)) =PC((a@s1, a@s6)) ∧①∧②∧③
{t}∅

{a} {a}

a

a@s6 t

c@s5

f

e 0

true
①

②

③
c

≠1. int* foo(int* a, int* c) {
2. int *b = a;
3. free(b);
4.
5. if (bool t = test(c))
6. output(*c, *a);
7. return c;
8. }
9. bool test (int *e) {
10. bool f = (e != 0);
11. return f;
12. }

Figure 3.5: An example to illustrate our inter-procedural analysis.

3.3.3 Global Value-Flow Analysis

The inter-procedural analysis in Pinpoint addresses two problems to achieve

precision and efficiency. The first is how to achieve path- and context-sensitivity

when stitching value flows from different functions. The other is how to reuse analysis

results to avoid repeated computation, thereby improving efficiency. We now explain

how to perform path- and context-sensitive SVFA in a demand-driven way.

(1) Achieving inter-procedural path-sensitivity. To achieve inter-procedural

path-sensitivity, the key is to compute the path condition of a global value-flow path,

for which we need to address two problems. First, given a local value-flow path π in a

function, the afore-defined PC(π) (Equation (3.1) only computes the path condition

based on the function’s local SEG. Thus, the resulting condition loses the constraints

from both of its callers and callees, which we should be able to recover. Second, we

also should be able to compute the path condition of any global value-flow path.

To explicitly describe what is lost in a formula like PC(·), we rewrite it as PC(·)PR
where P and R are the sets of function parameters and return-value receivers, of

which the constraints are lost, respectively. The following is an example to illustrate

P and R.

Example 3.7. In the example, we use si to stand for the statement at Line i. In

Figure 3.5, for the local value-flow path (a@s1, a@s6), according to Equation (3.1),

its path condition will be t@s5 = true ∧ a@s1 = a@s6, where the constraints of the

parameter a@s1 and the return-value receiver t@s5 are lost. Thus, we can write

PC((a@s1, a@s6))
{a@s1}
{t@s5} = (t@s5 = true ∧ a@s1 = a@s6).

28

Section 3.3 Qingkai Shi

Because Pinpoint performs a bottom-up program analysis that always analyzes

callees before callers, we only can recover the lost constraints from the callees when

analyzing a function. That is, we only can eliminate the dependence on the return-

value receivers in PC(·)PR, so that it can be written as PC(·)P ′

∅ . Note that the

dependence on P then can be eliminated by adding the constraints of the actual

parameters when the caller function is analyzed. The basic idea of eliminating the

dependence on R is that, for each return-value receiver in R, we add the constraints

of the corresponding return value, which can be computed based on the callee’s SEG.

The following is an example.

Example 3.8. Following the last example, we need to add the constraints of t@s5

into PC((a@s1, a@s6))
{a@s1}
{t@s5} , so that the dependence on the return-value receiver

t@s5 can be eliminated. As a result, we get the precise path condition, which can be

recorded as PC((a@s1, a@s6))
{a@s1,c@s1}
∅ . Apparently, the constraint to add for t@s5

is t@s5 = f@s11∧ f@s11 = (e@s9 6= 0)∧ e@s9 = c@s5 ∧ c@s5 = c@s1, which consists

of three parts:

¬ t@s5 = f@s11 describes the fact that the return-value receiver is equal to the

corresponding return value.

­ f@s11 = (e@s9 6= 0) describes the value range of the callee’s return value

f@s11, which depends on the function’s parameter e@s9 that is passed in via

the actual parameter c@s5 at Line 5.

® e@s9 = c@s5 ∧ c@s5 = c@s1 describes the dependence of the actual parameter.

Following the above example, formally, we can convert PC(π)PR to PC(π)P
′

∅ by

adding the three parts of conditions (¬ - ®) as

PC(π)P
′

∅ = PC(π)PR ∧
∧

vi@si∈R

vi@si = M(vi@si)︸ ︷︷ ︸
¬

∧DD(M(vi@si))
Qi

∅︸ ︷︷ ︸
­

∧

∧
vj@sj∈Qi

vj@sj = M(vj@sj) ∧DD(M(vj@sj))
Pj

∅︸ ︷︷ ︸
®

(3.2)

In the equation, the bold part is the constraints from the callee function. M represents

a mapping between a pair of formal and actual parameters or a pair of return value

29

Section 3.3 Qingkai Shi

and its receiver. P ′ is the union of P and all Pj. DD(·)P ′

∅ can be converted from

DD(·)PR recursively in a similar way.

The next problem is to compute the precise path condition of a global value-flow

path across different functions. That is, given two local value-flow paths from two

functions, π1=(v1@s1, · · · , vn@sn) and π2=(u1@r1, · · ·un@rn), we need to generate

the path-condition of their connection π1π2, where vn@sn and u1@r1 is a pair of

formal and actual parameters or a pair of return value and its receiver. With no loss

of generality, we assume vn@sn is an actual parameter and u1@r1 is the corresponding

formal parameter. Then π1 is in a caller function and π2 is in one of its callees. The

precise path condition of π1π2 can be generated as below where the bold part is the

constraints from the callee function.

PC(π1π2)
P
∅ =PC(π1)

P1

∅ ∧PC(π2)
P2

∅ ∧ vn@sn = u1@r1∧∧
vi@si∈P2

vi@si = M(vi@si) ∧DD(M(vi@si))
Qi

∅
(3.3)

The first row of the equation includes the path conditions of both paths, as well as

the fact vn@sn flows to u1@r1. Because the path condition of π2 may depend on

the callee’s formal parameters, we add the conditions of the corresponding actual

parameters in the second row of the above equation. Apparently, P is the union of

P1 and all Qi.

(2) Achieving context-sensitivity. We follow the cloning-based approach to

achieve context-sensitivity [70, 122]. That is, if a function is used at multiple call

sites, constraints computed based on the function’s SEG is cloned to distinguish

different call sites.

(3) Demand-driven searching. Because the bug detection process is to search

the value-flow paths starting from a bug-specific source vertex, the path- and context-

sensitive computations are only carried out for the bug-related paths. Therefore, this

is a demand-driven process that avoids the exhaustive path- and context-sensitive

computation.

(4) Compositional approach to bug detection. It is well known that bottom-

up compositional approach can improve the efficiency of program analysis, because

we can summarize function behaviors and reuse function summaries at different

call sites [8, 127]. According to the computation of inter-procedural path condition,

whenever we analyze a function, we actually require two kinds of information from

the callees (see the bold parts in Equations (3.2) and (3.3)). One is the data

30

Section 3.3 Qingkai Shi

dependence, DD(v@s)P∅ , where v@s is a callee’s return value. The other is PC(π)P∅
where π is a value-flow path in certain callee function. Thus, we generate two types

of summaries for them, the return-value (RV) summary and the value-flow (VF)

summary, respectively.

As described by the data-dependence constraints of a return value, DD(v@s)P∅ ,

an RV summary, which summarizes the value range of a function’s return value, is a

three-tuple consisting of:

• An SEG vertex v@s that stands for a return value.

• A constraint that restricts the range of the return value, i.e., DD(v@s)P∅ .

• A subset P of the function’s formal parameters that the constraint depends on.

As described by the path condition, PC(π)P∅ , a VF summary, which summarizes

value flows in a function, is a three-tuple:

• A list of SEG vertices standing for a value-flow path π.

• The condition on which the summarized value-flow path is feasible at runtime,

i.e., PC(π)P∅ .

• A subset P of the function’s formal parameters that the condition depends on.

To detect a bug that can be modeled as a global value-flow path between a pair

of bug-specific “source” and “sink” vertices, we define four kinds of VF summaries:

• VF1 summarizes a value-flow path from a function parameter to a return value.

• VF2 summarizes a value-flow path from a “source” to a return value.

• VF3 summarizes a value-flow path from a function parameter to a “source”.

• VF4 summarizes a value-flow path from a function parameter to a “sink”.

The above VF summaries describe all possible relations between the bug-specific

vertices (i.e., sources and sinks) and the function interface values (i.e., function

parameters and return values). VF1 determines whether an actual parameter at a

call site would flow back to the return-value receiver at the same call site. Thus,

when reaching an actual parameter during path-searching, VF1 decides whether we

31

Section 3.4 Qingkai Shi

should continue the search starting from the return-value receiver. VF2 and VF3

determine if a return-value receiver and an actual parameter would become buggy

(i.e., get value from a bug-specific source) after a call statement, respectively. They

help to decide whether we should start the path search from a return-value receiver

or an actual parameter when analyzing a function. We show an example of the VF3

summary in Figure 3.5. In order to detect the use-after-free vulnerability, we create a

VF3 summary containing the value-flow path (a@s1, b@s2, b@s3), which summarizes

the behavior of function foo: after calling function foo, the function parameter a is

“freed”. VF4 determines if an actual parameter at a call site would flow to a sink in

the callee. A bug may happen in the callee if we reach an actual parameter during

the path search and the callee has a VF4 summary.

(5) Summary. Our compositional approach is different from existing summary-

based approaches. First, it is specially designed for detecting value flow problems.

None of the previous value-flow analyzers generate and cache value flow summaries

for reuse [21, 116, 117]. Second, our approach can be regarded as a staged summary-

based technique that generates summaries for different purposes in each stage. That

is, in the first stage, our approach generates the SEG for each function, which

symbolically memorizes the non-local data dependence relations and path conditions

via a cheap local analysis. In the second stage, we generate the summary of bug-

specific value flows via an expensive path-sensitive analysis in a demand-driven way

to go for a high precision. Such a staged analysis allows us to create an analysis slice,

including pointer queries, value flows, and path conditions, that is just sufficient for

the checked value-flow problems, thus saving a lot of computational resources.

3.4 Implementation

Pinpoint is implemented on top of LLVM 3.6 [69] using Z3 [31] as the SMT solver.

Its main architecture is shown in Figure 3.6.

3.4.1 Checkers

To evaluate Pinpoint as a general framework, we have been continuously adding

“checkers” in addition to those for use-after-free and double-free. In our experience,

problems that can be modeled as value-flow paths are straightforward to solve using

Pinpoint. For instance, a path-traversal vulnerability, which is a taint issue, allows

32

Section 3.4 Qingkai Shi

Building Symbolic Expression Graphs

Data Dependence

Symbolic Expression Graphs

Building Data Dependence

Local and Quasi
Points-to Analysis Mod/Ref Analysis

Compositional Analysis

Summary
Generation Global SVFA

Path
Conditions

Path
Conditions

Linear Time Solver

SMT Solver

Figure 3.6: The architecture of Pinpoint.

an attacker to access files outside of a restricted directory.2 It can be modeled

as a value-flow path starting with SEG vertices representing user inputs like in-

put@input=fgetc(), and ending with SEG vertices representing operations on files

like path@fopen(path, ...) [97]. Similarly, a data transmission vulnerability may leak

sensitive data to attackers.3 It can be modeled as a value-flow path starting with

SEG vertices representing sensitive data like password@password=getpass(...), and

ending with SEG vertices representing statements that may leak information like

data@sendto(data, ...) [97]. Similar to the previous taint analysis work [6], we have

not modeled the sanitization operations in our taint-issue checkers.

3.4.2 Soundness

Pinpoint is soundy [77] as it shares the same “standard assumptions” with previous

techniques that aim to find bugs rather than rigorous verification [76, 127, 21, 8, 117].

In our implementation, we regard all elements in an array or a union structure to be

aliases and unroll each loop once in control flow graphs and call graphs. Following

Saturn [127], we currently have not modeled inline-assembly and function pointers,

but we adopt a class hierarchy analysis to resolve virtual function calls [32]. Also,

we assume distinct parameters of a function do not alias with each other, which

potentially can be improved using the idea of partial transfer function [123] in the

future. For library code, we manually model some standard C libraries like memset

2Relative Path Traversal: https://cwe.mitre.org/data/definitions/23.html
3Resource Leak: https://cwe.mitre.org/data/definitions/402.html

33

https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/402.html

Section 3.5 Qingkai Shi

and memcpy, which are significant for the points-to analysis, but have not modeled

standard template libraries, such as std::vector and std::map.

3.5 Evaluation

We aim to, as systematic as possible, evaluate the precision, the recall, and

the scaling effect of Pinpoint, due to the extensive work from both academia and

industry in scaling static bug finding to industrial-sized software systems. We not only

compared Pinpoint to the state-of-the-art techniques of SVFA, but also conducted

comparison experiments on the tools using abductive inference (Infer) and symbolic

execution (Clang). We also sought to evaluate other prominent static bug detection

implementations such as Saturn, Compass, and Calysto. However, they are either

unavailable or outdated for the operating systems we are able to set up.

The subjects we used include the standard benchmark SPEC CINT2000,4 com-

monly used in the SVFA literature, as well as eighteen real-world open source C/C++

projects such as PHP, FFmpeg, MySQL, and Firefox. We note that many of these

subjects are extensively and frequently scanned by commercial tools such as Coverity

SAVE5 and, thus, expected to have very high quality. The sizes of these subjects

range from a few thousand LoC to close to ten million with 470 KLoC on average.

Our results show that Pinpoint is quite promising: it can complete a deep scan,

i.e., inlining six levels of calls, of eight million lines of code in just four hours; at the

time of writing, it has found more than forty confirmed and previously unknown

vulnerabilities. Some of them are from high-quality systems such as MySQL, while

others are even assigned with CVE IDs6 for their high impact on software security.

Pinpoint is also quite precise with an average false positive rate around 25%. This

performance is aligned with the common industrial requirement of checking millions-

of-LoC code in 5-10 hours with less than 30% false positives [80, 13].

3.5.1 Comparing to Static Value-Flow Analyzer

We compared Pinpoint to the most recent and relevant work, SVF [116], based

on the so-called fully-sparse value-flow graph (FSVFG). FSVFG captures memory-

4SPEC CINT2000 benchmarks: https://www.spec.org/cpu2000/CINT2000
5Coverity Scan: https://scan.coverity.com/projects
6Common Vulnerabilities and Exposures: https://cve.mitre.org

34

https://www.spec.org/cpu2000/CINT2000
https://scan.coverity.com/projects
https://cve.mitre.org

Section 3.5 Qingkai Shi

related data dependence by performing a flow- and context-insensitive points-to

analysis with a flow-sensitive refinement. To the best of our knowledge, this is the

most precise and efficient SVFA technique we can get our hands on. Both SVF and

Pinpoint are targeting value flow problems, and we choose to check use-after-free,

including double-free, for assessing the quality of our tool. We did not choose other

properties for the assessment because, unlike most of the previous approaches, to

reduce the subjectivity of evaluation, we set a high bar for “true positive”: bugs

confirmed by the developers of the evaluated subjects. Our experience showed that

developers are much more responsive to the reports of use-after-free vulnerabilities

due to its critical importance to security [16]. This allows us to complete our

quantification of bug finding capability within a reasonable period of time.

The real obstacle for scaling SVFA to millions of lines of code is the cost for

building SVFG, which is the core problem solved in this chapter. Therefore, we

compared the time and memory cost for building SEG and FSVFG, as well as the

total time and memory consumed by Pinpoint and SVF to complete bug finding. For

precision, we compared the false positive rates of both checkers. Since we cannot

flood developers with all the warnings the tools report, we manually pre-screened

the bug reports before sending them out.

Measuring recall is challenging as it requires the existence of a golden standard,

which is hard to establish for the subjects we evaluate. We used Juliet Test Suite [14],

a test suite developed by the National Security Agency’s Center for Assured Software,

because it provides the ground truth with a collection of known use-after-free and

double-free vulnerabilities.

The number of nested levels of calling context is set to six and the timeout to

twelve hours. All the experiments were performed on a server with eighty “Intel(R)

Xeon(R) CPU E5-2698 v4 @ 2.20GHz” processors and 256GB of memory running

Ubuntu-16.04.

(1) Scalability. Figure 3.7 and Figure 3.8 show the comparison of the time and

the memory cost between SEG and FSVFG. We observe that the two techniques

perform similarly when the code size is less than 135 KLoC. For the subjects larger

than 135 KLoC, the construction of FSVFG always timeouts while consuming 40-60G

more memory space. Building SEG takes less than an hour, up to 400× faster.

As for the bug checking process, we observe that Pinpoint is also much more

time and memory efficient than SVF. Pinpoint finished checking MySQL (2 MLoC)

in 1.5 hours and Firefox (8 MLoC) in approximately 4 hours, whereas SVF took

35

Section 3.5 Qingkai Shi

12hr time-out

Subject ID (ordered by program size)

Ti
m

e
lo

g
sc

al
e

∆≈20min
135KLoC

∆>11hr
>135KLoC

∆≈20sec
50KLoC

Figure 3.7: Time cost: building SEG vs. building FSVFG.

Subject ID (ordered by program size)

M
em

or
y

(G
)

>60G
>135KLoC

>160G
>2,030KLoC

time-out

>120G
>900KLoC

∆≈3G

∆>40G

∆>60G

Figure 3.8: Memory cost: building SEG vs. building FSVFG.

more than twelve hours to complete fifteen out of thirty subjects and timed out on

eight of them. Pinpoint also requires significantly less memory compared to SVF

as shown in Figure 3.9: for the subjects larger than 135 KLoC, SVF uses 10-30G

additional memory compared to Pinpoint, while unable to finish building FSVFG for

these subjects.

We adopt the curve fitting approach [104] to study the observed time- and

memory-complexity of Pinpoint. Figure 3.10 shows the fitting curves and their

coefficients of determination R2. R2 ∈ [0, 1] is a statistical measure of how close the

data are to the fitting curve. The more R2 is close to 1, the better the fitting curve

is. It shows that Pinpoint’s time and memory cost grow almost linearly in practice

(R2 > 0.9) and, thus, scale up quite gracefully.

(2) Precision and Recall. Pinpoint reported fourteen use-after-free vulnerabil-

ities with twelve true positives and a false-positive rate of (14− 12)/14 = 14.3%. All

the true positives are previously-unknown and have been confirmed by the developers.

36

Section 3.5 Qingkai Shi

Subject ID (ordered by program size)

M
em

or
y

(G
)

time-out

Fail to build FSVFG

Building SEG
+

Checking bugs

Figure 3.9: Memory cost: SEG- vs. FSVFG-based checkers.

KLoC

Ti
m

e
(m

in
) /

 M
em

or
y

(G
)

MySQL
Firefox

Figure 3.10: Scalability of an SEG-based checker.

A stark contrast is that Pinpoint generates very few reports in total as shown by

Table 3.1, whereas SVF reports nearly 10,000 (about 1,000X more) warnings. Since

we are unable to manually inspect all of them, we randomly sample a hundred

warnings for inspection if a project has too many warnings. Unfortunately, SVF did

not find any true positive after the manual filtering. Simply speaking, Pinpoint is

more precise because our approach enables to build path-sensitive data dependence

while SVF cannot do so because of the “pointer trap”.

To measure if the scalability and precision of Pinpoint are achieved by sacrificing

the recall, we run Pinpoint on the Juliet Test Suite, which contains 1421 use-after-free

vulnerabilities, caused by 51 different types of flaws in the code. The experimental

results show that Pinpoint can detect all of them.

(3) Detected Real Bugs. Pinpoint can detect vulnerabilities of high complexity

for which the original developers have to use expensive methods such as the debugger

37

Section 3.5 Qingkai Shi

to confirm. For example, Pinpoint detected a use-after-free in MySQL (Bug #872037),

the most popular open-source database engine, in a function of approximately 1,000

LoC. The control flow involved in the bug spans across 36 functions over 11 compiling

units. Consequently, our communications with the developers met with denial twice

until the final confirmation as a true bug after extensive manual code analyses.

Pinpoint also detected a use-after-free vulnerability in the code of LibICU (Bug

#133018), a unicode manipulation library. This library is widely used by products

from hundreds of organizations and companies such as Microsoft, Apple, Google, etc.

Although this library is frequently checked by mature error-detection tools such as

Coverity SAVE, the bug has been hidden for more than ten years. This vulnerability

is serious enough to deserve its CVE ID: CVE-2017-14952.

In total, we have detected hundreds of vulnerabilities from many open-source

projects, including famous software systems like MySQL, FireFox, Python, Apache

and OpenSSL, as well as fundamental libraries like LibSSH and LibICU.

3.5.2 Study of the Taint Analysis

As a general framework, Pinpoint should enable the same performance character-

istics for other types of bug finding tasks that it can support. For this purpose, we

also evaluated two additional checkers for taint issues as described in Section 3.4.

The corresponding evaluation results are summarized in the Table 3.2. Because of

the page limits, we only present the memory and time cost for checking MySQL (2

MLoC, typical code size in industry). This cost is similar to that of use-after-free.

Like in the previous taint analysis work [6], we have not modeled the sanitization

operations in our analysis. Thus, a report is regarded as a false positive only if we

can manually identify an infeasible value-flow path, which leads to a false positive

rate of 23.6%.

3.5.3 Comparing to Other Static Analyzers

To better understand the performance of Pinpoint in comparison to other types

of bug finding techniques, we also ran Pinpoint against two prominent and mature

open-source static bug detection tools, Infer and Clang, on finding the use-after-free

7Bug #87203: https://bugs.mysql.com/bug.php?id=87203
8Bug #13301: http://bugs.icu-project.org/trac/ticket/13301

38

https://bugs.mysql.com/bug.php?id=87203
http://bugs.icu-project.org/trac/ticket/13301

Section 3.6 Qingkai Shi

Table 3.1: Results of the use-after-free checker.

Program Size
(KLoC)

Pinpoint SVF
Origin Name #FP #Reports FP Rate #Reports

SPEC
CINT
2000

mcf 2 0 0 0 0
bzip2 3 0 0 0 0
gzip 6 0 0 100% 46
parser 8 0 0 0 0
vpr 11 0 0 100% 55
crafty 13 0 0 100%† 546
twolf 18 0 0 100%† 145
eon 22 0 0 100%† 1324
gap 36 0 0 0 0
vortex 49 0 0 100%† 125
perkbmk 73 0 0 100% 13
gcc 135 0 0 0 0

Open
Source

webassembly 23 0 1 100%† 902
darknet 24 0 0 100%† 152
html5-parser 31 0 0 100% 32
tmux 40 0 0 100%† 2041
libssh 44 0 1 100% 102
goacess 48 0 1 100%† 312
shadowsocks 53 0 2 100%† 1972
swoole 54 0 0 100%† 534
libuv 62 0 0 0 0
transmission 88 0 1 100%† 802
git 185 0 0 NA NA
vim 333 0 0 NA NA
wrk 340 0 0 NA NA
libicu 537 0 1 NA NA
php 863 0 0 NA NA
ffmpeg 967 0 0 NA NA
mysql 2,030 1 5 NA NA
firefox 7,998 1 2 NA NA

† We only inspect one hundred randomly-selected reports.

vulnerabilities. The results are reported in Table 3.3. Our evaluation shows both

Clang and Infer run faster compared to Pinpoint. The primary reason is that both

Infer and Clang confine their activities within each compilation unit and do not fully

track path correlations. This is at the cost of generating more false warnings and of

the failure of finding bugs across multiple compilation units. As Table 3.3 shows, if

we allow the concurrent analysis of fifteen threads, both tools can finish checking

within one hour. However, all of the thirty-five use-after-free reports of Infer are false

positives. Only two of the twenty-six warnings reported by Clang are true positives,

which are also reported by Pinpoint.

39

Section 3.6 Qingkai Shi

Table 3.2: Results of the SEG-based taint analysis.

Checkers Memory Time #FP/#Reports

Path Traversal Vuln. 43.1G 1.4hr 11/56
Data Transmission Vuln. 52.6G 1.5hr 24/92

Table 3.3: Results of Infer and Clang.

Program
Size

(KLoC)
Infer Clang

Time (min) #FP/#Rep Time (min) #FP/#Rep

webassembly 23 0.1 0/0 0.5 0/0
darknet 24 2.5 0/0 1.4 0/0
html5-parser 31 NA NA 0.2 0/0
tmux 40 1.0 5/5 1.0 6/6
libssh 44 0.1 0/0 0.2 1/1
goaccess 48 0.5 4/4 0.3 0/1
shadowsocks 53 NA NA NA NA
swoole 54 NA NA 0.5 0/0
libuv 62 0.5 1/1 0.2 0/0
transmission 88 1.0 0/0 0.5 0/0
git 185 2.5 3/3 1.4 2/2
vim 333 NA NA 1.4 0/0
wrk 340 NA NA 2.5 0/0
libicu 537 3.3 8/8 2.6 0/0
php 863 NA NA 6.9 4/4
ffmpeg 967 21.1 1/1 3.3 0/0
mysql 2030 42.6 13/13 15.8 6/7
firefox 7998 NA NA 54.0 5/5

Total 35/35 24/26

NA means we fail to run Clang or Infer on the benchmark programs.

3.6 Conclusion

We have described Pinpoint, embodying a holistic design of sparse value-flow

analysis that allows us to escape from the pointer trap and, thus, simultaneously

achieve precision and observed linear scalability for millions of lines of code. Pinpoint

has discovered hundreds of vulnerabilities, confirmed by developers of many well-

known systems and code libraries. Pinpoint is promising in providing industrial-

strength capability in static bug finding.

40

Chapter 4

Scaling up Sparse Value-Flow
Analysis for Multiple Checkers

4.1 Introduction

Sparse value-flow analysis (SVFA) [108, 21, 116, 76], which tracks how values are

stored and loaded in a program, underpins the inspection of a very broad category

of software properties, such as memory safety (e.g., null dereference, double free,

etc.), resource usage (e.g., memory leak, file usage, etc.), and security properties

(e.g., the use of tainted data). In addition, there are a large and growing number of

domain-specific value-flow properties. For instance, mobile software requires that

the personal information cannot be passed to an untrusted code [6], and, in web

applications, tainted database queries are not allowed to be executed [118]. Fortify, a

commercial static code analyzer, checks nearly ten thousand value-flow properties

from hundreds of unique categories. Value-flow properties exhibit a very high degree

of versatility, which poses great challenges to the effectiveness of general-purpose

program analyzers.

4.1.1 The Extensional Scalability Problem

Faced with such a massive number of properties and the need of extension, existing

approaches, such as Fortify, Clang, and Infer, provide a customizable framework

together with a set of property interfaces that enable the quick customization for

new properties. For instance, Clang uses a symbolic-execution engine such that, at

every statement, it invokes the callback functions registered for the properties. These

callback functions are overwritten by the property-checker writers to collect the

41

Section 4.1 Qingkai Shi

symbolic-execution results, such as the symbolic memory and the path conditions, so

that we can judge the presence of any property violation at the statement. Despite

the existence of many Clang-like frameworks, when high precision like path-sensitivity

is required, existing static analyzers still cannot scale well with respect to a large

number of properties to check, which we refer to as the extensional scalability issue.

For example, our evaluation shows that Clang cannot path-sensitively check twenty

properties for many programs in ten hours. Pinpoint, our analyzer introduced in the

previous chapter, exhausted 256GB of memory for only eight properties.

We observe that a major factor for the extensional scalability issue is that,

in the conventional extension mechanisms, such as that of Clang, the core static

analysis engine is oblivious to the properties being checked. Although the property

obliviousness gives the maximum flexibility and extensibility to the framework, it

also prevents the core engine from utilizing the property-specific analysis results for

optimization. This scalability issue is slightly alleviated by a class of approaches that

are property-aware and demand-driven [43, 9, 71]. These techniques are scalable

with respect to a small number of properties because the core engine can skip certain

program statements by understanding what statements are relevant or irrelevant

to the properties. However, in these approaches, the semantics of properties are

also opaque to each other. As a result, when the number of properties grows very

large, the performance of the demand-driven approaches will quickly deteriorate

because property-irrelevant program statements become fewer and fewer, such as

in the case of Pinpoint. To the best of our knowledge, the number of literature

specifically addressing the extensional scalability issue is very limited. Readers can

refer to Section 2.2.2 for a detailed discussion.

4.1.2 Conquering the Extensional Scalability Problem

In this work, we advocate an inter-property-aware design to relax the property-

property and the property-engine opaqueness so that the core static analysis engine

can exploit the mutual synergy among different properties for optimization. To

check a value-flow property, instead of conforming to conventional callback interfaces,

property-checker writers of our framework need to explicitly declare a simple property

specification, which picks out source and sink values, respectively, as well as the

predicate over these values for the satisfaction of the property. For instance, for a null

deference property, our property model only requires the checker writers to indicate

where a null pointer may be created and where the null dereference may happen using

42

Section 4.2 Qingkai Shi

pattern expressions, as well as a simple predicate that constrains the propagation of

the null pointer. Surprisingly, given a set of properties specified in our property model,

our static analyzer can automatically understand the overlaps and inconsistencies of

the properties to check. Based on the understanding, before analyzing a program,

we can make dedicated analysis plans so that, at runtime, the analyzer can share the

analysis results on path-reachability and path-feasibility among different properties

for optimization. The optimization allows us to significantly reduce redundant graph

traversals and unnecessary invocations of the SMT solver, two critical performance

bottlenecks of conventional approaches. We provide some examples in Section 4.2 to

illustrate our approach.

We have implemented our approach, named Catapult, which is a new demand-

driven and compositional static analyzer with the precision of path-sensitivity. Like

a conventional compositional analysis [127], our implementation allows us to con-

currently analyze functions that do not have calling relations. In Catapult, we have

included all C/C++ value-flow properties that Clang checks by default. In the

evaluation, we compared Catapult to three state-of-the-art bug-finding tools, Pinpoint,

Clang, and Infer, using a standard benchmark and ten popular industrial-sized soft-

ware systems. The experimental results demonstrate that Catapult is more than 8×
faster than Pinpoint but consumes only 1/7 of the memory. It is as efficient as Clang

and Infer in terms of both time and memory cost but is much more precise. Such

promising scalability of Catapult is not achieved by sacrificing the capability of bug

finding. In our experiments, although the benchmark software systems have been

checked by numerous free and commercial tools, Catapult is still able to detect many

previously-unknown bugs, in which thirty-nine have been fixed by the developers

and four have been assigned CVE IDs due to their security impact. In summary, we

make the following contributions in this chapter:

• An inter-property-aware design for checking value-flow properties, which miti-

gates the extensional scalability issue.

• A series of cross-property optimization rules that can be made use of for general

SVFA frameworks.

• A detailed implementation and a systematic evaluation that demonstrates our

high scalability, precision, and recall.

43

Section 4.2 Qingkai Shi

(a) path overlapping

check for
free-global-pointer

bugs

check for
memory-leak

bugs

a=malloc()

c=𝜙(a, b)

*c=1

b

X

// global pointer// heap pointer

(b) path contradiction

a=malloc()

b=a

free(b) *b=1

check for
memory-leak

bugs

check for
null-dereference

bugsX
a≠0 a=0

𝛾

// heap pointer or null

Figure 4.1: Path overlapping and contradiction among different
properties on the value-flow graph.

4.2 Overview

The key factor that allows us to conquer the extensional scalability problem is

the exploitation of the mutual synergy among different properties. In this section,

we first use two simple examples to illustrate this mutual synergy and then provide

a running example used in the whole chapter.

4.2.1 Mutual Synergy

We observe that the mutual synergy among different properties are primarily in

the forms of path overlapping and path contradiction.

In Figure 4.1(a), to check the memory-leak bug, we need to track value flows

from the newly-created heap pointer a to check if the pointer will be freed.1 To

check the free-global-pointer bug, we track value flows from the global variable b to

check if it will be freed.2 As illustrated in the figure, the value-flow paths to search

for these two bugs overlap from the vertex c=φ(a,b) to the vertex *c=1. Being

aware of the overlap, when traversing the graph from the vertex a=malloc() for

the memory-leak bug, we record that the vertex c=φ(a,b) cannot reach any “free”

operation. Therefore, when checking the free-global-pointer bug, we can use this

recorded information to immediately stop the graph traversal at the vertex c=φ(a,b),

thereby avoiding redundant graph traversals.

1We say a pointer p is “freed” if it is used in the function call free(p). We will detail how to use
the value-flow information to check bugs later.

2Freeing a pointer pointing to non-heap memory (e.g., memory allocated by global variables) is
buggy. See details in https://cwe.mitre.org/data/definitions/590.html.

44

https://cwe.mitre.org/data/definitions/590.html

Section 4.2 Qingkai Shi

property
specifications

graph traversal
plan

optimization
plan bug reportsengine of graph

traversal
plan maker

core engine

key novelty: a plan maker is inserted in a conventional design

Figure 4.2: The workflow of our approach.

1. char* g = "";
2. void main() {
3. char* a;
4. if (𝛾1) {
5. p = malloc(…); a = p; // heap pointer or null
6. } else {
7. a = g; // nonheappointer
8. }
9. if (𝛾2) { b = a; free(b); }
10.
11. if (𝛾3) { c = a; *c = 1; }
12.
13. if (𝛾4) { d = a; free(d); }
14. }

d

p

a

free(d)

g
// nonheap pointer// may be null

free(b)

b

*c = 1

c

𝛾1

𝛾4 𝛾2 𝛾3

￢𝛾1

Figure 4.3: An example to illustrate our method.

In Figure 4.1(b), to check the memory-leak bug, we track value flows from the

newly-created pointer a to where it is freed. To check the null-dereference bug,

considering that the function malloc may return a null pointer when the memory

allocation fails, we track the value flows from the same pointer a to where it is

dereferenced. The two properties have an inconsistent constraint: the former requires

a 6=0 for a to be a valid heap pointer while the latter requires a=0 for a to be a null

pointer. Being aware of this inconsistency, when traversing the graph for checking the

null-dereference bug, we check and record if the path condition γ of the path from the

vertex a=malloc() to the vertex b=a conflicts with the null pointer condition a=0. If

the path condition γ is satisfiable but conflicts with the null pointer condition a=0,

i.e., the conjunction γ∧a=0 is unsatisfiable, we can conclude that the conjunction

γ∧a 6=0 must be satisfiable without an expensive constraint-solving procedure when

checking the memory-leak bug.

45

Section 4.2 Qingkai Shi

4.2.2 A Running Example

Figure 4.3 shows a running example using the value-flow graph where we check

the null-deference and the free-global-pointer bugs following the workflow illustrated

in Figure 4.2. Given a program, we first follow the previous work [117, 21, 108] to

build the value-flow graph in order to check the two properties with the precision

of path-sensitivity. Here, path-sensitivity means that when searching paths on

the value-flow graph, we invoke an SMT solver to solve path conditions and other

property-specific constraints to prune infeasible paths.

(1) The Property Specifications. The users of our framework need to declar-

atively specify the value-flow properties, which consists of the simple descriptions of

the sources, the sinks, and the predicates for triggering the bug. For instance, the

specifications of the aforementioned two properties are described by the following

two quadruples, respectively:

prop null-deref := (v = malloc(); = ∗v, ∗v = ; v = 0; never)

prop free-glob-ptr := (glob; free(v); true; never)

Separated by the semicolons, the first and second components denote the descriptors

of the source and the sink, respectively, specified using pattern expressions to

represent the values used or defined in some program statements. The “don’t-care”

values are written as underscores. In the running example, the source values of the

properties null-deref and free-glob-ptr are the return pointer of the function malloc

and the global pointer g, respectively. The sink value of the property null-deref is

the dereferenced value c at the statement *c=1. The sink values of the property

free-glob-ptr are the freed values at the statements free(b) and free(d).

The third component is a property-specific constraint, representing the triggering

condition of the bug. In our example, the constraint of the property null-deref is

v = 0, meaning that the value on a value-flow path should be a null pointer. The

constraint of the property free-glob-ptr is true, meaning that the value on a value-flow

path is unconstrained.

The built-in predicate “never” means that value-flow paths between the specified

sources and sinks should never be feasible. Otherwise, a bug exists.

(2) The Core Static Analysis Engine. Given these declarative specifications,

our core engine automatically makes analysis plans before the analysis begins,

including both the graph traversal plan and the optimization plan. In the example,

46

Section 4.3 Qingkai Shi

we make the following optimization plans: (1) checking the property free-glob-ptr

before the property null-deref ; (2) when traversing the graph for the property free-

glob-ptr, we record the vertices that cannot reach any sink vertex of the property

null-deref. The graph traversal plan in the example is trivial, which is to perform

a depth-first search on the value-flow graph from every source vertex of the two

properties.

In Figure 4.3, when traversing the value-flow graph from the global pointer g to

check the property free-glob-ptr, the core engine visits all vertices except the vertex p

to look for “free” operations. According to the optimization plan, during the graph

traversal, we record that the vertices b and d cannot reach any dereference operation.

To check the property null-deref, we traverse the value-flow graph from the

vertex p. When visiting the vertex b and the vertex d, since the previously-recorded

information tells us that they cannot reach any sink vertices, we prune the subsequent

paths from the two vertices.

It is noteworthy that if we check the property null-deref before the property free-

glob-ptr, we only can prune one path from the vertex c for the property free-glob-ptr

based on the results of the property null-deref. We will further explain the rationale

of our analysis plans in the following sections.

4.3 Value-Flow Properties

This section provides a specification model for value-flow properties. We first

define the specification and then provide several examples to show what properties

can be described using the specification. The specification sets the foundation for

our optimized analysis for multiple value-flow properties.

4.3.1 Property Specification

We define the property specification with two motivations. First, we observe that

many property-specific constraints play a significant role in performance optimization.

The specific constraints of one property can be used to optimize checking of not just

the property itself, but also of other properties being checked together.

Second, despite many studies on value-flow analysis [76, 108, 117, 116, 21], we

still have a lack of general and extensible specification models that can maximize

47

Section 4.3 Qingkai Shi

Table 4.1: Pattern expressions used in the specification.

p ::= :: patterns
| p1, p2, · · · :: pattern list
| v0 = sig(v1, v2, · · ·) :: call
| v0 = ∗v1 :: load
| ∗v0 = v1 :: store
| v0 = v1 :: assign
| glob :: globals

v ::= :: symbol
| sig :: character string
| :: uninterested value

Examples:
v = malloc() the return value of any statement calling malloc;

= send(,v, ,) the 2nd argument of any statement calling send ;
= ∗v the dereferenced value at every load statement;

the opportunities of sharing analysis results across the processes of checking different

properties. Some of the existing studies only focus on checking a specific property

(e.g., memory leak [117]), while others adopt different specifications to check the

same value-flow property (e.g., double free [108, 21]).

In a similar style to existing approaches [74, 117, 108], we assume that the code

of a program is in static single assignment (SSA) form, where every variable has

only one definition [29]. As defined below, we model a value-flow property as an

aggregation of value-flow paths.

Definition 4.1 (Value-Flow Property). A value-flow property, x, is a quadruple:

prop x := (src; sink; psc; agg), where

• src and sink are two pattern expressions (Table 4.1) that specify the sources

and the sinks of the value-flow paths to track.

• psc is a first-order logic formula, representing the property-specific constraint

that every value on the value-flow path needs to satisfy.

• agg ∈ {never, never-sim,must, · · · } is an extensible predicate that determines

how to aggregate value-flow paths to check the specified property.

48

Section 4.3 Qingkai Shi

4.3.2 Property Examples

In practice, we can use the quadruple defined above to specify a wide range of

value-flow properties. As discussed below, we put the properties into three categories,

which are checked by aggregating a single, two, or more value-flow paths, respectively.

(1) Single-Path Properties. We can check many program properties using a

single value-flow path, such as the properties, null-deref and free-glob-ptr, defined in

Section 4.2.2, as well as a broad range of taint issues that propagate a tainted object

to a program point consuming the object [33].

(2) Double-Path Properties. A wide range of bugs happen in a program

execution because two program statements (e.g., two statements calling the function

free) consecutively operate on the same value (e.g., a heap pointer). Typical examples

include the use-after-free bug, a general form of the double-free bug, as well as the

ones that operate on expired resources such as a closed file descriptor or a closed

network socket. We check them using two value-flow paths from the same source

value. As an example, the specification for checking the double-free bugs can be

specified as

prop double-free := (v = malloc(); free(v); v 6= 0; never-sim)

In the specification, the property-specific constraint v 6= 0 requires the initial

value (or equivalently, all values) on the value-flow path is a valid heap pointer. This

is because v = 0 means the function malloc fails to allocate memory and returns a

null pointer. In this case, the “free” operation is harmless. The aggregate predicate

“never-sim” means that two value-flow paths from the same pointer should never occur

simultaneously. In other words, there is no control-flow path that goes through two

“free” operations on the same heap pointer. Otherwise, a double-free bug exists.

In Figure 4.3, for the two value-flow paths from the vertex p to the two “free”

operations, we check the constraint (γ1 ∧ γ2) ∧ (γ1 ∧ γ4) ∧ (p 6= 0) to find double-free

bugs. Here, (γ1 ∧ γ2) and (γ1 ∧ γ4) are the path conditions of the two paths.

(3) All-Path Properties. Many bugs happen because we do not properly

handle a value in all program paths. For instance, a memory-leak bug happens if

there exists a feasible program path where we do not free a heap pointer. Other

typical examples include many types of resource leaks such as the file descriptor leak

and the socket leak. We check them by aggregating all value-flow paths from the

same source value. As an example, we write the following specification for checking

49

Section 4.4 Qingkai Shi

memory leaks:

prop mem-leak := (v = malloc(); free(v); v 6= 0;must)

Compared to the property double-free, the only difference in the specification is

the aggregate predicate. The aggregate predicate “must” means that the value-flow

path from a heap pointer must be able to reach a “free” operation. Otherwise, a

memory leak exists in the program.

In Figure 4.3, for the value-flow paths from the vertex p to the two “free”

operations, we can check the disjunction of their path conditions, i.e., ¬((γ1 ∧
γ2) ∨ (γ1 ∧ γ4)) ∧ γ1 ∧ (p 6= 0), to determine if a memory leak exists. Here, (γ1 ∧ γ2)
and (γ1 ∧ γ4) are the path conditions of these two paths, respectively. The additional

γ1 is the condition on which the heap pointer is created.

4.4 Inter-property-aware Analysis

Given a number of value-flow properties specified as the quadruples defined in

Definition 4.1, our inter-property-aware static analyzer searches the value-flow paths

and checks bugs based on the path conditions, the property-specific constraint, and

the aggregate predicate. In this chapter, we concentrate on how to exploit the mutual

synergy arising from the interactions of different properties to improve the searching

efficiency of value-flow paths.

4.4.1 A Näıve Static Analyzer

For multiple value-flow properties, a näıve static analyzer checks them inde-

pendently in a demand-driven manner. As illustrated by Algorithm 4.1, for each

value-flow property, the static analyzer traverses the value-flow graph from each of the

source vertices. At each step of the graph traversal, we check if the property-specific

constraint psc is satisfiable with respect to the current path condition. If it is not

satisfiable, we can stop the graph traversal along the current path. This path-pruning

process is illustrated in the shaded part of Algorithm 4.1, which is a critical factor

to improve the performance.

50

Section 4.4 Qingkai Shi

Input: the sparse value-flow graph of a progam to check
Input: a set of value-flow properties to check
Output: paths between sources and sinks for each property
foreach property in the input property set do

foreach source v in its source set do
while visit v′ in the depth-first search from v do

π ← the current path that ends with v′;

if psc cannot be satisfied with respect to the path condition of the
path π then

stop the search from v′;

Algorithm 4.1: The näıve static analyzer.

The key optimization opportunities come from the observation that the properties

to check usually introduce overlaps and inconsistencies during the graph traversal,

which cannot be exploited if they are independently checked as in the näıve approach.

4.4.2 Optimized Intra-procedural Analysis

As summarized in Table 4.2, given the property specifications, our inter-property-

aware static analysis engine carries out two types of optimizations when traversing

the value-flow graph: the first aiming at pruning paths and the second focusing on

sharing paths when multiple properties are being checked. Each row of the table

is a rule describing the specific precondition, the corresponding optimization, as

well as its benefit. For the clarity of the discussion, we explain the rules in the

context of processing a single-procedure program, followed by the discussion on the

inter-procedural analysis in the next subsection.

Given the property specifications, we adopt Rules 1 – 4 in Table 4.2, the opti-

mization plans, to facilitate the path pruning.

(1) Ordering the Properties (Rule 1). Given a set of properties with different

source values, we need to determine the order in which they are checked. While we

leave the finding of the perfect order that guarantees the optimal optimization to our

future work, we observe that a random order can significantly affect the effectiveness

of the path pruning and must be circumvented.

Let us consider the example in Figure 4.3 again. In Section 4.2.2, we have

explained that if the property free-glob-ptr is checked before the property null-deref,

we can prune the two paths from the vertex b and the vertex d when checking the

latter. However, if we flip the checking order, only one path from the vertex c

51

Section 4.4 Qingkai Shi

Table 4.2: Rules of making analysis plans for a pair of properties.

Optimization Plans
prop x := (src1; sink1; psc1; agg1) and prop y := (src2; sink2; psc2; agg2), src1 6= src2

ID Rule Name Precondition Plan Benefit

1 property ordering #sink1 > #sink2 check x before y
more chances to prune
paths

2

result recording

check x before y
record vertices that
cannot reach sink2

prune paths at a vertex

3
check x before y,
psc1 = psc2

record unsat cores
that conflict with
psc2

prune paths if going
through a set of edges

4
check x before y,
psc1 6= psc2

record interpolants
that conflict with
psc2

Graph Traversal Plans
prop x := (src1; sink1; psc1; agg1) and prop y := (src2; sink2; psc2; agg2), src1 = src2

ID Rule Name Precondition Plan Benefit

5 traversal merging -
search from src1 for
both properties

sharing path conditions

6

psc-check ordering

psc1 ∧ psc2 = psc1 check psc1 first if satisfiable, so is psc2

7 psc1 ∧ psc2 6= false check psc1 ∧ psc2
if satisfiable, both psc1
and psc2 can be satisfied

8 psc1 ∧ psc2 = false check psc1 first
if unsatisfiable, psc2 can
be satisfied

can be pruned. This is because, when checking the property null-deref, the core

engine records that the vertex c cannot reach any sinks specified by the property

free-glob-ptr.

Intuitively, what causes the fluctuation in the number of prunable paths is that

the number of the “free” operations is more than the dereference operations in the

value-flow graph. That is, the more sink vertices we have in the value-flow graph,

the fewer paths we can prune for the property. Inspired by this intuition, the order

of checking the properties is arranged according to the number of sink vertices. That

is, the more sink vertices a property has in the value-flow graph, the earlier we check

this property.

(2) Recording Sink-Reachability (Rule 2). Given a set of properties {prop1,
prop2, · · · }, when checking the property propi by traversing the value-flow graph, we

record if each visited vertex may reach a sink vertex of the property propj(j 6= i).

With the recorded information, when checking the property propj(j 6= i) and visiting

a vertex that cannot reach any of its sinks, we prune the paths from the vertex.

Section 4.2.2 illustrates the method.

52

Section 4.4 Qingkai Shi

(3) Recording the Checking Results of Property-Specific Constraints

(Rules 3 & 4). Given a set of properties {prop1, prop2, · · · }, when we check the

property propi by traversing the value-flow graph, we record the path segments, i.e.,

a set of edges, that conflict with the property-specific constraint pscj of the property

propj(j 6= i). When checking the property propj(j 6= i), we prune the paths that

include the path segments.

Let us consider the running example in Figure 4.3 again. When traversing the

graph from the vertex g to check the property free-glob-ptr, the core engine records

that the condition of the edge from the vertex a to the vertex c, i.e., a 6= 0, conflicts

with the property-specific constraint of the property null-deref, i.e., a = 0. With this

information, when checking the property null-deref, we can prune the subsequent

path after the vertex c.

Thanks to the advances in the area of clause learning [12], we are able to efficiently

compute some reusable facts when using SMT solvers to check path conditions and

property-specific constraints. Specifically, we compute two reusable facts when a

property-specific constraint psci conflicts with the current path condition pc.

When pc ∧ psci is unsatisfiable, we record the unsatisfiable core [34], which is

a set of Boolean predicates in the path condition pc, e.g., {γ1, γ2, · · · }, such that

γ1 ∧ γ2 ∧ · · · ∧ psci = false. Since the path condition pc is the conjunction of the edge

constraint on the value-flow path, each predicate γi corresponds to the condition of

an edge εi on the value-flow graph. Thus, we can record an edge set E = {ε1, ε2, · · · },
which conflicts with the property-specific constraint psci. When checking the other

property with the same property-specific constraint, if a value-flow path contains

these recorded edges, we can prune the remaining paths.

In addition to the unsatisfiable cores, we also can record the interpolation con-

straints [23], which are even reusable for properties with a different property-specific

constraint. In the above example, assume that the property-specific constraint psci is

a = 0 and the predicate set {γ1, γ2, · · · } is {a+b > 3, b < 0}. In the constraint solving

phase, an SMT solver can refute the satisfiability of (a+ b > 3) ∧ (b < 0) ∧ (a = 0)

by finding an interpolant γ′ such that (a+ b > 3) ∧ (b < 0)⇒ γ′ but γ′ ⇒ ¬(a = 0).

In the example, the interpolant γ′ is a > 3, which provides a detailed explanation

why the γ set conflicts with the property-specific constraint a = 0. In addition, the

interpolant also indicates that the γ set conflicts with many other constraints such as

a < 0 and a < 3. Thus, given a property whose specific constraint conflicts with the

interpolation constraint, it is sufficient to conclude that any value-flow path passing

through the edge set E can be pruned.

53

Section 4.4 Qingkai Shi

d

p

a

free(d)

g

// a heap pointer
// or a null pointer

free(b)

b

print(*c)

c

{mem-leak, null-deref}

{mem-leak, null-deref}

{mem-leak, null-deref}

{mem-leak}

psc: a≠0 psc: a=0

{mem-leak, null-deref}

{null-deref}

Figure 4.4: Merging the graph traversal.

Different from the optimization plan that aims to prune paths, The graph traversal

plan is to provide strategies of sharing paths among different properties.

(4) Merging the Graph Traversal (Rule 5). We observe that many prop-

erties actually share the same or a part of source vertices and even the same sink

vertices. If the core engine checks each property one by one, it will repetitively

traverse the graph from the same source vertex for different properties. Therefore,

our graph traversal plan merges the path searching processes for different properties.

As an example, in Figure 4.3, since the vertex p may represent either a heap

pointer or a null pointer, checking both the property null-deref and the property

mem-leak needs to traverse the graph from the vertex p. Figure 4.4 illustrates how

the merged traversal is performed. That is, we maintain a property set during the

graph traversal to record what properties the current path contributes to. Whenever

visiting a vertex, we check if a property needs to be removed from the property

set. For instance, at the vertex d, we may remove the property null-deref from the

property set if we can determine the vertex d cannot reach any of its sinks. When

the property set becomes empty, the graph traversal stops immediately.

(5) Ordering the Checks of Property-Specific Constraints (Rules 6 –

8). Since the graph traversals are merged for different properties, at a vertex, e.g., a

in Figure 4.4, we have to check multiple property-specific constraints, e.g., a 6= 0 for

the property mem-leak and a = 0 for the property null-deref, with respect to the path

condition. In a usual manner, we have to invoke an expensive SMT solver to check

each property-specific constraint, significantly affecting the analysis performance

when there are many properties to check. We mitigate this issue by utilizing various

54

Section 4.4 Qingkai Shi

relations between the property-specific constraints, so that we can reuse SMT-solving

results and reduce the invocations of the SMT solver.

Given two property-specific constraints, psc1 and psc2, we consider all three

possible relations between them: psc1 ∧ psc2 = psc1, psc1 ∧ psc2 6= false, and psc1 ∧
psc2 = false. Since the property-specific constraints are often simple, these relations

are easy to compute. These relations make it possible to check both psc1 and psc2

by invoking an SMT solver only once.

The first relation, psc1 ∧ psc2 = psc1, implies that any solution of the constraint

psc1 also satisfies the constraint psc2. In this case, we first check if the constraint psc1

conflicts with the current path condition pc by solving the conjunction, pc ∧ psc1. If

it is satisfiable, we can conclude that the conjunction, pc ∧ psc2, is also satisfiable.

The second relation, psc1 ∧ psc2 6= false, implies that there exists a solution that

satisfying both the constraint psc1 and the constraint psc2. In this case, we first

check the conjunction, pc∧ psc1 ∧ psc2. If it is satisfiable, we can conclude that both

of the constraints, psc1 and psc2, are satisfiable with respect to the path condition.

The third relation, psc1 ∧ psc2 = false, implies that there does not exist any

solution that satisfies both the constraint psc1 and the constraint psc2. In this case,

we check any of the constraints, psc1 and psc2, first. If the current path is feasible

but the conjunction pc∧ psc1 is not satisfiable, we can conclude that the conjunction

pc ∧ psc2 can be satisfied without invoking SMT solvers.

4.4.3 Modular Inter-procedural Analysis

Scalable program analyses need to exploit the modular structure of a program.

They build function summaries, which are reused at different calling contexts [27, 127].

In Catapult, we can seamlessly extend our optimized intra-procedural analysis to

modular inter-procedural analysis by exploring the local value-flow graph of each

function and then stitching the local paths together to generate complete value-flow

paths. In what follows, we explain our design of the function summaries.

In our analysis, for each function, we build three kinds of value-flow paths as

the function summaries defined below. Intuitively, these summaries describe how

function boundaries, i.e., formal parameters and return values, partition a complete

value-flow path. Using the property double-free as an example, a complete value-flow

path from the vertex p to the vertex free(b) in Figure 4.5 is partitioned to a sub-path

55

Section 4.4 Qingkai Shi

from the vertex p to the vertex ret p by the boundary of the function xmalloc. This

sub-path is an output summary of the function xmalloc as defined below.

Definition 4.2 (Transfer Summary). A transfer summary of a function f is a

value-flow path from one of its formal parameters to one of its return values.

Definition 4.3 (Input Summary). An input summary of a function f is a value-flow

path from one of its formal parameters to a sink value in the function f or in the

callees of the function f.

Definition 4.4 (Output Summary). An output summary of a function f is a

value-flow path from a source value to a return value of the function. The source

value is in the function f or in the callees of the function f.

After generating the function summaries, to avoid separately storing them for

different properties, each function summary is labeled with a bit vector to record

what properties it is built for. Assume that we need to check there properties, i.e.,

null-deref, double-free, and mem-leak, in Figure 4.5. We assign three bit vectors,

0b001, 0b010, and 0b100, to the three properties as their identities, respectively. As

explained before, all three properties regard the vertex p as the source. The sink

vertices for checking the properties double-free and mem-leak are the vertices free(b)

and free(u). There are no sink vertices for the property null-deref. According to

Definitions 4.2–4.4, we generate the following function summaries:

Function Summary Path Label Type

xmalloc (p, ret p) 0b111 output

xfree
(u, ret u) 0b111 transfer
(u, free(u)) 0b110 input

The summary (p, ret p) is labeled with 0b111 because all three properties regard

p as the source. The summary (u, ret u) is also labeled with 0b111 because the path

does not contain any property-specific vertices and, thus, may be used to check all

three properties. The summary (u, free(u)) is only labeled with 0b110 because we do

not regard the vertex free(u) as a sink of the property null-deref.

56

Section 4.5 Qingkai Shi

vo id* xmal loc() {
vo id* p = mal loc(…);
return p;

}

vo id* xfree(vo id* u) {
free(u) ;
return u;

}

vo id main() {
vo id* a = xmal loc() ;
vo id* b = xfree(a) ;
i f (…) free(b) ;
return;

}

p

ret p

ret u

a

u

free(u)

b

free(b)

xmalloc

xfree

Figure 4.5: An example to show the inter-procedural analysis.

When analyzing the main function, we concatenate its intra-procedural paths with

summaries from its callees to generate a complete path. For example, a concatenation

is illustrated below and its result is labeled by 0b110, meaning that the resulting

path only works for the property double-free and the property mem-leak.

(p, ret p)0b111 ◦ (a) ◦ (u, free(u))0b110

= (p, ret p, a, u, free(u))0b111&0b110

= (p, ret p, a, u, free(u))0b110

We observe that using value-flow paths as function summaries has a significant

advantage for checking multiple properties. That is, since value flow is a common

program relations, it can be reused across different properties. This is different from

existing approaches that utilize state machine to model properties and generate state-

specific function summaries [43, 30]. Since different properties usually have different

states, compared to our value-flow-based function summaries, such state-specific

function summaries have fewer opportunities to be reused across properties.

4.5 Implementation

In this section, we present the implementation details as well as the properties to

check in our framework.

57

Section 4.5 Qingkai Shi

Table 4.3: Properties to check.

ID Property Name Brief Description

1 core.CallAndMessage Check for uninitialized arguments and null func-
tion pointers

2 core.DivideByZero Check for division by zero
3 core.NonNullParamChecker Check for null passed to function parameters

marked with nonnull
4 core.NullDereference Check for null pointer dereference
5 core.StackAddressEscape Check that addresses of stack memory do not

escape the function
6 core.UndefinedBinaryOperatorResult Check for the undefined results of binary opera-

tions
7 core.VLASize (Variable-Length Array) Check for declaration of VLA of undefined or

zero size
8 core.uninitialized.ArraySubscript Check for uninitialized values used as array sub-

scripts
9 core.uninitialized.Assign Check for assigning uninitialized values
10 core.uninitialized.Branch Check for uninitialized values used as branch

conditions
11 core.uninitialized.CapturedBlockVariable Check for blocks that capture uninitialized values
12 core.uninitialized.UndefReturn Check for uninitialized values being returned to

callers
13 cplusplus.NewDelete Check for C++ use-after-free
14 cplusplus.NewDeleteLeaks Check for C++ memory leaks
15 unix.Malloc Check for C memory leaks, double-free, and use-

after-free
16 unix.MismatchedDeallocator Check for mismatched deallocators, e.g., new and

free()
17 unix.cstring.NullArg Check for null pointers being passed to C string

functions like strlen
18 alpha.core.CallAndMessageUnInitRefArg Check for uninitialized function arguments
19 alpha.unix.SimpleStream Check for misuses of C stream APIs, e.g., an

opened file is not closed
20 alpha.unix.Stream Check stream handling functions, e.g., using a

null file handle in fseek

4.5.1 Path-sensitivity and Parallelization

We have implemented our approach as a prototype tool called Catapult on top

of Pinpoint [108]. Given the source code of a program, we first compile it to LLVM

bitcode, on which our analysis is performed. To achieve path-sensitivity, we build a

path-sensitive value-flow graph and compute path conditions following the method

of Pinpoint. The path conditions in our analysis are first-order logic formulae over

bit vectors. A program variable is modeled as a bit vector, of which the length is the

bit width (e.g., 32) of the variable’s type (e.g., int). The path conditions are solved

by Z3 [31], a state-of-the-art SMT solver, to determine the path feasibility.

58

Section 4.6 Qingkai Shi

Our analysis is performed in a bottom-up manner, in which a function is always

analyzed before its callers. After a function is analyzed, its function behavior is

summarized as function summaries, which can be reused at different call sites. Thus,

it is easy to run in parallel by analyzing functions without caller-callee relations

independently [127]. Our special design for checking multiple properties together

does not prevent the analysis from this parallelization strategy.

4.5.2 Properties to Check

Catapult currently supports twenty C/C++ properties, briefly introduced in

Table 4.3, defined by Clang.3 These properties include all Clang’s default C/C++

value-flow properties. All other default C/C++ properties in Clang but not in

Catapult are simple ones that do not require a path-sensitive analysis. For example,

the property security.insecureAPI.bcopy requires Clang report a warning whenever a

program statement calling the function bcopy is found.

4.5.3 Soundness

We implement Catapult in a soundy manner [77]. This means that the imple-

mentation soundly handles most language features and, meanwhile, includes some

well-known unsound design decisions as previous works [127, 21, 8, 117, 108]. For ex-

ample, in our implementation, virtual functions are resolved by classic class hierarchy

analysis [32]. However, we do not handle C style function pointers, inline assembly,

and library functions. We also follow the common practice to assume distinct function

parameters do not alias with each other [76] and unroll each cycle twice on the call

graph and the control flow graph. These unsound choices significantly improve the

scalability but have limited negative impacts on the bug-finding capability.

4.6 Evaluation

To demonstrate the scalability of our approach, we compared the time and the

memory cost of Catapult to three existing industrial-strength static analyzers. We

also investigated the capability of finding real bugs in order to show that the increased

scalability is not at the cost of sacrificing the bug-finding capability.

3More details of the properties can be found on https://clang-analyzer.llvm.org/.

59

https://clang-analyzer.llvm.org/

Section 4.6 Qingkai Shi

Table 4.4: Subjects for evaluation.

ID Program Size (KLoC) ID Program Size (KLoC)

1 mcf 2 13 shadowsocks 32
2 bzip2 3 14 webassembly 75
3 gzip 6 15 transmission 88
4 parser 8 16 redis 101
5 vpr 11 17 imagemagick 358
6 crafty 13 18 python 434
7 twolf 18 19 glusterfs 481
8 eon 22 20 icu 537
9 gap 36 21 openssl 791
10 vortex 49 22 mysql 2,030
11 perlbmk 73
12 gcc 135 Total 5,303

We first compared Catapult to Pinpoint, the value-flow analyzer introduced in the

previous chapter. Both techniques are demand-driven, compositional, and sparse

with the precision of inter-procedural path-sensitivity. In addition, we also compared

Catapult to two open-source bug finding tools, Clang and Infer. They were configured

to use fifteen threads to take advantage of parallelization.

We also tried to compare to other static bug detection tools such as Saturn [127],

Calysto [8], Semmle [7], Fortify, and Klocwork.4 However, they are either unavailable or

not runnable on the experimental environment we are able to set up. The open-source

static analyzer, FindBugs,5 is not included in our experiments because it only works

for Java while we focus on the analysis of C/C++ programs. We do not compare

to Tricoder [100], the static analysis platform from Google. This is because it uses

Clang as the C/C++ analyzer, which is included in our experiments.

To avoid possible biases on the benchmark programs, we include the standard

and widely-used benchmarks, SPEC CINT2000 (ID = 1 ∼ 12 in Table 4.4), in our

evaluation. Meanwhile, in order to demonstrate the efficiency and effectiveness of

Catapult on real-world projects, we also include ten industrial-sized open-source

C/C++ projects (ID = 13 ∼ 22 in Table 4.4), of which the size ranges from a few

thousand to two million lines of code.

All experiments were performed on a server with eighty “Intel(R) Xeon(R) CPU

E5-2698 v4 @ 2.20GHz” processors and 256GB of memory running Ubuntu-16.04.

4Klocwork Static Analyzer: https://www.roguewave.com/products-services/klocwork
5Findbugs Static Analyzer: http://findbugs.sourceforge.net

60

https://www.roguewave.com/products-services/klocwork
http://findbugs.sourceforge.net

Section 4.6 Qingkai Shi

Table 4.5: Effectiveness (Catapult vs. Pinpoint).

Program
Catapult Pinpoint

Rep # FP # Rep # FP

shadowsocks 9 0 9 0
webassembly 10 2 10 2
transmission 24 2 24 2
redis 39 5 39 5
imagemagick 26 8 - -
python 48 7 48 7
glusterfs 59 22 59 22
icu 161 31 - -
openssl 48 15 - -
mysql 245 88 - -

% FP 26.9% 20.1%

Table 4.6: Effectiveness (Catapult vs. Clang, and Infer).

Program
Catapult Clang (Z3) Clang (Default) Infer†

Rep # FP # Rep # FP # Rep # FP # Rep # FP

shadowsocks 8 2 24 22 25 23 15 13
webassembly 4 0 1 0 6 2 12 12
transmission 31 10 17 12 26 21 167* 82
redis 19 6 15 7 32 20 16 7
imagemagick 24 7 34 21 78 61 34 18
python 37 7 62 40 149* 77 82 63
glusterfs 28 5 0 0 268* 82 - -
icu 55 11 94 67 206* 69 248* 71
openssl 39 19 44 26 44 26 211* 85
mysql 59 20 271* 59 1001* 79 258* 80

% FP 28.6% 64.9% 75.7% 78.6%

* We inspected one hundred randomly-sampled bug reports.
† We fail to run the tool on glusterfs.

4.6.1 Comparing to Static Value-Flow Analyzer

We first compared Catapult to Pinpoint, the state-of-the-art value-flow analyzer.

To quantify the effect of the graph traversal plan and the optimization plan separately,

we also configured Catapult∗ to only contain the traversal plan.

In this experiment, we performed the whole program analysis by linking all

compilation units of a project into a single file for the static analyzers to perform the

cross-file analysis. Before the analysis, both Pinpoint and Catapult need to build the

value-flow graph as the program intermediate representation. Since Catapult is built

on top of Pinpoint, the pre-processing time and the size of value-flow graph are the

same for both tools, which are almost linear to the size of a program [108]. Typically,

61

Section 4.6 Qingkai Shi

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3

M
em

or
y

G
B

Subjects ordered by size

Not finish due to memory out

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3Subjects ordered by size

Not finish due to memory out
Ti

m
e

m
in

ut
es

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4pinpoint1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4catapultcatapult*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4

Figure 4.6: Comparing the time and the memory cost to Pinpoint.

for MySQL, a program with about two million lines of code, it takes twenty minutes

to build a value-flow graph with seventy million nodes and ninety million edges.

(1) Efficiency. The time and memory cost of checking each benchmark program

is shown in Figure 4.6. Owing to the inter-property-awareness, Catapult is about

8× faster than Pinpoint and takes only 1/7 of the memory on average. Typically,

Catapult can finish checking MySQL in 5 hours, which is aligned with the industrial

requirement of finishing an analysis in 5 to 10 hours [13, 80].

When the optimization plan is disabled, Catapult∗ is about 3.5× faster than

Pinpoint and takes 1/5 of the memory on average. Compared to the result of Catapult,

it implies that the graph traversal plan and the optimization plan contribute to 40%

and 60% of the time cost reduction, respectively. Meanwhile, they contribute to 70%

and 30% of the memory cost reduction, respectively. As a summary, the two plans

62

Section 4.6 Qingkai Shi

Ti
m

e
m

in
ut

es

Checkers

Memory out

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

��1 ��2 ��3

Memory out

M
em

or
y

G
B

Checkers

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

��1 ��2 ��3

Memory out

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4pinpoint1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4catapultcatapult*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4

Figure 4.7: The growth curves of the time and the memory overhead
when comparing to Pinpoint.

contribute similar to the time cost reduction, and the graph traversal plan is more

important for the memory cost reduction because it allows us to avoid duplicate

data storage by sharing analysis results across different properties.

Using the largest subject, MySQL, as an example, Figure 4.7 illustrates the

growth curves of both the time and the memory overhead when the properties in

Table 4.3 are added into the core engine one by one. Figure 4.7 shows that, in terms

of both time and memory overhead, Catapult grows much slower than Pinpoint and,

thus, scales up quite gracefully.

It is noteworthy that, except for the feature of inter-property-awareness, Catapult

follows the same method of Pinpoint to build value-flow graph and perform path-

sensitive analysis. Thus, they have the similar performance to check a single property.

63

Section 4.6 Qingkai Shi

Catapult performs better than Pinpoint only when multiple properties are checked

together.

(2) Effectiveness. Since both Catapult and Pinpoint check programs with the

precision of inter-procedural path-sensitivity, as shown in Table 4.5, they produce

a similar number of bug reports (# Rep) and false positives (# FP) for all the

real-world programs except for the programs that Pinpoint fails to analyze due to

the out-of-memory exception.

4.6.2 Comparing to Other Static Analyzers

To better understand the performance of Catapult in comparison to other types

of property-unaware static analyzers, we also ran Catapult against two prominent

and mature static analyzers, Clang (based on symbolic execution) and Infer (based

on abductive inference). Note that Infer does not classify the properties to check

as Table 4.3 but targets at a similar range of properties, such as null dereference,

memory leak, and others.

In our experiment, Clang was run with two different configurations: one is its

default configuration where a fast but imprecise range-based solver is employed to

solve path conditions, and the other uses Z3 [31], a full-featured SMT solver, to solve

path conditions. To ease the explanation, we denote Clang in the two configurations

as Clang (Default) and Clang (Z3), respectively. Since Clang separately analyzes each

source file and Infer only has limited capability of detecting cross-file bugs, for a

fair comparison, all tools in the experiments were configured to check source files

separately, and the time limit for analyzing each file is set to 60 minutes. Since

a single source file is usually small, we did not encounter memory issues in the

experiment but missed a lot of cross-file bugs as discussed later. Also, since we build

value-flow graphs separately for each file and do not need to track cross-file value

flows, the time cost of building value-flow graphs is almost negligible. Typically, for

MySQL, it takes about five minutes to build value-flow graphs for all of its source

code. This time cost is included in the results discussed below.

Note that we did not change other default configurations of Clang and Infer. This

is because the default configuration is usually the best in practice. Modifying their

default configuration may introduce more biases.

(1) Efficiency (Catapult vs. Clang (Z3)). When both Catapult and Clang

employ Z3 to solve path conditions, they have similar precision (i.e., full path-

64

Section 4.6 Qingkai Shi

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4

36hr

Ti
m

e
lo

g
sc

al
e

Subjects ordered by size

0.5hr
Δ > 35hr

Δ ≈ 0.8hr

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4

M
em

or
y

G
B

Subjects ordered by size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4catapult1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4infer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4clang (z3)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

��1 ��2 ��3 ��4clang (default)

Figure 4.8: Comparing the time and the memory cost to Clang and Infer.

sensitivity) in theory. However, as illustrated in Figure 4.8, Catapult is much faster

than Clang and consumes a similar amount of memory for all of the subjects. For

example, for MySQL, it takes about 36 hours for Clang to finish the analysis while

Catapult takes only half an hour, consuming a similar amount of memory. On average,

Catapult is 68× faster than Clang at the cost of only 2× more memory space. Both

analyses can finish in 12GB of memory, available in common personal computers.

(2) Efficiency (Catapult vs. Clang (Default) and Infer). As illustrated

in Figure 4.8, compared to both Infer and the default version of Clang, Catapult

consumes a similar, sometimes a little higher, amount of time and memory. For

instance, for MySQL, the largest subject program, all three tools finish the analysis

in 40 minutes and consume about 10GB of memory. With similar efficiency, Catapult,

as a fully path-sensitive analysis, is much more precise than the other two. The lower

precision of Clang and Infer leads to many false positives as discussed below.

65

Section 4.7 Qingkai Shi

(3) Effectiveness. In addition to the efficiency, we also investigate the bug-

finding capability of the tools. Table 4.6 presents the results. Since we only perform

file-level analysis in this experiment, the bugs reported by Catapult is much fewer

than those in Table 4.5. Because of the prohibitive cost of manually inspecting all of

the bug reports, we randomly sampled a hundred reports for the projects that have

more than one hundred reports. Our observation shows that, on average, the false

positive rate of Catapult is much lower than both Clang and Infer. In terms of recall,

Catapult reports more true positives, which cover all those reported by Clang and

Infer. Clang and Infer miss many bugs due to the trade-offs they make in exchange

for efficiency. For example, Clang often stops its analysis on a path after it finds the

first bug.

Together with the results on efficiency, we can conclude that Catapult is much

more scalable than Clang and Infer because they have similar time and memory

overhead but Catapult is much more precise and able to detect more bugs.

4.6.3 Detected Real Bugs

We note that the real-world software used in our evaluation is frequently scanned

by commercial tools such as Coverity SAVE and, thus, is expected to have very high

quality. Nevertheless, due to the high efficiency, precision, and recall, Catapult still

can detect many deeply-hidden software bugs that existing static analyzers, such as

Pinpoint, Clang, and Infer, cannot detect.

At the time of writing, thirty-nine previously-unknown bugs have been confirmed

and fixed by the software developers, including seventeen null pointer dereferences,

ten use-after-free or double-free bugs, eleven resource leaks, and one stack-address-

escape bug. Four of them even have been assigned CVE IDs due to their significant

security impact.

As an example, Figure 4.9 presents a null-deference bug detected by Catapult in

ImageMagick, which is a software suite for processing images. This bug is of high

complexity, as it occurs in a function of more than 1,000 lines of code and the control

flow involved in the bug spans across 56 functions over 9 files.

Since both Clang and Infer make many unsound trade-offs to achieve scalability,

neither of them detects this bug. Pinpoint also cannot detect the bug because it is

not memory-efficient and has to give up its analysis after the memory is exhausted.

66

Section 4.7 Qingkai Shi

ResampleFilter **AcquireResampleFilterThreadSet(...) {
…
if (…)

return ((ResampleFilter **) NULL);
…

}

Image *DistortImage(...) { // >1, 000 lines of code
…
resample_filter=AcquireResampleFilterThreadSet(...);
…
switch (method) {
case AffineDistortion:

ScaleFilter(resample_filter[id], ...)
…
}
…

}

Location: MagickCore/resample-private.h

Location: MagickCore/distort.c

A null pointer is returned if
some condition is satisfied.

Get the null pointer from the
callee function.

The null pointer is dereferenced
after a long propagation

Figure 4.9: A null-dereference bug in ImageMagick.

4.7 Conclusion

We have presented Catapult, a scalable approach to checking multiple value-flow

properties together. The critical factor that makes our technique fast is to exploit

the mutual synergy among the properties to check. Since the number of program

properties to check is quickly increasing nowadays, we believe that it will be an

important research direction to study how to scale up static program analysis for

simultaneously checking multiple properties.

67

Chapter 5

Scaling up Sparse Value-Flow
Analysis via Parallelization

5.1 Introduction

Bottom-up analyses work by processing the call graph of a program upwards

from the leaves – before analyzing a function, all its callee functions are analyzed

and summarized as function summaries [127, 8, 108, 18, 126, 20, 37, 22, 38]. These

analyses have two key strengths: the function summaries they compute are highly

reusable and they are easy to parallelize because the analyses of functions are

decoupled. While almost all existing bottom-up analyses, including our approach, take

advantage of such function-level parallelization, there is little progress in improving

its parallelism. As reported by recent studies, it still needs to take a few hours, even

tens of hours, to precisely analyze large-scale software. For example, it takes 6 to 11

hours for Saturn [127] and Calysto [8] to analyze programs of 685KLoC [8].

5.1.1 The Limit of Parallelization

With regard to the performance issues, McPeak et al. [80] pointed out that the

parallelism often drops off at runtime and, thus, the CPU resources are usually not

well utilized. Specifically, this is because the parallelism is significantly limited by

the calling dependence – functions with caller-callee relations have to be analyzed

sequentially because the analysis of a caller function depends on the analysis results,

i.e., function summaries, of its callee functions. To illustrate this phenomenon, let us

consider the call graph in Figure 5.1 where the function f calls the functions, g and h.

In a conventional bottom-up analysis, only functions without caller-callee relations,

68

Section 5.1 Qingkai Shi

f

h

Call Graph
time

f

h

g

g

Figure 5.1: Conventional parallel design of bottom-up program analysis.
Each rectangle represents the analysis task for a function.

time

f0

h0

f1

h1

f2

h2

g0 g1 g2

Figure 5.2: The analysis task of each function is partitioned into
multiple sub-tasks. All sub-tasks are pipelined.

e.g., the function g and the function h, can be analyzed in parallel. The analysis of

the function f cannot start until the analyses of the functions, g and h, complete.

Otherwise, when analyzing a call site of the function, g or h, in the function f, we

may miss some effects of the callees due to the incomplete analysis.1

5.1.2 Breaking the Limit of Parallelization

In this chapter, we present Coyote, a framework of bottom-up data flow analysis

that breaks the limits of function boundaries, so that functions having calling

dependence can be analyzed in parallel. As a result, we can achieve much higher

parallelism than the conventional parallel design of bottom-up analysis. Our key

insight is that many analysis tasks of a caller function only depend on partial analysis

results of its callee functions. Thus, the analysis of the caller function can start

before the analyses of its callee functions complete. Therefore, our basic idea is

to partition the analysis task of a function into multiple sub-tasks, so that we can

pipeline the sub-tasks to generate function summaries. The key to the partition

1This is different from a top-down method that can let the analysis of the function f run first
but stop to wait for the analysis results of the function g when analyzing a call statement calling
the function g.

69

Section 5.1 Qingkai Shi

is a soundness criterion, which requires a sub-task only depends on the summaries

produced by the sub-tasks finished in the callees. Violating this criterion will cause

the analysis to neglect certain function effects and make the analysis unsound.

To illustrate, assume that the analysis task of each function in Figure 5.1, e.g., the

function f, is partitioned into three sub-tasks, f0, f1, and f2, each of which generates

one kind of function summaries. These sub-tasks satisfy the constraints that the

sub-task fi only depends on the function summaries produced by the sub-task gj and

the sub-task hj (j ≤ i). As a result, these sub-tasks can be pipelined as illustrated in

Figure 5.2, where the analysis of the function f starts immediately after the sub-tasks

g0 and h0 finish. Clearly, the parallelism in Figure 5.2 is much higher than that in

Figure 5.1, providing a significant speedup over the conventional parallel design of

bottom-up analysis.

In this work, we formalize our idea under the IFDS/IDE framework for a wide

range of data flow problems known as the inter-procedural finite distributive subset or

inter-procedural distributive environment problems [95, 102]. In both problems, the

data flow functions are required to be distributive over the merge operator. Although

this is a limitation in some cases, the IFDS/IDE framework has been widely used for

many practical problems such as secure information flow [6, 89, 52], typestate [46, 85],

alias sets [86], specification inference [109], and shape analysis [96, 130]. Given any of

those IFDS/IDE problems, conventional solutions compute function summaries either

in a bottom-up fashion (e.g., [132, 99]) or in a top-down manner (e.g., [95, 102]),

depending on their specific design goals. In this work, we focus on the bottom-up

solutions and aim to improve their performance via the pipeline parallelization

strategy. We also discuss how to apply the pipeline parallelization strategy to sparse

value-flow analysis.

We implemented Coyote to path-sensitively check null dereferences and taint issues

in C/C++ programs. Our evaluation of Coyote is based on standard benchmark

programs and many large-scale software systems, which demonstrates that the calling

dependence significantly limits the parallelism of bottom-up data flow analysis. By

relaxing this dependence, our pipeline strategy achieves 2×-3× speedup over the

conventional parallel design of bottom-up analysis. Such speedup is significant

enough to make many overly lengthy analyses useful in practice. In summary, the

main contributions of this chapter include the following:

• We propose the design of pipelineable function summaries, which enables the

pipeline parallelization strategy for bottom-up data flow analysis.

70

Section 5.2 Qingkai Shi

id: λS.S f: λS.{a} g: λS. if a ∈ S : (S ∪ {b})
else (S – {b})

0 a b

0 a b

.

.

..

. .

0 a b

0 a b

.

.

..

. .

0 a b

0 a b

.

.

..

. .

Figure 5.3: Data flow functions and their representation in the exploded
super-graph.

• We formally prove the correctness of our approach and apply it to a null

analysis and a taint analysis to show its generalizability.

• We conduct a systematic evaluation to demonstrate that we can achieve much

higher parallelism and, thus, run faster than the state of the arts.

5.2 Overview

In this section, we introduce the background of the IFDS/IDE framework and

provide an example to illustrate how we improve the parallelism of a bottom-up

analysis by partitioning the analysis of a function.

5.2.1 The IFDS/IDE Framework

The IFDS/IDE framework aims to solve a wide range of data flow problems

known as Inter-procedural Finite Distributive Subset or Inter-procedural Distributive

Environment problems [95, 102]. Its basic idea is to transform a data flow problem

to a graph reachability problem on the exploded super-graph, which is built based on

the inter-procedural control flow graph of a program.

(1) The IFDS Framework. In the IFDS framework, every vertex (si,d) in the

exploded super-graph stands for a statically decidable data flow fact, or simply, fact,

d at a program point si. Every edge models the data flow functions between data

flow facts. In the chapter, to ease the explanation, we use si to denote the program

point at Line i in the code. For example, in an analysis to check null dereference,

71

Section 5.2 Qingkai Shi

14. bool y = …;
15.

16. int* bar(int* a) {
17.

18. int* b = null;
19.

20. …
21.

22. int* c = y ? a : b;
23.

24. return c;
25.

26. }

1. …
2.

3. int* foo() {
4.

5. int* p = bar(null);
6.

7. int* q = p;
8.

9. int* r = q;
10.

11. return r;
12.

13. }

. . . .

. . . .

. . . .

. . . .

. . . .

0 q r p

. . . .

. . . .

. . . .

. . . .

. . . .

0 b c a

normal flow function call flow function return flow function

to callers

Figure 5.4: An example of the exploded super-graph for a
null-dereference analysis.

the vertex (si,d) could denote that the variable d is a null pointer at Line i. As

for the edges or data flow functions, Figure 5.3 illustrates three examples that show

how the commonly-used data flow functions are represented as edges in the exploded

super-graph. The vertices at the top are the data flow facts before a program point

and the vertices at the bottom represent the facts after the program point.

The first data flow function id is the identity function which maps each data flow

fact before a program point to itself. It indicates that the statement at the program

point has no impacts on the data flow analysis.

The special vertex for the fact 0 is associated with every program point in the

program. It denotes a tautology, a data flow fact that always holds. An edge from the

fact 0 to a non-0 fact indicates that the non-0 fact is freshly created. For example,

in the second function in Figure 5.3, the fact a is created, which is represented by an

edge from the fact 0 to the fact a. At the same time, since a is the only fact after

the data flow function, there is no edge connecting the fact b before and after the

program point.

The third data flow function is a typical function that models the assignment

b=a. In the exploded super-graph, the variable a has the same value as before. Thus,

there is an edge from the data flow fact a to itself. The variable b gets the value

from the variable a, which is modeled by the edge from the fact a to the fact b.

It is noteworthy that the data flow facts are not limited to simple values like

the local variables in the examples. For example, in alias analysis, the facts can be

72

Section 5.2 Qingkai Shi

sets of access paths [118]. In typestate analysis, the facts can be the combination of

different typestates [85].

Figure 5.4 illustrates the exploded super-graph for a data flow analysis that tracks

the propagation of null pointers. Since Line 18 assigns a null pointer to the variable

b, we have the edge from the vertex (s17,0) to the vertex (s19,b), meaning that we

have the data flow fact b = null at Line 19. Since Line 19 does not change the value

of the variable a, we have the edge from the vertex (s17, a) to the vertex (s19, a),

which means the data flow fact about the variable a does not change.

Assuming that smain is the program entry point, the IFDS framework aims to find

paths, or determine the reachability relations, between the vertex (smain,0) and the

vertices of interests. Each of such paths represents that some data flow fact holds at

a program point. For instance, the path from the vertex (s4,0) to the vertex (s12, r)

in Figure 5.4 implies that the fact r = null holds at Line 12.

The IFDS method is efficient because it computes function summaries only once

for each function. Each summary is a path on the exploded super-graph connecting

a pair of vertices at the entry and the exit of a function. The path from the

vertex (s17, a) to the vertex (s25, c) in Figure 5.4 is such a summary of the function

bar. When analyzing the callers of the function bar, e.g., the function foo, we can

directly jump from the vertex (s4,0) to the vertex (s6,p) using the summary without

analyzing the function bar again.

(2) The IDE Framework. The IDE framework is a generalization of the IFDS

framework [102]. Similar to the IFDS framework, it also works as a graph traversal

on an exploded super-graph. There are three major differences. First, each vertex

on the exploded super-graph is no longer associated with a simple data flow fact d,

but an environment mapping a fact d to a value v from a separate value domain,

denoted as {d 7→ v}. Second, due to the first difference, the data flow functions, i.e.,

the edges on the exploded super-graph, transform an environment {d 7→ v} to the

other {d′ 7→ v′}. The third important difference is that each edge on the exploded

super-graph is labeled with an environment transform function, which makes IDE

no longer only a simple graph reachability problem. Instead, it has to find the

paths between two vertices of interests and, meanwhile, compose the environment

transform functions labeled on the edges along the paths. These differences widen

the class of problems that can be expressed in the IFDS framework.

73

Section 5.2 Qingkai Shi

In this work, for simplicity, we describe our work under the IFDS framework.

This does not lose the generality for the IDE problems because, intuitively, both

problems are solved by a graph traversal on the exploded super-graph.

5.2.2 An Example

Let us briefly explain our approach using the example in Figure 5.4, where the

analysis aims to track the propagation of null pointers.

(1) Bottom-up Analysis. For the example in Figure 5.4, a conventional bottom-

up analysis firstly analyzes the function bar and produces function summaries to

summarize its behavior. With the function summaries in hand, the function foo then

is analyzed.

Using the symbol ; to denote a path between two vertices, a common IFDS/IDE

solution will generate the following two intra-procedural paths as the summaries of

the function bar :

• The path (s17, a) ; (s25, c) summarizes the function behavior that a null

pointer created in a caller of the function bar, i.e., a = null, may be returned

back to the caller.

• The path (s17,0) ; (s25, c) summarizes the function behavior that a null

pointer created in the function bar may be returned to the caller functions.

Note that we do not need to summarize the path (s17,0) ; (s25,0) for the

function bar, because the fact 0 is a tautology and always holds.

Next, we analyze the function foo by a graph traversal from the vertex (s4,0),

which aims to track the propagation of null pointers and produce function summaries

of the function foo. During the graph traversal, when the call flow functions (i.e., the

dashed edges) are visited, we apply the summaries of the function bar and produce

two summaries of the function foo as following (J·Kbar are the summaries of the

function bar):

• The path (s4,0) ; J(s17, a) ; (s25, c)Kbar ; (s6,p) ; (s12, r) summarizes the

behavior that a null pointer in the function foo will be returned to its callers.

• The path (s4,0) ; J(s17,0) ; (s25, c)Kbar ; (s6,p) ; (s12, r) summarizes the

function behavior that a null pointer in the callees of the function foo will be

returned to the callers of the function foo.

74

Section 5.2 Qingkai Shi

• (s17, 0)⤳(s25, c)

time

• (s17, a)⤳(s25, c)

• (s4, 0)⤳(s17, a)⤳(s25, c)
⤳(s6, p)⤳(s10, r)

• (s4, 0)⤳(s17, 0)⤳(s25, c)
⤳(s6, p)⤳(s10, r)

analyzing the function bar

analyzing the function foo

foo1 foo2

bar0 bar1

Figure 5.5: The pipeline parallelization strategy.

(2) Our Approach. As discussed before, in a conventional bottom-up analysis,

the analysis of a caller function needs to wait for the analysis of its callees to complete.

Differently, Coyote aims to improve the parallelism by starting the analysis of the

function foo before completing the analysis of the function bar. To this end, Coyote

partitions the analysis of each function f into three parts based on where a data

flow fact is created. Such a partition categorizes the function summaries into three

groups, f0, f1, and f2, which we refer to as the pipelineable summaries:

• f0 summarizes the behavior that some data flow facts created in the caller

functions will be propagated back to the callers through the current function.

The first summary of the function bar is an example.

• f1 summarizes the behavior that some data flow facts created in the current

function will be propagated back to the caller functions. The second summary

of the function bar and the first summary of the function foo are two examples.

• f2 summarizes the behavior that some data flow facts created in the callees are

propagated to the current function and will continue to be propagated to the

caller functions. The second summary of the function foo is an example.

According to the partition method, the summaries of the function foo is partitioned

into two sets, foo1 and foo2, just as illustrated in Figure 5.5. Since the function foo

does not have any function parameters, the set foo0 is empty and, thus, omitted.

Similarly, the summaries of the function bar is partitioned into two sets, bar 0 and

75

Section 5.3 Qingkai Shi

bar 1. Since the function bar does not have any callees, the set bar 2 is empty and,

thus, omitted. As detailed later, the above partition is sound because it satisfies the

constraint that summaries in the set fooi only depends on the summaries in the set

barj(j ≤ i). Thus, we can safely pipeline the analyses of the function foo and the

function bar - we can start analyzing the function foo immediately after summaries

in the set bar 0 are generated.

In the remainder of this chapter, under the IFDS framework, we formally present

how to partition the analysis of a function to generate pipelineable function summaries,

so that the parallelism of bottom-up analysis can be improved in a sound manner.

5.3 Pipelined Bottom-up Analysis

To explain our method in detail, we first define the basic notations and terminolo-

gies in Section 5.3.1 and then explain the criteria that guide our partition method in

Section 5.3.2. Based on the criteria, we present the technical details of our pipeline

parallelization strategy from Section 5.3.3 to Section 5.3.5. Finally, we discuss the

application of the pipeline parallelization strategy in Section 5.3.6

5.3.1 Preliminaries

(1) Program Model. Given an IFDS problem, a program is modeled as an ex-

ploded super graph G that consists of a set of intra-procedural graphs {Gf, Gg, Gh . . . }
of the functions {f, g, h, . . . }. Given a function f, its local graph Gf is a tuple

(Lf, ef, xf, Df, Ef):

• Lf is the set of program locations in the function.

• ef, xf ∈ Lf are the entry and exit points of the function.

• Df is the set of data flow facts in the function.

• Lf ×Df is the set of vertices of the graph.

• Ef ⊆ (Lf ×Df)× (Lf ×Df) is the edge set (see Figure 5.3).

As illustrated in Figure 5.4, the local graphs of different functions are connected by

call and return flow functions, respectively.

76

Section 5.3 Qingkai Shi

(2) Function Summaries. For any function f, its function summaries are a

set of paths between data flow facts at the entry point and data flow facts at its

exit point [95], denoted as Sf = {(ef, a) ; (xf,b) : a,b ∈ Df}. Apparently, we

can generate these summaries by traversing the graph Gf from every vertex at the

function entry.

Owing to function calls in a program, the summaries of a function often depend

on the summaries of its callees. We say a summary set S depends on the other

summary set S ′ if and only if there exists a path in the set S that subsumes a path in

the set S ′. As illustrated in Section 5.2.2, the summaries of the function foo depend

on the summaries of the function bar.

(3) Summary Dependence Graph. To describe the dependence between

summary sets, we define the summary dependence graph, where a vertex is a set of

function summaries and a directed edge indicates the source summary set depends

on the destination summary set.

The summary dependence graph is built based on the call graph. Conventionally,

vertices of the summary dependence graph are the summary sets {Sf, Sg, Sh . . . },
and an edge from the summary set Sf to the summary set Sg exists if and only if

the function f calls the function g. A bottom-up analysis works by processing the

summary dependence graph upwards from the leaves. It starts generating summaries

in a summary set if it does not depend on other summary sets or the summary sets

it depends on have been generated. Summary sets that do not have dependence

relations can be generated in parallel.

(4) Problem Definition. In this work, we aim to find a partition for the

summary set of each function, say Π(Sf) = {S0
f , S

1
f , S

2
f , . . . },2 such that a vertex of

the summary dependence graph is no longer a complete summary set Sf but a subset

Si
f (i ≥ 0). Meanwhile, to improve the parallelism, the bottom-up analysis based on

the dependence graph should be able to generate summaries for a pair of caller and

callee functions at the same time. In detail, the partition needs to satisfy the criteria

discussed in the next subsection.

5.3.2 Partition Criteria

Given a pair of functions where the function f calls the function g, we use the

set Ω(Sf, Sg) ⊆ Π(Sf)× Π(Sg) to denote the dependence relations between summary

2A set partition needs to satisfy ∪i≥0Si
f = Sf and ∀i, j ≥ 0 : Si

f ∩ S
j
f = ∅.

77

Section 5.3 Qingkai Shi

sets. Generally, an effective partition method must meet the following criteria to

improve the parallelism of a bottom-up analysis.

(1) The Effectiveness Criterion. This criterion concerns whether the depen-

dence between summary sets in the conventional bottom-up analysis is actually

relaxed, so that the parallelism can be improved. We say the partition is effective if

and only if |Ω(Sf, Sg)| < |Π(Sf)×Π(Sg)|. Intuitively, this means that some summaries

in the caller function do not depend on all summaries in callee functions. Thus, the

dependence relation in the conventional bottom-up analysis is relaxed.

(2) The Soundness Criterion. This criterion concerns the correctness after

the dependence between summary sets is relaxed. We say the partition is sound if

and only if the following condition is satisfied: if the set Si
f depends on the set Sj

g ,

then (Si
f , S

j
g) ∈ Ω(Sf, Sg). Violating this criterion will cause the analysis to neglect

certain function summaries and make the analysis unsound.

(3) The Efficiency Criterion. This criterion concerns how many computational

resources we need to consume in order to determine how to partition a summary set.

Since summaries in the summary sets, Sf and Sg, are unknown before an analysis

completes, the exact dependence relations between summaries in the two sets are

also undiscovered. This fact makes it difficult to perform a fine-grained partition,

unless the analysis has been completed and we have known what summaries are

generated for each function.

As a trade-off, conventional bottom-up analysis does not partition the summary

sets (or equivalently, Π(Sf) = {Sf} and Π(Sg) = {Sg}). It conservatively utilizes

the observation that all summaries in the set Sf may depend on certain summaries

in the set Sg, i.e., Ω(Sf, Sg) = {(Sf, Sg)}. Such a conservative method satisfies the

soundness criterion and does not partition the summary sets. However, apparently,

it does not meet the effectiveness criterion because |Ω(Sf, Sg)| = |Π(Sf)×Π(Sg)| = 1.

5.3.3 Pipelineable Summary-Set Partition

Generally, it is challenging to partition a summary set satisfying the above criteria

because the exact dependence between summaries are unknown before the summaries

are generated. We now present a coarse-grained partition method that requires

few pre-computations, and thus, meets the efficiency criterion. Meanwhile, it also

meets the effectiveness and soundness criteria and, thus, can soundly improve the

78

Section 5.3 Qingkai Shi

parallelism of a bottom-up analysis. We also establish a few lemmas to prove the

correctness of our approach.

Intuitively, given a summary set Sf, we partition it according to where a data

flow fact is created: in a caller of the function f, in the current function f, and in a

callee of the function f. Formally, Π(Sf) = {S0
f , S

1
f , S

2
f }, where

S0
f = {(ef, a) ; (xf,b) : a 6= 0}

S1
f = {(ef,0) ; (eg, a) ; (xf,b) : f = g ∨ a 6= 0}

S2
f = {(ef,0) ; (eg,0) ; (xf,b) : f 6= g}

By definition, there is no edge from a non-0 data flow fact to the fact 0 on the

exploded super-graph. An edge from the fact 0 to a non-0 fact means that the

non-0 fact is freshly created [95]. Thus, any summary path in the set S0
f does not

go through the fact 0, meaning that the data flow fact is created in a caller of the

function f. On the other hand, since a summary path in the set S1
f or the set S2

f

starts with the fact 0, it means that the non-0 data flow fact on the summary path

must be created in the function f or a callee of the function f. Specifically, since a

summary path in the set S1
f does not go through the fact 0 in callee functions, the

non-0 data flow fact on the summary path is created in the function f. Similarly, the

non-0 data flow fact on a path from the set S2
f must be created in a callee of the

function f.

The following lemma states that generating summaries in the sets, S0
f , S1

f , and

S2
f , does not miss any summary in the set Sf and, meanwhile, does not repetitively

generate a summary in the set Sf.

Lemma 5.1.
⋃

i≥0 S
i
f = Sf and ∀i, j ≥ 0 : Si

f ∩ S
j
f = ∅.

Proof. This follows the definitions of the sets S0
f , S1

f , and S2
f . �

Next, we study whether such a partition method follows the effectiveness and

soundness criteria. The key to the problem is to compute the set Ω(Sf, Sg) of

dependence relations between a pair of summary sets, Si
f and Sj

g , given any pair of

caller-callee functions, f and g.

Lemma 5.2. The sets S0
f , S1

f , and S2
f depend on the set S0

g .

79

Section 5.3 Qingkai Shi

Proof. This follows the fact that any summary path in a caller function may go

through a callee’s summary path and the set S0
g is a part of the callee’s summaries.

�

Lemma 5.3. The set S2
f depends on the sets S1

g and S2
g .

Proof. By definition, a summary path in the set S2
f needs to go through the

vertex (eg,0). Given the function g, summary paths in both the set S1
g and the set

S2
g start with the vertex (eg,0). Thus, the set S2

f depends on the sets S1
g and S2

g . �

To demonstrate that the above lemmas do not miss any dependence relations, we

establish the following two lemmas.

Lemma 5.4. The set S0
f does not depend on the sets S1

g and S2
g .

Proof. This follows the fact that a non-0 data flow fact cannot be connected back

to the fact 0 [95], but a summary path in the sets S1
g and S2

g must start with the

fact 0. �

Lemma 5.5. The set S1
f does not depend on the sets S1

g and S2
g .

Proof. By definition, a summary path in the set S1
f does not go through the fact

0 in a callee function. However, a summary path in the sets S1
g and S2

g must start

with the fact 0. Thus, the set S1
f does not depend on the sets S1

g and S2
g . �

Putting Lemma 5.2 to Lemma 5.5 together, we have the dependence set Ω(Sf, Sg) =

{(S0
f , S

0
g), (S1

f , S
0
g), (S2

f , S
0
g), (S2

f , S
1
g), (S2

f , S
2
g)}, which does not miss any dependence

relation between the set Si
f and the set Sj

g . Thus, the partition method satisfies

the soundness criterion. Meanwhile, |Ω(Sf, Sg)| = 5 < |Π(Sf) × Π(Sg)| = 9. Thus,

the effectiveness criterion is satisfied, meaning that the dependence between the

summary sets is relaxed and, based on the partition, the parallelism of a bottom-up

analysis can be improved.

Figure 5.6 illustrates the summary dependence graph for a pair of caller-callee

functions, f and g. Based on the graph, when the summaries in the set S0
g are

generated, a bottom-up analysis does not need to wait for summaries in the sets S1
g

and S2
g , but can immediately start generating summaries in the sets S0

f and S1
f .

80

Section 5.3 Qingkai Shi

S 0f S1f S2f

S 0g S1g S2g

Figure 5.6: The summary dependence graph for a caller-callee function
pair, f and g.

5.3.4 Pipeline Scheduling

As illustrated in Figure 5.6, given a caller-callee function pair, f and g, we have

analyzed the dependence relations between the set Si
f and the set Sj

g and shown

that the relaxed dependence provides an opportunity to improve the parallelism of a

bottom-up analysis. However, we observe that a key problem here is that there are

no dependence relations between the sets Si
f and Sj

f for a function f, and scheduling

the summary-generation tasks for Si
f and Sj

f in a random order significantly affects

the parallelism.

Figure 5.7(a) illustrates the worst scheduling method when only one thread is

available for each function, respectively. In the scheduling method, the sets S0
f

and S0
g have the lowest scheduling priority compared to other summary sets. Since

all summary sets of the function f depend on the set S0
g , they have to wait for

all summary sets of the function g to generate, which is essentially the same as a

conventional bottom-up analysis.

Thus, to maximize the parallel performance, given any function g, we need to

determine the scheduling priority of the sets S0
g , S1

g , and S2
g . First, as shown in

Figure 5.6, since more summary sets depend on the set S0
g than the sets S1

g and

S2
g , scheduling the summary-generation task for the set S0

g in a higher priority will

release more tasks for other summary sets.

Figures 5.7(b) and 5.7(c) illustrate the two possible scheduling methods when

for any function g, the set S0
g is in the highest priority. In Figure 5.7(b), the set S2

g

has a higher priority than the set S1
g . Since the set S2

f depends on the sets S0
g , S1

g ,

and S2
g , it has to wait for all summaries of the function g to generate, leading to a

sub-optimal scheduling method. In contrast, Figure 5.7(c) illustrates the best case

where the summary-generation tasks are adequately pipelined.

81

Section 5.3 Qingkai Shi

time

S 1g S2g S0g

S 1f S2f S0f

time

S 0g S2g S1g

S 0f S2f S1f

time

S 0g S1g S2g

S 0f S1f S2f

(a)

(b)

(c)

Figure 5.7: Different scheduling methods when one thread available for
each function.

To conclude, the scheduling priority for any given function g should be S0
g >

S1
g > S2

g , so that the parallelism of a bottom-up analysis can be effectively improved

when a limited number of idle threads are available. Such prioritization does not

affect the parallelism when there are enough idle threads available.

5.3.5 ε-Bounded Partition and Scheduling

Ideally, the aforementioned partition method evenly partitions a summary set

so that the analysis tasks for generating summaries are adequately pipelined, as

shown in Figure 5.7(c). However, in practice, it is usually not the case but works as

Figure 5.8(a), where the sets S0
g and S1

g are much larger than other summary sets.

Apparently, if there are extra threads available and we can further partition the

summary sets S0
g and S1

g into two subsets, the analysis performance then will be

improved by generating summaries in the subsets in parallel, just as illustrated in

Figure 5.8(b). Unfortunately, before a bottom-up analysis finishes, we cannot know

82

Section 5.3 Qingkai Shi

time

S 0g S1g S2g

S 0f S1f S2f

time

S 0g S1g S2g

S 0f S1f S2f

S 0g S1g

(a)

(b)

Figure 5.8: Bounded partition and its scheduling method.

the actual size of each summary set and, thus, cannot evenly partition a set. As an

alternative, what we can do is to approximate an even partition.

Considering that the analysis task of summary generation is actually to perform

a graph traversal from a vertex, we try to further partition a summary set Si
f based

on the number of starting vertices of the graph traversal. To this end, we introduce a

client-defined constant ε,3 so that, after the approximately even partition, the graph

traversal for generating function summaries in a summary set starts from no more

than ε vertices.

For example, to generate summaries in the set S0
f , the analysis needs to traverse

the graph Gf from each non-0 data flow fact at the function entry. Suppose the

function f has four non-0 data flow facts, {w, x, y, z} and ε = 2. Then, the

set S0
f is further partitioned into two subsets {(ef, a) ; (xf,b) : a ∈ {w,x}} and

{(ef, a) ; (xf,b) : a ∈ {y, z}}. After the partition, the graph traversal for both

summary sets starts from two vertices.

Similar partition can be performed on the sets S1
f and S2

f but the following

explanation needs to be considered. By definition, it seems difficult to further

partition sets S1
f and S2

f based on the above method, because all summary paths in

them start with a single vertex (ef,0). The key is that, since the fact 0 is a tautology

and vertices with the fact 0 are always reachable from each other [95], the graph

traversal to generate summaries in the sets S1
f and S2

f are not necessary to start

3We use ε = 5 in our implementation.

83

Section 5.3 Qingkai Shi

from the vertex (ef,0). For instance, since the set S1
f contains the summary paths

where data flow facts are created in the function f, we can traverse the graph Gf from

every vertex that has an immediate predecessor (s ∈ Lf,0).4 Similarly, considering

that the set S2
f contains the summary paths where data flow facts are created in

a callee of the function f, we can traverse the graph Gf from every vertex that has

an incoming edge from the callees. With multiple starting vertices for the graph

traversal, we then can partition the sets S1
f and S2

f similarly as the set S0
f .

It is noteworthy that such a bounded partition aims to parallelize the analysis in

a single function and, thus, is applicable to both our pipelining approach and the

conventional bottom-up approach. Nevertheless, it is particularly useful to improve

the pipeline approach as discussed above.

5.3.6 Pipelining Sparse Value-Flow Analysis

The null analysis and the taint analysis in Coyote require highly precise pointer

information so that they can determine how data flow facts propagate through pointer

(load and store) operations. To resolve the pointer relations, we follow the previous

work [108] to perform a path-sensitive points-to analysis. The points-to analysis

is efficient because it does not exhaustively solve path conditions but records the

conditions on the graph edges. When traversing the graph for an analysis, we collect

and solve conditions on a path in a demand-driven manner. In Coyote, we use Z3 [31]

as the constraint solver to determine path feasibility. According to our experience

and many existing works [108, 127, 37, 8], path-sensitivity is a critical factor to make

an analysis practical and make the evaluation closer to a real application scenario.

For instance, a path-insensitive null analysis reports >90% false positives and, thus,

is impractical.

After building the exploded super-graph with the points-to analysis, we simplify

the graph via a program slicing procedure, which removes irrelevant edges and vertices,

thereby improving the performance of the subsequent null and taint analyses. This

simplification process is almost linear to the graph size and, thus, is very fast [94].

As an example, Figure 5.9(a) is a program where a null pointer is propagated to

the variable c through the store and load operations at Line 5 and Line 9. We use the

points-to analysis to identify the propagation and build the exploded super-graph as

illustrated in Figure 5.9(b). In this graph, the condition of the propagation y and ¬y

4Recall that an edge from the fact 0 to a non-0 fact means the non-0 fact is freshly created.

84

Section 5.4 Qingkai Shi

1. bool y = …;
2.

3. int* bar(int** a, int** b) {
4.

5. *b = null;
6.

7. …
8.
9. int* c = y ? *a : *b;
10.
11. *c = 1;
12.

13. }

. .
.

.
. .

0 ob c oa

. . . .

. . . .

. . . .

. . . .

. . . .

0 ob c oa

y￢y y￢y

(a) (b) (c)

Figure 5.9: Simplifying the exploded super-graph to speedup the
analysis.

are labeled on the edges. Figure 5.9(c) illustrates the simplified form of the original

graph, where unnecessary edges like (s10,ob) ; (s12,ob) and unnecessary vertices

like (s8,ob) are removed. This simplified graph is equivalent to a sparse value-flow

graph. Thus, it is easy to apply the pipeline approach to a path-sensitive sparse

value-flow analysis like Pinpoint or Catapult.

5.4 Implementation

We have implemented the pipelined IFDS framework, Coyote, on top of LLVM to

path-sensitively analyze C/C++ programs. This section discusses the implementation

details. In the evaluation, for a fair comparison, except for the parallel strategy we

study in the chapter, all other implementation details are the same in both Coyote

and the baseline approaches.

5.4.1 Parallelization

As illustrated in Figure 5.10, we implement a thread pool to drive our pipeline

parallelization strategy. In the figure, the master process cycle maintains the summary

dependence graph for all functions. Each vertex in the graph represents a task to

generate certain function summaries. Whenever all of the dependent tasks have been

completed, it pushes the current task, referred to as the active task, into a queue and

85

Section 5.4 Qingkai Shi

Master Process Cycle

Thread Process
Cycles

Queue of Tasks

New Task
to Generate
Summaries

Completed Task

Thread Pool

Summary Dep. Graph

Figure 5.10: Pipelining bottom-up data flow analysis using a thread
pool.

waits for an idle thread to consume it. When a task is completed, the master process

cycle is notified and continues to find more active tasks on the dependence graph.

In our implementation, instead of randomly scheduling the tasks in the thread

pool, we also seek to design a systematic scheduling method so that we can well-

utilize CPU resources. However, it is known that generating an optimal schedule

to parallelize the computations in a dependence graph is a variant of precedent-

constraint scheduling, which is NP-complete [73]. Therefore, we employ a greedy

critical path scheduler [80]. A critical path is the longest remaining path from

a vertex to the root vertex on the dependence graph. We then replace the task

queue in Figure 5.10 with a priority queue and prioritize tasks based on the length

of critical paths. It is noteworthy that this heuristic scheduling method does not

conflict with the pipeline scheduler presented in Section 5.3.4. The pipeline scheduler

prioritizes the analysis tasks in the same function, while the critical-path scheduler

only prioritizes the tasks from different functions.

5.4.2 Taint Analysis

To demonstrate that our approach is applicable to a broad range of data flow

analysis, in addition to the null analysis discussed in the chapter, we also implement

a taint analysis to check two kinds of taint issues. First, we check relative path

traversal, which allows an attacker to access files outside of a restricted directory. It

is modeled as a path on the exploded super-graph from an external input to a file

operation. A typical example is a path from a user input input=gets(...) to a file

86

Section 5.5 Qingkai Shi

operation fopen(...). Second, we check transmission of private resources, which may

leak private data to attackers. It is modeled as a path on the exploded super-graph

from sensitive data to I/O operations. A typical example is a path from the password

password=getpass(...) to an I/O operation sendmsg(...).

5.4.3 Soundness

Our implementation of Coyote is soundy [77], meaning that it handles most

language features in a sound manner while we also make some well-identified unsound

choices following the previous work [127, 21, 8, 117, 108]. Note that Coyote aims

to find as many bugs as possible rather than rigorously verifying the correctness

of a program. In this context, the unsound choices have limited negative impacts

as demonstrated in the previous works. In our implementation, like the previous

work [56], we use a flow-insensitive pointer analysis [112] to resolve function pointers.

We unroll each cycle twice on both the call graph and the control flow graph [8].

Following the work of Saturn [127], a representative static bug detection tool, we

do not model inline assembly and library utilities such as std::vector, std::set, and

std::map from the C++ standard template library.

5.5 Evaluation

Our goal is to study the scalability of Coyote, a pipeline parallelization strategy

for bottom-up data flow analysis. We did this by measuring the CPU utilization

rates and the speedup over a conventional parallel implementation of our bottom-up

analysis. More specifically, a conventional parallel implementation only analyzes

functions without calling dependence in parallel, just as illustrated in Figure 5.1. To

precisely measure and study the scalability of our approach, we introduce an artificial

throttle that allows us to switch between our pipeline strategy and the conventional

parallel strategy. In this manner, we can guarantee that, except for the parallel

strategies, all other implementation details discussed in Section 5.4 are the same

for both our approach and the baseline approach. For instance, both approaches

accept the same exploded super-graph as the input. Particularly, as discussed in

Section 5.3.5, since the ε-bounded partition aims to parallelize the analysis in a single

function, it is adopted in both our approach and the baseline approach for a fair

comparison. Therefore, the speedup of our approach demonstrated in this section is

achieved by the pipeline strategy, i.e., the key contribution of this chapter, alone.

87

Section 5.5 Qingkai Shi

Table 5.1: Subjects for evaluation.

Origin ID Program Size (KLoC) # Functions

SPEC
CINT2000

1 mcf 2 26
2 bzip2 3 74
3 gzip 6 89
4 parser 8 324
5 vpr 11 272
6 crafty 13 108
7 twolf 18 191
8 eon 22 3,367
9 gap 36 843
10 vortex 49 923
11 perlbmk 73 1,069
12 gcc 135 2,220

Open
Source

13 bftpd 5 260
14 shadowsocks 32 574
15 webassembly 75 7,842
16 redis 101 1,527
17 python 434 3,619
18 icu 537 27,046
19 openssl 791 11,759
20 mysql 2,030 79,263

Total 4,381 Avg. 7,070

Like the previous work [3], we did not compare our implementation with other tools

like Saturn [127] and Calysto [8]. This is because the comparison results will not

make any sense due to a lot of different implementation details that may affect the

runtime performance.

Our evaluation of Coyote was over the standard SPEC CINT2000 benchmarks,

which is commonly used in the literature on static analysis [117, 108]. We also include

eight industrial-sized open-source C/C++ projects such as Python, OpenSSL, and

MySQL. These real-world subjects are the monthly trending projects on Github

that we are able to set up. Table 5.1 lists the evaluation subjects. The size of these

subjects is more than four million lines of code in total, ranging from a few thousand

to two million lines of code. The number of functions of these subjects ranges from

tens to nearly eighty thousand functions, with about seven thousand on average.

We ran our experiments on a server with eighty “Intel(R) Xeon(R) CPU E5-2698

v4 @ 2.20GHz” processors and 256GB of memory running Ubuntu-16.04. We set

our initial number of threads to be 20 and add 20 for every subsequent run until

the maximum number of available processors, i.e., 80. All the experiments were run

with the resource limitation of 12 hours.

88

Section 5.5 Qingkai Shi

Table 5.2: Running time (seconds) and the speedup over the
conventional method.

ID
Thread = 20 # Thread = 40 # Thread = 80

Conv Pipe Speedup Conv Pipe Speedup Conv Pipe Speedup

1 60 28 2.1× 60 24 2.5× 60 20 3.0×
2 108 64 1.7× 96 40 2.4× 96 32 3.0×
3 168 76 2.2× 168 61 2.8× 168 56 3.0×
4 252 215 1.2× 168 120 1.4× 132 72 1.8×
5 264 192 1.4× 180 116 1.6× 144 76 1.9×
6 192 104 1.8× 168 76 2.2× 168 60 2.8×
7 168 132 1.3× 133 80 1.7× 122 56 2.2×
8 2568 2148 1.2× 1620 1192 1.4× 1128 708 1.6×
9 1728 860 2.0× 1524 648 2.4× 1476 545 2.7×
10 843 648 1.3× 698 374 1.9× 662 252 2.6×
11 1530 913 1.7× 1325 604 2.2× 1217 500 2.4×
12 1978 1573 1.3× 1486 926 1.6× 1235 613 2.0×
13 156 109 1.4× 132 68 1.9× 132 44 3.0×
14 876 468 1.9× 780 340 2.3× 768 288 2.7×
15 2940 1990 1.5× 2292 1248 1.8× 1980 908 2.2×
16 1332 1060 1.3× 984 628 1.6× 864 416 2.1×
17 5162 3022 1.7× 4276 2036 2.1× 3895 1605 2.4×
18 7.8hr 5.5hr 1.4× 5.8hr 3.4hr 1.7× 4.9hr 2.3hr 2.1×
19 2.8hr 2.2hr 1.2× 1.9hr 1.2hr 1.6× 1.6hr 0.8hr 2.0×
20 T/O 9.6hr - T/O 7.8hr - 11.8hr 5.6hr 2.1×
T/O: Time Out (>12 hours)

5.5.1 Study of the Null Analysis

We first present the experimental results of the null analysis in detail and then

briefly explain the experimental results of the taint analysis in the next subsection.

(1) Speedup. Table 5.2 lists the comparison results of the conventional parallel

mechanism (Conv) and our pipeline strategy (Pipe) for the bottom-up program

analysis. Each row of the table represents the results of a benchmark program,

including the time costs (in seconds) and the speedup for these two kinds of parallel

mechanisms. The speedup is calculated as the ratio of the time taken by Coyote to

that of the conventional parallel approach with the same number of threads.

We observe that the speedup achieved with 20 threads is 1.5× on average.

However, as the number of threads is increased to 80, the observed speedup also

increases, up to 3× faster. Using several typical examples, Figure 5.11 illustrates the

relation between the number of threads and the speedup. The growing curves show

that the speedup increases with the number of available threads, demonstrating that

we can always achieve speedup and have higher parallelism than the conventional

parallel approach.

89

Section 5.5 Qingkai Shi

1.0

1.5

2.0

2.5

3.0

3.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5

系列2
系列3
系列6
系列7
系列13

ID = 2
ID = 3
ID = 6
ID = 7
ID = 13

20 40 60 80

Thread

Sp
ee

du
p

Figure 5.11: Speedup vs. The number of threads.

It is noteworthy that such 2×-3× speedup is significant enough to make many

overly lengthy analyses useful in practice. For example, originally, it takes more than

10 hours to analyze MySQL (ID = 20, Size = 2 MLoC, typical size in industry).

Such a time cost cannot satisfy the industrial requirement of finishing analysis in 5

to 10 hours [80]. With the pipeline strategy, it saves more than 6 hours, making the

bug finding task acceptable in the industrial setting.

(2) CPU Utilization Rate The speedup over conventional parallel design is

due to the higher parallelism achieved by the pipeline strategy. To quantify this

effect, we profile the CPU utilization rates for both the conventional parallel design

and the pipeline method. Figure 5.12 demonstrates the CPU utilization rates against

the elapsed running time. Due to the page limit, we only show several typical ones for

some of the programs running with 80 threads. In the figure, the solid line represents

the CPU utilization rate of our pipeline method while the dashed line represents

that of the conventional parallel design.

We can observe that, for each project, in the initial phase of the analysis, the

CPU utilization rates for both parallel designs are similar, almost occupying all

available CPUs. This is because the call graph of a program is usually a tree-like data

structure. In the bottom half of the call graph, it usually has enough independent

functions that we can analyze in parallel. Thus, both parallel designs can sufficiently

utilize the CPUs.

Our pipeline strategy unleashes its power in the remaining part of the analysis,

where it apparently has much higher CPU utilization rates, thus finishing the analysis

90

Section 5.5 Qingkai Shi

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

bftpd

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

icu

time

time

C
PU

 U
ti

liz
at

io
n

R
at

e
(%

)
C

PU
 U

ti
liz

at
io

n
R

at
e

(%
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

webassembly

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

openssl

time

time

C
PU

 U
ti

liz
at

io
n

R
at

e
(%

)
C

PU
 U

ti
liz

at
io

n
R

at
e

(%
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

python

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
mysql

timetime

C
PU

 U
ti

liz
at

io
n

R
at

e
(%

)

C
PU

 U
ti

liz
at

io
n

R
at

e
(%

)

Figure 5.12: The CPU utilization rate vs. The elapsed time.

much earlier. This is because the top half of a call graph is much denser, where

there are more calling relations than the bottom half. Since the conventional parallel

design cannot analyze functions with calling relations in parallel, it cannot sufficiently

utilize the CPUs. In contrast, our approach splits the analysis of a function into

multiple parts and allows us to analyze functions with calling relations in parallel,

thus being able to utilize more CPUs.

5.5.2 Study of the Taint Analysis

In order to demonstrate that our approach is generalizable to other analyses, we

also conducted an experiment to see whether the pipeline approach can improve the

scalability of taint analysis. Since the result of taint analysis are quite similar to

91

Section 5.6 Qingkai Shi

Table 5.3: Results of the taint analysis on MySQL.

Thread = 20 # Thread = 40 # Thread = 80
Conv Pipe Speedup Conv Pipe Speedup Conv Pipe Speedup

RPT T/O 10.2hr - T/O 8.7hr - 10.9hr 4.7hr 2.3×
TPR 9.3hr 6.6hr 1.4× 8.1hr 5.0hr 1.6× 6.1hr 2.8hr 2.2×
T/O: Time Out (>12 hours)

that of the null analysis, we briefly summarize the experimental results in Table 5.3,

where the results of our largest benchmark program, MySQL, are presented. The

results show that, with the increase of the number of threads, the speedup of Coyote

over the conventional approach also grows to >2× in analyzing both the relative

path traversal (RPT) bug or the transmission of private resources (TPR) bug.

5.5.3 Discussion

There are two main factors affecting the evaluation results: the density of the

call graph and the number of available threads.

As discussed above, when the call graph is very sparse, the advantage of our

approach is not very obvious. For instance, if functions are all independent on

each other, all functions can be run in parallel. Thus, both approaches can always

sufficiently utilize the available threads and, thus, have similar time efficiency. In

practice, as demonstrated in our evaluation, the call graph is usually tree-like. Thus,

our approach can present its power in the second half of the analysis and achieves

up to 3× speedup in practice.

The number of threads is also a key factor affecting the observed speedup of

our approach. For instance, if we only have one thread available, although our

approach can provide more independent tasks, these tasks cannot be run in parallel.

Thus, both of our approach and the conventional one will emit similar results. As

illustrated by the evaluation, our approach can work better when we have more

available threads. In the cloud era, we can expect that we have unlimited CPU

resources and, thus, can expect more benefits from our approach in practice.

5.6 Conclusion

We have presented Coyote, a pipeline parallelization strategy that enables to

perform bottom-up data flow analysis in a faster way. The pipeline strategy relaxes

92

Section 5.6 Qingkai Shi

the calling dependence, which conventionally limits the parallelism of bottom-up

analysis. The evaluation of our approach demonstrates higher CPU utilization rates

and significant speedup over a conventional parallel design. In the multi-core era,

we believe that improving the parallelism is an important approach to scaling static

program analysis.

93

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Although there have been many success stories for developers using static bug

finding tools, we still observe the difficulty of applying them at industrial scale. In

this thesis, we present our novel designs of sparse value-flow analysis to tackle a wide

range of software bugs caused by improper value flows. The proposed approach is

being commercialized and has been deployed in many of the global 500 companies in

China, such as Tencent, Alibaba and others. It also has reported hundreds of real

bugs for large-scale open-source software systems, which are frequently checked by

commercial or free static code analyzers and, thus, are expected to have high quality.

At the time of writing, many of the detected bugs have been assigned CVE IDs due

to their severity and security impact.

Towards the scalability problem of building precise data dependence through a

points-to analysis, this thesis proposes Pinpoint, a holistic design of SVFA. Instead of

hiding points-to analyses behind points-to query interfaces, we create an analysis slice,

including points-to queries, value flows, and path conditions, that is just sufficient

for the properties to check. In this manner, we can escape from the pointer trap by

precisely discovering local data dependence first and delaying the expensive inter-

procedural data dependence analysis through symbolically memorizing the non-local

data dependence relations and path conditions. At the bug detection step, only the

relevant parts of these mementos are further “carved out” in a demand-driven way to

go for a high precision. Experiments show that Pinpoint can check the use-after-free

bugs or the taint issues in two million lines of code within 1.5 hours. The overall

false positive rate is also very low, ranging from 14.3% to 23.6%.

94

Section 6.2 Qingkai Shi

Towards the extensional scalability problem caused by the rapid growth of the

number of bug types, this thesis proposes Catapult, a new demand-driven and

compositional SVFA with the precision of path-sensitivity. The key design of this

technique is to leverage the inter-property awareness and to capture redundancies

and inconsistencies when many value-flow properties are checked at the same time.

In our analysis, the core static analysis engine shares the analysis results on path-

reachability and path-feasibility among different properties to reduce redundant

graph traversals and unnecessary invocations of the SMT solver. The experimental

results demonstrate that Catapult is more than 8× faster than Pinpoint but consumes

only 1/7 of the memory when checking twenty common value-flow properties together.

Towards the limit of parallelization in the conventional parallel design of bottom-

up data flow analysis, this thesis proposes Coyote, an approach to improving the

parallelism by relaxing the calling dependence between functions. Our basic idea

is to partition the analysis task of a function into multiple sub-tasks, so that we

can pipeline the sub-tasks to generate function summaries. We formally prove the

correctness of our approach and apply it to a null analysis and a taint analysis to

show its generalizability. Overall, our pipeline strategy achieves 2× to 3× speedup

over a conventional parallel design of bottom-up analysis. Such speedup is significant

enough to make many overly lengthy analyses useful in practice.

6.2 Future Work

In the course of my research, I have noticed that existing static code analyzers

still suffer from the scalability or precision issues when analyzing large-scale software

systems. This is caused by many reasons and we summarize two significant ones

that inspire my future research. First, few modern software systems are built from

scratch. They rely on a large number of external libraries with various versions.

Without the knowledge on the external code, it is challenging to analyze a program

with high precision. Even with the knowledge, it is still challenging to analyze a

program efficiently because the search space of the program, including a great deal

of external code, is extremely large. Second, a large-scale system often consists of

many components written in different programming languages, which have different

memory models, different type systems, and so on. These differences make it

challenging to perform a conventional data flow analysis, because we have a lack

of uniformed methods to manage different language semantics. I envisage that my

future research will start from addressing the above issues and, eventually, produce

95

Section 6.2 Qingkai Shi

the next-generation industrial-strength static security analyzer. In what follows, I

briefly introduce my future plan.

(1) Data-Driven and Cloud-Based Program Security Analysis. To ad-

dress the problem caused by external libraries, we need to persist the pre-analyzed

results of the libraries in a database and query related analysis results whenever

necessary. Since there are a huge number of external libraries to analyze and store,

and each library also has many versions, I envision that it will be very challenging to

build such a big-code warehouse with the capability of distributive storage and fast

query of the analysis results. To the best of our knowledge, only a few existing studies

attempt to manually model a very limited number of libraries, which is different from

my future plan because they only handle limited data in an ad-hoc manner while

I am aiming for a cloud-based big-code warehouse that support general program

security analysis. With the big-code warehouse and an efficient query scheme, when

encountering external library functions during a program security analysis, we can

query the pre-analyzed results stored in the cloud so that the analysis can efficiently

and precisely recognize the semantics of the library functions.

(2) Feedback-Directed Hybrid Code Analysis. To improve the analysis

precision, in addition to modeling the external libraries as discussed above, static

code analysis can interact with human feedback and dynamic code analysis. On the

one hand, feedback from the tool users is important to reduce the false positives

generated by an analyzer. This is mainly because the users, not the analyzer authors,

will determine and act on a tools perceived false positive rate [101]. There have been

a few work that leverages user feedback to reduce false positives [60, 93]. Nevertheless,

we do think this is a long journey due to the complexity of human thoughts. Possible

future directions may be to integrate probabilistic techniques for analyzing human

feedback or combine human feedback with program features to increase the analysis

precision. On the other hand, we observe that tool users often confirm the truth of

a bug report only when program inputs are provided to trigger the reported bug.

Otherwise, a bug report may be ignored or even marked as a false positive. To

generate the bug-triggering inputs, we plan to combine static code analysis with

dynamic analysis like fuzz testing. For instance, we can guide a fuzzer with the bugs

reported by a static code analyzer, so that it can quickly generate inputs to trigger

the bugs.

(3) Program Security Analysis for Complex Systems. My third future

research direction is to study the analysis of a complex software system written in

hybrid languages. Modern software, such as mobile applications, is usually written

96

Section 6.2 Qingkai Shi

in multiple languages, such as Java, Javascript, C/C++, and so on. The memory

of Java and Javascript is auto-managed while the memory of C/C++ has to be

manually managed. Java and C/C++ are static-type languages while Javascript is a

dynamic-type language. Java is a strong-type language while C/C++ and Javascript

are weak-type languages. I plan to build uniform data structures to model the

memory and the type systems so that data flow across different languages can be

safely analyzed with high precision.

97

Publications

Thesis related publications

• Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles

Zhang. Pinpoint: Fast and Precise Sparse Value Flow Analysis for Million

Lines of Code. In PLDI 2018: the 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation. Philadelphia, PA, United

States. June 2018.

• Qingkai Shi, and Charles Zhang. Pipelining Bottom-up Data Flow Analysis.

In ICSE 2020: the 42nd ACM/IEEE International Conference on Software

Engineering. Seoul, South Korea. May 2020.

• Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang. Conquering the

Extensional Scalability Problem for Value-Flow Analysis Frameworks. In ICSE

2020: the 42nd ACM/IEEE International Conference on Software Engineering.

Seoul, South Korea. May 2020.

Other publications

• Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles

Zhang. SMOKE: Scalable Path-Sensitive Memory Leak Detection for Millions

of Lines of Code. In ICSE 2019: the 41st ACM/IEEE International Confer-

ence on Software Engineering. Montreal, QC, Canada. May 2019. (ACM

SIGSOFT Distinguished Paper Award)

• Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang.

Pangolin: Incremental Hybrid Fuzzing with Polyhedral Path Abstraction. In

Oakland 2020: the 41st IEEE Symposium on Security and Privacy. San

Francisco, CA, United States. May 2020.

98

Section .0 Qingkai Shi

• Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang. Fast Bit-

Vector Satisfiability. In ISSTA 2020: the 29th ACM SIGSOFT International

Symposium on Software Testing and Analysis. Los Angeles, CA, USA. July

2020.

• Gang Fan, Chengpeng Wang, Rongxin Wu, Qingkai Shi, and Charles Zhang.

Escaping Dependency Hell: Finding Build Dependency Errors with the Unified

Dependency Graph. In ISSTA 2020: the 29th ACM SIGSOFT International

Symposium on Software Testing and Analysis. Los Angeles, CA, USA. July

2020.

99

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and
tools, volume 2. Addison-wesley Reading, 2007.

[2] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and P. Hawkins. The
Saturn Program Analysis System. Stanford University, 2006.

[3] A. Albarghouthi, R. Kumar, A. V. Nori, and S. K. Rajamani. Parallelizing
top-down interprocedural analyses. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12,
pages 217–228. ACM, 2012.

[4] N. Allen, P. Krishnan, and B. Scholz. Combining type-analysis with points-to
analysis for analyzing java library source-code. In Proceedings of the 4th ACM
SIGPLAN International Workshop on State Of the Art in Program Analysis,
SOAP ’15, pages 13–18. ACM, 2015.

[5] S. Apel, D. Beyer, V. Mordan, V. Mutilin, and A. Stahlbauer. On-the-fly
decomposition of specifications in software model checking. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 349–361. ACM, 2016.

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pages 259–269. ACM, 2014.

[7] P. Avgustinov, O. de Moor, M. P. Jones, and M. Schäfer. Ql: Object-oriented
queries on relational data. In 30th European Conference on Object-Oriented
Programming, ECOOP ’16, pages 2:1–2:25. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016.

[8] D. Babic and A. J. Hu. Calysto: Scalable and precise extended static checking.
In Proceedings of the 30th International Conference on Software Engineering,
ICSE ’08, pages 211–220. IEEE, 2008.

[9] T. Ball and S. K. Rajamani. The slam project: Debugging system software via
static analysis. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’02, pages 1–3. ACM, 2002.

101

References Qingkai Shi

[10] T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking
with slam. Communications of the ACM, 54(7):68–76, 2011.

[11] J. Barnat, L. Brim, and J. Stř́ıbrná. Distributed ltl model-checking in spin. In
International SPIN Workshop on Model Checking of Software, pages 200–216.
Springer, 2001.

[12] P. Beanie, H. Kautz, and A. Sabharwal. Understanding the power of clause
learning. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence, IJCAI ’03, pages 1194–1201. Morgan Kaufmann Publishers Inc.,
2003.

[13] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. Engler. A few billion lines of code later: using
static analysis to find bugs in the real world. Communications of the ACM, 53
(2):66–75, 2010.

[14] F. E. Boland Jr and P. E. Black. The juliet 1.1 c/c++ and java test suite.
Computer, 45(10), 2012.

[15] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of so-
phisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’09, pages 243–262. ACM, 2009.

[16] J. Caballero, G. Grieco, M. Marron, and A. Nappa. Undangle: early detection of
dangling pointers in use-after-free and double-free vulnerabilities. In Proceedings
of the 2012 International Symposium on Software Testing and Analysis, ISSTA
’12, pages 133–143. ACM, 2012.

[17] G. Cabodi and S. Nocco. Optimized model checking of multiple properties. In
2011 Design, Automation, and Test in Europe Conference, DATE ’11, pages
1–4. IEEE, 2011.

[18] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional shape
analysis by means of bi-abduction. Journal of the ACM, 58(6):26:1–26:66,
2011.

[19] P. Camurati, C. Loiacono, P. Pasini, D. Patti, and S. Quer. To split or to group:
from divide-and-conquer to sub-task sharing in verifying multiple properties.
In International Workshop on Design and Implementation of Formal Tools and
Systems (DIFTS), Lausanne, Switzerland, pages 313–325. Springer, 2014.

[20] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification
of software components in c. IEEE Transactions on Software Engineering, 30
(6):388–402, 2004.

[21] S. Cherem, L. Princehouse, and R. Rugina. Practical memory leak detection
using guarded value-flow analysis. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’07,
pages 480–491. ACM, 2007.

102

References Qingkai Shi

[22] C. Y. Cho, V. D’Silva, and D. Song. Blitz: Compositional bounded model
checking for real-world programs. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’13, pages
136–146. IEEE, 2013.

[23] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of craig inter-
polants in satisfiability modulo theories. ACM Transactions on Computational
Logic (TOCL), 12(1):7, 2010.

[24] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea. Cloud9: A
software testing service. ACM SIGOPS Operating Systems Review, 43(4):5–10,
2010.

[25] E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of c and verilog
programs using bounded model checking. In Proceedings of the 40th annual
Design Automation Conference, pages 368–371. ACM, 2003.

[26] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of
ansi-c programs using sat. Formal Methods in System Design, 25(2):105–127,
2004.

[27] P. Cousot and R. Cousot. Modular static program analysis. In International
Conference on Compiler Construction, CC ’02, pages 159–179. Springer, 2002.

[28] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An
efficient method of computing static single assignment form. In Proceedings of
the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 25–35. ACM, 1989.

[29] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and Systems (TOPLAS),
13(4):451–490, 1991.

[30] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program verification in
polynomial time. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, PLDI ’02, pages 57–68.
ACM, 2002.

[31] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[32] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In European Conference on Object-Oriented
Programming, pages 77–101. Springer, 1995.

[33] D. E. Denning. A lattice model of secure information flow. Communications
of the ACM, 19(5):236–243, 1976.

103

References Qingkai Shi

[34] N. Dershowitz, Z. Hanna, and A. Nadel. A scalable algorithm for minimal
unsatisfiable core extraction. In Theory and Applications of Satisfiability
Testing, SAT ’06, pages 36–41. Springer, 2006.

[35] D. Dewey, B. Reaves, and P. Traynor. Uncovering use-after-free conditions
in compiled code. In Availability, Reliability and Security (ARES), 2015 10th
International Conference on, pages 90–99. IEEE, 2015.

[36] K. Dewey, V. Kashyap, and B. Hardekopf. A parallel abstract interpreter for
javascript. In 2015 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO ’15), pages 34–45. IEEE, 2015.

[37] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-sensitive
analysis. In Proceedings of the 29th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’08, pages 270–280. ACM,
2008.

[38] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and compact modular
procedure summaries for heap manipulating programs. In Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pages 567–577. ACM, 2011.

[39] L. N. Q. Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. Murphy-Hill. Just-
in-time static analysis. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 307–317. ACM, 2017.

[40] N. Dor, S. Adams, M. Das, and Z. Yang. Software validation via scalable
path-sensitive value flow analysis. In Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA ’04, pages
12–22. ACM, 2004.

[41] M. B. Dwyer, S. Elbaum, S. Person, and R. Purandare. Parallel randomized
state-space search. In Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 3–12. IEEE, 2007.

[42] M. Edvinsson, J. Lundberg, and W. Löwe. Parallel points-to analysis for
multi-core machines. In Proceedings of the 6th International Conference on
High Performance and Embedded Architectures and Compilers, pages 45–54.
ACM, 2011.

[43] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang. Smoke: scalable path-
sensitive memory leak detection for millions of lines of code. In Proceedings of
the 41st ACM/IEEE International Conference on Software Engineering, ICSE
’19, pages 72–82. IEEE, 2019.

[44] J. Feist, L. Mounier, and M.-L. Potet. Statically detecting use after free on
binary code. Journal of Computer Virology and Hacking Techniques, 10(3):
211–217, 2014.

104

References Qingkai Shi

[45] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 9(3):319–349, 1987.

[46] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective types-
tate verification in the presence of aliasing. ACM Transactions on Software
Engineering and Methodology (TOSEM), 17(2):9, 2008.

[47] S. Ganguly, A. Silberschatz, and S. Tsur. A framework for the parallel process-
ing of datalog queries. In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’90, pages 143–152. ACM, 1990.

[48] D. Garbervetsky, E. Zoppi, and B. Livshits. Toward full elasticity in distributed
static analysis: the case of callgraph analysis. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, FSE ’17, pages 442–453.
ACM, 2017.

[49] E. Goldberg, M. Güdemann, D. Kroening, and R. Mukherjee. Efficient verifi-
cation of multi-property designs (the benefit of wrong assumptions). In 2018
Design, Automation, and Test in Europe Conference, DATE ’18, pages 43–48.
IEEE, 2018.

[50] N. Grech and Y. Smaragdakis. P/taint: Unified points-to and taint analysis.
Proc. ACM Program. Lang., 1(OOPSLA):102:1–102:28, 2017.

[51] O. Grumberg, T. Heyman, N. Ifergan, and A. Schuster. Achieving speedups in
distributed symbolic reachability analysis through asynchronous computation.
In Advanced Research Working Conference on Correct Hardware Design and
Verification Methods, pages 129–145. Springer, 2005.

[52] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg. Saving
the world wide web from vulnerable javascript. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, ISSTA ’11, pages
177–187. ACM, 2011.

[53] S. Guyer and C. Lin. Client-driven pointer analysis. Static Analysis, pages
1073–1073, 2003.

[54] S. Z. Guyer and C. Lin. Error checking with client-driven pointer analysis.
Science of Computer Programming, 58(1-2):83–114, 2005.

[55] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer analysis. In Pro-
ceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’09, pages 226–238. ACM, 2009.

[56] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for millions of lines of
code. In Proceedings of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’11, pages 289–298. IEEE, 2011.

105

References Qingkai Shi

[57] B. Hassanshahi, R. K. Ramesh, P. Krishnan, B. Scholz, and Y. Lu. An efficient
tunable selective points-to analysis for large codebases. In Proceedings of the
6th ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis, SOAP ’17, pages 13–18. ACM, 2017.

[58] N. Heintze and O. Tardieu. Demand-driven pointer analysis. In Proceedings of
the ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation, PLDI ’01, pages 24–34. ACM, 2001.

[59] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’02, pages 58–70. ACM, 2002.

[60] K. Heo, M. Raghothaman, X. Si, and M. Naik. Continuously reasoning about
programs using differential bayesian inference. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, pages 561–575. ACM, 2019.

[61] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 54–61. ACM, 2001.

[62] G. J. Holzmann and D. Bosnacki. The design of a multicore extension of
the spin model checker. IEEE Transactions on Software Engineering, 33(10):
659–674, 2007.

[63] D. Hovemeyer and W. Pugh. Finding more null pointer bugs, but not too many.
In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 9–14. ACM, 2007.

[64] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a static analysis
to find null pointer bugs. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE
’05, pages 13–19. ACM, 2005.

[65] G. Hulin. Parallel processing of recursive queries in distributed architectures.
In Proceedings of the 15th International Conference on Very Large Data Bases,
VLDB ’89, pages 87–96. Morgan Kaufmann Publishers Inc., 1989.

[66] H. Jordan, P. Subotić, D. Zhao, and B. Scholz. A specialized b-tree for
concurrent datalog evaluation. In Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming, PPoPP ’19, pages 327–339.
ACM, 2019.

[67] G. A. Kildall. A unified approach to global program optimization. In Proceed-
ings of the 1st annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’73, pages 194–206. ACM, 1973.

[68] J. C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976.

106

References Qingkai Shi

[69] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime optimization,
page 75. IEEE, 2004.

[70] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-to
analysis with heap cloning practical for the real world. In Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’07, pages 278–289. ACM, 2007.

[71] W. Le and M. L. Soffa. Marple: a demand-driven path-sensitive buffer overflow
detector. In Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering, pages 272–282. ACM, 2008.

[72] Y.-f. Lee and B. G. Ryder. A comprehensive approach to parallel data flow
analysis. In Proceedings of the 6th International Conference on Supercomputing,
pages 236–247. ACM, 1992.

[73] J. K. Lenstra and A. Rinnooy Kan. Complexity of scheduling under precedence
constraints. Operations Research, 26(1):22–35, 1978.

[74] L. Li, C. Cifuentes, and N. Keynes. Boosting the performance of flow-sensitive
points-to analysis using value flow. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 343–353. ACM, 2011.

[75] B. Liu, J. Huang, and L. Rauchwerger. Rethinking incremental and parallel
pointer analysis. ACM Transactions on Programming Languages and Systems
(TOPLAS), 41(1):6, 2019.

[76] B. Livshits and M. S. Lam. Tracking pointers with path and context sensitivity
for bug detection in c programs. In Proceedings of the 9th European Software
Engineering Conference Held Jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ESEC/FSE ’11, pages
317–326. ACM, 2003.

[77] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-Y. E.
Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis. In defense
of soundiness: a manifesto. Communications of the ACM, 58(2):44–46, 2015.

[78] N. P. Lopes and A. Rybalchenko. Distributed and predictable software model
checking. In International Workshop on Verification, Model Checking, and
Abstract Interpretation, pages 340–355. Springer, 2011.

[79] C. A. Mart́ınez-Angeles, I. Dutra, V. S. Costa, and J. Buenabad-Chávez. A dat-
alog engine for gpus. In Declarative Programming and Knowledge Management,
pages 152–168. Springer, 2013.

[80] S. McPeak, C.-H. Gros, and M. K. Ramanathan. Scalable and incremental
software bug detection. In Proceedings of the 2013 9th Joint Meeting on

107

References Qingkai Shi

Foundations of Software Engineering, ESEC/FSE ’13, pages 554–564. ACM,
2013.

[81] M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel inclusion-based points-
to analysis. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’10,
pages 428–443. ACM, 2010.

[82] M. Mendez-Lojo, M. Burtscher, and K. Pingali. A gpu implementation of
inclusion-based points-to analysis. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’12,
pages 107–116. ACM, 2012.

[83] D. Monniaux. The parallel implementation of the astrée static analyzer.
In Asian Symposium on Programming Languages and Systems, pages 86–96.
Springer, 2005.

[84] V. O. Mordan and V. S. Mutilin. Checking several requirements at once by
cegar. Programming and Computer Software, 42(4):225–238, 2016.

[85] N. A. Naeem and O. Lhotak. Typestate-like analysis of multiple interacting
objects. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-
oriented Programming Systems Languages and Applications, OOPSLA ’08,
pages 347–366. ACM, 2008.

[86] N. A. Naeem and O. Lhoták. Efficient alias set analysis using ssa form. In
Proceedings of the 2009 International Symposium on Memory Management,
ISMM ’09, pages 79–88. ACM, 2009.

[87] N. A. Naeem and O. Lhoták. Faster alias set analysis using summaries. In
International Conference on Compiler Construction, CC ’11, pages 82–103.
Springer, 2011.

[88] V. Nagaraj and R. Govindarajan. Parallel flow-sensitive pointer analysis
by graph-rewriting. In Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques, pages 19–28. IEEE, 2013.

[89] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. Le Traon.
Effective inter-component communication mapping in android: An essential
step towards holistic security analysis. In Presented as part of the 22nd
USENIX Security Symposium (USENIX Security ’13), pages 543–558. USENIX
Association, 2013.

[90] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and implementation of
sparse global analyses for c-like languages. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, pages 229–238. ACM, 2012.

108

References Qingkai Shi

[91] T. Prabhu, S. Ramalingam, M. Might, and M. Hall. Eigencfa: Accelerating
flow analysis with gpus. In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’11,
pages 511–522. ACM, 2011.

[92] S. Putta and R. Nasre. Parallel replication-based points-to analysis. In
International Conference on Compiler Construction, CC ’12, pages 61–80.
Springer, 2012.

[93] M. Raghothaman, S. Kulkarni, K. Heo, and M. Naik. User-guided program
reasoning using bayesian inference. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2018,
pages 722–735. ACM, 2018.

[94] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. In Proceedings
of the 2nd ACM SIGSOFT Symposium on Foundations of Software Engineering,
FSE ’94, pages 11–20. ACM, 1994.

[95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’95, pages 49–61.
ACM, 1995.

[96] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for
cutpoint-free programs. In International Static Analysis Symposium, pages
284–302. Springer, 2005.

[97] W.-S. Rödiger. Merging Static Analysis and model checking for improved
security vulnerability detection. PhD thesis, Master thesis, Dept. of Com. Sc.
Augsburg University, 2011.

[98] J. Rodriguez and O. Lhoták. Actor-based parallel dataflow analysis. In
International Conference on Compiler Construction, CC ’11, pages 179–197.
Springer, 2011.

[99] A. Rountev, M. Sharp, and G. Xu. Ide dataflow analysis in the presence
of large object-oriented libraries. In International Conference on Compiler
Construction, CC ’08, pages 53–68. Springer, 2008.

[100] C. Sadowski, J. Van Gogh, C. Jaspan, E. Söderberg, and C. Winter. Tricorder:
Building a program analysis ecosystem. In Proceedings of the 37th International
Conference on Software Engineering, ICSE ’15, pages 598–608. IEEE, 2015.

[101] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan.
Lessons from building static analysis tools at google. Communications of the
ACM, 61(4):58–66, 2018.

[102] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis
with applications to constant propagation. Theoretical Computer Science, 167
(1):131–170, 1996.

109

References Qingkai Shi

[103] D. Saha and C. Ramakrishnan. Incremental and demand-driven points-to
analysis using logic programming. In Proceedings of the 7th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Program-
ming, PPDP ’05, pages 117–128. ACM, 2005.

[104] L. Sandra. Phb practical handbook of curve fitting, 1994.

[105] B. Scholz, H. Jordan, P. Subotić, and T. Westmann. On fast large-scale program
analysis in datalog. In International Conference on Compiler Construction,
CC ’16, pages 196–206. ACM, 2016.

[106] J. Seib and G. Lausen. Parallelizing datalog programs by generalized pivoting.
In Proceedings of the tenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 241–251. ACM, 1991.

[107] M. Shaw, P. Koutris, B. Howe, and D. Suciu. Optimizing large-scale semi-näıve
datalog evaluation in hadoop. In International Datalog 2.0 Workshop, pages
165–176. Springer, 2012.

[108] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang. Pinpoint: Fast and
precise sparse value flow analysis for million lines of code. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’18, pages 693–706. ACM, 2018.

[109] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static specification mining us-
ing automata-based abstractions. IEEE Transactions on Software Engineering,
34(5):651–666, 2008.

[110] G. Snelting, T. Robschink, and J. Krinke. Efficient path conditions in de-
pendence graphs for software safety analysis. ACM Transactions on Software
Engineering and Methodology (TOSEM), 15(4):410–457, 2006.

[111] M. Sridharan, D. Gopan, L. Shan, and R. Bod́ık. Demand-driven points-to
analysis for java. In Proceedings of the 20th Annual ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’05, pages 59–76. ACM, 2005.

[112] B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 32–41. ACM, 1996.

[113] R. E. Strom. Mechanisms for compile-time enforcement of security. In Pro-
ceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’83, pages 276–284. ACM, 1983.

[114] R. E. Strom and S. Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering,
SE-12(1):157–171, 1986.

110

References Qingkai Shi

[115] Y. Su, D. Ye, and J. Xue. Parallel pointer analysis with cfl-reachability. In 2014
43rd International Conference on Parallel Processing, pages 451–460. IEEE,
2014.

[116] Y. Sui and J. Xue. Svf: Interprocedural static value-flow analysis in llvm. In
International Conference on Compiler Construction, CC ’16, pages 265–266.
ACM, 2016.

[117] Y. Sui, D. Ye, and J. Xue. Detecting memory leaks statically with full-sparse
value-flow analysis. IEEE Transactions on Software Engineering, 40(2):107–122,
2014.

[118] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri. Andromeda:
Accurate and scalable security analysis of web applications. In International
Conference on Fundamental Approaches to Software Engineering, pages 210–225.
Springer, 2013.

[119] P. Tu and D. Padua. Efficient building and placing of gating functions. In
Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language
Design and Implementation, PLDI ’95, pages 47–55. ACM, 1995.

[120] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani. Graspan: A
single-machine disk-based graph system for interprocedural static analyses of
large-scale systems code. In Proceedings of the 22nd International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’17, pages 389–404. ACM, 2017.

[121] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional
branches. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(2):181–210, 1991.

[122] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation, PLDI ’04,
pages 131–144. ACM, 2004.

[123] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis
for c programs. In Proceedings of the ACM SIGPLAN 1995 Conference on
Programming Language Design and Implementation, PLDI ’95, pages 1–12.
ACM, 1995.

[124] O. Wolfson and A. Ozeri. A new paradigm for parallel and distributed rule-
processing. In Proceedings of the 1990 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’90, pages 133–142. ACM, 1990.

[125] O. Wolfson and A. Silberschatz. Distributed processing of logic programs. In
Proceedings of the 1988 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’88, pages 329–336. ACM, 1988.

111

References Qingkai Shi

[126] Y. Xie and A. Aiken. Context- and path-sensitive memory leak detection.
In Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE ’05, pages 115–125. ACM, 2005.

[127] Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’05, pages 351–363. ACM, 2005.

[128] D. Yan, G. Xu, and A. Rountev. Demand-driven context-sensitive alias analysis
for java. In Proceedings of the 2011 International Symposium on Software
Testing and Analysis, ISSTA ’11, pages 155–165. ACM, 2011.

[129] H. Yan, Y. Sui, S. Chen, and J. Xue. Spatio-temporal context reduction:
a pointer-analysis-based static approach for detecting use-after-free vulner-
abilities. In Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, pages 327–337. IEEE, 2018.

[130] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. O’Hearn. Scalable shape analysis for systems code. In International Confer-
ence on Computer Aided Verification, pages 385–398. Springer, 2008.

[131] M. Yang, A. Shkapsky, and C. Zaniolo. Scaling up the performance of more
powerful datalog systems on multicore machines. The International Journal
on Very Large Data Bases, 26(2):229–248, 2017.

[132] G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise procedure
summaries. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’08, pages 221–
234. ACM, 2008.

[133] X. Zheng and R. Rugina. Demand-driven alias analysis for c. In Proceedings
of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’08, pages 197–208. ACM, 2008.

[134] Z. Zuo, J. Thorpe, Y. Wang, Q. Pan, S. Lu, K. Wang, G. H. Xu, L. Wang,
and X. Li. Grapple: A graph system for static finite-state property checking of
large-scale systems code. In Proceedings of the 14th European Conference on
Computer Systems, EuroSys ’19, pages 38:1–38:17. ACM, 2019.

112

	Title Page
	Authorization Page
	Signature Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Introduction
	Motivation
	Contribution
	Organization

	Preliminaries and Background
	Preliminaries
	Data Flow Analysis
	Sparse Value-Flow Analysis

	Background
	Scaling up Static Bug Finding with High Precision
	Scaling up Static Bug Finding for Multiple Checkers
	Scaling up Static Bug Finding via Parallelization

	Scaling up Sparse Value-Flow Analysis with High Precision
	Introduction
	The Pointer Trap
	Escaping from the Pointer Trap

	Overview
	Semantic-Preserving Transformation
	Inter-procedural Bug Detection

	A Holistic Design
	Decomposing the Cost of Data Dependence Analysis
	Symbolic Expression Graph
	Global Value-Flow Analysis

	Implementation
	Checkers
	Soundness

	Evaluation
	Comparing to Static Value-Flow Analyzer
	Study of the Taint Analysis
	Comparing to Other Static Analyzers

	Conclusion

	Scaling up Sparse Value-Flow Analysis for Multiple Checkers
	Introduction
	The Extensional Scalability Problem
	Conquering the Extensional Scalability Problem

	Overview
	Mutual Synergy
	A Running Example

	Value-Flow Properties
	Property Specification
	Property Examples

	Inter-property-aware Analysis
	A Naïve Static Analyzer
	Optimized Intra-procedural Analysis
	Modular Inter-procedural Analysis

	Implementation
	Path-sensitivity and Parallelization
	Properties to Check
	Soundness

	Evaluation
	Comparing to Static Value-Flow Analyzer
	Comparing to Other Static Analyzers
	Detected Real Bugs

	Conclusion

	Scaling up Sparse Value-Flow Analysis via Parallelization
	Introduction
	The Limit of Parallelization
	Breaking the Limit of Parallelization

	Overview
	The IFDS/IDE Framework
	An Example

	Pipelined Bottom-up Analysis
	Preliminaries
	Partition Criteria
	Pipelineable Summary-Set Partition
	Pipeline Scheduling
	-Bounded Partition and Scheduling
	Pipelining Sparse Value-Flow Analysis

	Implementation
	Parallelization
	Taint Analysis
	Soundness

	Evaluation
	Study of the Null Analysis
	Study of the Taint Analysis
	Discussion

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Publications
	References

